


1. INTRODUCTION

Superconducting transition metal alloys of the type A B
are characterized by a marked concentratlon dependence
of the critical temperature T (@ 1/ In such materials the

d —electrons of narrow bands are responsible for supercon-
ductivity. The lattice sites are chemically inequivalent
because they are randomly occupied by different kinds of
atoms. Thus, T must be calculated by configurational ave-
raging over a nonperlodlc system, yielding an effect1ve
medium.

First treatments of disordered superconductors have been
given for the "dirty" /2’ and dilute alloy’% cases. In the
last/years the coherent potential approx1mat10n {CPA) was
used 458  to describe concentrated (nonmagnetic, weak-
coupling) superconducting alloys on the basis of the lattice
model,
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Here the atomic energy ¢, the hopping 1ntegrals ty; and the
order parameter A, assumed local are varying owing to the
atomic disorder; A; >0 is the random coupling parameter.

The symbol <.., > means the thermal average; <.-.>'c'1 indica-
tes the average over all atoms except the atom at site 1.
While t;; and A, are presumed to be nonrandom in ref. &
spatial variations of the order parameter are taken intoc ac-
count in refs. 75,6/, 0ff-diagonal randomness (ODR), concerning
t,. in the multiplicative limit, was studled/G/ in the frame-—
work of the CPA, toc. In the presence of addive ODR but at
constant order parameter, T, and the gag were calculated’?/
within the ODCPA scheme glven in ref.

The pairing term in (1) corresponds to the Hartree-Fock
approximation of the BCS theory. Moreover, superconductivity
can be derived from the fundamental fermion interaction by
the functional integral technique. Such a procedure was



performed for pure superconductors /9-11/, The functional
integral method (cf. ref. 1%/ ) allows one to introduce col-
lective quantum fields in a very natural way.

In this paper the functional integral formalism is applied
to substitutionally discordered superconducting systems
(Section 2). Including additive ODR, in Section 3 we evaluate
T, —formulae at constant and variable order parameters, res-—
pectively.

2, FUNCTIONAL INTEGRAL APPROACH

Consider a compositionally disordered superconductor for
an arbitrary configuration of the atoms in an otherwise
perfect lattice. At nonzero temperature T:,B‘1 the random
action reads

S=_?L(r)dr= Fdr z -(—:io(r)ar i (r)—j@H(r)dr (3
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withL, being the Lagrangian, The "time”-dependent tight-bin-

ding Hamiltonian is assumed to be of the form

HN=2¢ ¢ (e, )+ 3 t,.¢. (e, (1) -
i i Tio io ijo ij Tio jo
G+ (4)
- iZAi c“(r)c“(r)c“(r)c”(r) =H N+ H, ),
where €;,ty; and A; are random parameters. The fundamental
interaction part H, involves only local coupling. The gene-
rating functional Z for the fermion Green functions can be

expressed by a path inte;ral over anticommuting (Grassmann)
variables as (cf. refs, /11127

Z.[-;?-,ﬁ]=nj.Dé-DceS[c,c]+cn+qc (5)
with the definitions (3), (&) and the abbreviation
B _ _
ep+ge = [ar T (e, () () e, (e, (). (6)
I
The normalization factor N is determined without external
sources by setting Z{0,0]=1.
Taking into account that the c¢’s in (5) are c-numbers, one

can linearize the exponential of the quadratic interaction
H, by the identity (with an irrelevant factor M,)
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Here A represents the set of space— and "time''-dependent
Bose (local pair) fields A;{). Then the generating functional

(5) becomes _ .
_ s,le e AfAl+en+7e
Z{7,71=N,/DcDcDA*DAe (8)
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with the augmented action (doublet notation ¢=(¢.¢ ) and n,ba(ﬁ ™
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In view of (9) it is convenient to 1ntroduce the propagator
matrix G written explicitly as

a?’ Slm —[Hv}im Al (r}alm » ’
E GAmj {r,r )=3ij 8G=r",
AX(r)5 ar8im+[HV]im (10)

where [Hy ] . ; (1-5..). In the static limit, (10}
reduces to éhe Golilkov equat{ons for disordered systems, which
can be also obtained directly from the Hamiltonian (1).
The integration over the fermion fields in (8) leads to
(functional Gaussian trans[;format_ion)
8 AxAl+ €6
Z[7,7] =%, [DA*DAe * Sent (i1)

including the collective action

S, LA™ Al= TrtrlnGA ———-}Al (12)
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Here the notation ‘f:(ﬁT, n, ), f:(_ ), and -§—|Alzs fdrzrl-A’; (f)Ai (=)
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has been used; the trace Tr refers to site and "time" variab-
les, while tr 1is restricted to the 2x2 {(spin) matrix. Accord-
R ; . .. &3 A*A]

ing to the least action principle —"‘-—"—l—[————

=0 we obtain
. . 8% ()
the equation of motion for the collective field as

~l2
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(13)
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Let us now rewrite the inverse Greem function Ggi so that
- - ' 0A
TrrInGy'=Trir oG 4+ Trelnf1+ G0 ) 1,

A*Q (14)

where G=Gy_, denotes the normal-state propagator. Thus, the
collective action (12) can be expanded in powers of A as

(the prime means including the term TrirlnG-1 into the
normalization)
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allowing the decomposition into the free .and interacting
parts:

Séol [A*,A]:Sfr [A*,A]+Sim[A*,A], {(16)
where
1 .
8 * = * —~=lAl 2
f [A* A] Sz[A,A] A§A| , (17

8 ,n 8%, 4] =n=22 8, [A%,A]. (18)
More explicitly, the free action (17) reads
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JG11 0
expressed in terms of the elements of 'G= 22 +The corres-

. . , &8, [A*A]
ponding Euler-Lagrange equation resulting from —Fu-— -

) ) SA* (r)
takes the form i
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This relation coincides with the homogeneous Bethe-Salpeter
equation in the presence of disorder,

3. DETERMINATION OF T, VIA CONFIGURATIONAL
AVERAGING

If the system is cleose to the critical region, all terms in
the expansion (J5) with N >2 can be dropped in order to cal-
culate the superconducting transition temperature ﬂ:;Then we
are left with the problem of averaging, in particular the
equation (20}, over all configurations of the lattice. The
following treatment is based on the static approximation.

3.1. Anderson Case

The simplest case to find T, consists in neglecting both
the spatial and temporal fluctuations of the order parameter,
i.e., in replacing

Ag’;‘ )= A, A e, (21)
‘where the randomness is now explicitly labelled by v ({v})
for the site (whole lattice) occupat:‘.on,<...>c denotes the

configuration average. Then (19} can be rewritten by going
over to Matsubara frequencies z =i@n+1)aT as

sty N AT s cmrpd gyt 91 - LA, (22)
T N n n n c A

Ir [

where 7Tr means the trace only in the lattice space (N sites).
By a Ward identity we get at 3rP1 T ry randPTness in.the
normal scattering potential V'V )

My _ N auT _g(zn)*'.g(_zn) L N, | '
SRS S S b-llapatMA, o (23)

Ir 2zn .

where the averaged Green function is defined by

8@ =<6 (9> wz-Hy-T@)" . | (24)



/5,117

By employving standard techniques one obtains

M=rp@TE 1L, @=L TQuin, (25)
n|zn| Y N :

where'M vanishes at the critical temperature

T, =1.13T expi- — 1 . (25)

Ap (D)
Ty is the Debye temperature. Hence the chemical potential of
the pair field takes the form

y T, T,
_=p(0)1n-T—=p(0)(1- = ). (27)

The effect of disorder enters only through p(0),i.e., the
averaged density of states at the Fermi level i =0 (Anderson
théorem’? ). In the limit of the pure superconductor, (26)
tends to the BCS result.

3,2. Random Order Parameter

Supposing spatial variations of the order parameter and
taking the static limit of (13) and (20) we replace Ar (r)
by

N T2<i|<0125"‘(z o li> -

1 iy A n’ e,
v i Wh il v (28)
=X Tt he Hat et ™M eg Y 1,
A
where [AD{VE]ij =AE 8y ; the factor en is omitted. Hereby,
the complete randomness is reduced to the conditional average
with respect to the site i. Let us assume additivity of the
one—particle Bamiltonian, by putting
i} ~ Ay
AT =B 3T | (29)
which involves ODR of the additive type, too. Then the partial
- averaging in (28) can be realized by

|d¥asY =0l A @-4, (@) +AYDEY () (30)

leading to the total average

<~<'c;[‘\2""}(z)>»;’i > =8 D A@E (), (31)
where
LD+ E@T] 8@ . (32)



Here A(z) (A; (2)) denotes the anomalous self-energy (per:
site), and[AV] L= b‘mam € is available from (24). TV is
the 51ngle—s1te scattering matrix, having finite range in the
lattice space in the presence of addltlve ODR. The condition—
ally averaged mormal Green function G satisfies the Ward-

like relation
G () (2232 +3(2)+3, (B -2, (-0) 6] (D =C[ D =G/ (®) . (33)
Making the ansatz

—Ei () +Ei(—z)

A; (@ =A@ (—E— }+A, (2) (34)
2z 1
and correspondingly
A(z) =B(z)(_2i:_2§.(,@:§,(_‘z_)) (35)
z

we find on comparing (30) and (31) the self-consistency condi-
tion

<G‘.’ (z) S. (z)c"(-z)> :—.<'G’,’(z)[A’f]'GI,)(—Z)> ‘ _ (36)

This justifies to call [Ai(z)]mn-.A(z)Slm n the local cohe-
rent order parameter. Note that A1 as well as 2 are caused
by an extended defect if additive QDR is taken into account.
Combining (28), (30), (34) and (35) one can derive from (36)
with the help of (33) the integral equation

. K(z,z | -

where
Gy Gy (2 _
K(z, z )=_1_ v S - 2) @Y -z Y6 N> , (38)
n 2 1 gu (z) - g (—z) ii I it " n .G

and Gli/. E<11‘G_ li>

The equation (37) is solved approximately in the weak-
coupling limit (cf. ref. /57y by performing the Debye cutoff.
One gets

T =1.13T exple —2 3 (39)
¢ <N YO



in terms of the partially averaged density of states
v - Ll toar
,pi (0 = = Im Gii (+i0) . (40)

In the case of only diagonal disorder (39) coincides with
the T, ~formula in ref. 5/ In contrast to ref./bfthe additive
ODR included here brings out a momentum dependent self-energy
2 (k,z) entering via (24) and (32) into p and p.- The quanti-
tative influence of different bandwidths of the components
on T  can be found on the basis of the ODCPA’%® . Numerical
T ~results have been reported in ref.”” for the Anderson
case.

Having introduced in the superconducting phase the functio-
nal integral over the complex order parameter space we restrict:
ed ourselves to the stationary point, i.e., to the classical
solution of the collective quantum field. Indeed, we calcula-
ted T; in the static limit by solving the scattering problem
in the random potential,
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