


1. INTRODUCTION

In a previous paper’q/ it was shown that the Green func-
tion for the Hubbard model 2/ can be represented as the
furictional average

G+(1,1°) = (DyvP[v]1G,(1,1°; v), (1)

where G,(1,1’;v) 1is the Green function to the one-particle
Hamiltonian

H, = 2t”na'{faj?+U2ui(t)niT (2)
i,j i

describing the motion of a spin +t-electron in the local

time-dependent potential Uv (). The vi(t)  jump between

O and 1 and are governed by the functional measure P[y]

containing the many body aspects and the information about

the spin , -electrons.

To obtain explicit results we have to calculate the func-
tional average (1) approximatively. The alloy analogy /3/,
for instance, is reproduced if we put the bandwidth of the
spin , -electrons equal to zero. Then the itinerant spin
t —electrons move in an alloy with static energy levels
O and U. The measure P[,] 1is easily calculated’l’. Because
of the serious drowbacks of the alloy analogy 47/ there is
considerable interest to go beyond "static" approximations.

In this paper we propose a "dynamic" approximation based
on the following idea. The functional integral in (1) is
restricted to the class of  ~functions jumping between
O and 1. We approximatively lock upon this jumps as random
events governed by a Poisson distribution. Thus the func-
tional average is calculated with an ad hoc assumed Poisson
distribution®. The mean number of jumps in unit time (the
parameter of the Poisson distribution) has to be determined
self consistently, e.g., by a sum rule.

* An approximation of this type was already used in quite
a different context’/8/.
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In order to describe a metal-insulator transition we
consider a half-filled band in the paramagnetic case and
calculate the Poisson averaged Green function in a simple
scheme interpolating between band limit and atomic limit.
Explicit results for the density of states are obtained in
two different approximations. The single site approximation
(SSA) neglects the correla;}on of jumps on different lattice
sites. The self-energy is k -independent. The mean number
of jumps a decreases smoothly with increasing Coulomb
repulsion U. For strong Coulomb repulsion we obtain two
subbands separated by a deep minimum of the density of
states. A real gap, however, is found only in the atomic
limit.

The all site approximation (ASA) overestimates the cor-
relation of jumps on different lattice sites. The self-
energy has a simple k -dependence. The mean number of jumps
decreases to zero if U approaches the critical value U,
equal to the unperturbed bandwidth. For U>U_ the spin

1 ~electrons are resting on their lattice sites (a = 0) and
a -gap appears. The mechanism producing a gap is different
from that of the alloy analogy.

The paper is organized as follows. In Section 2 we
introduce the Poisson approximation. In Section 3 the
average procedure for the Green function is described in the
following two Sections the results for the SSA and the ASA
are presented, respectively.

2. THE POISSON APPROXIMATION

Since we are not able to evalute the functional integral
(1) exactly we calculate the functional average with an ad
hoc assumed distribution. The functional integral (1) is
restricted to v —-functions jumping between O and 1. We
assume that the jumps are governed by the Poisson
distribution

k
Pk, t) = e lﬂg.—- (3)

P is the probability that in the time t occure k jumps.

¢ 1s the mean number of jumps in unit time. The Poisson
distribution is markovian and not compatible with the
periodicity condition for v (see (19) in’1). Therefore we
restrict ourselves to zero temperature where such a condition

2

does not appear. We consider the electron~hole symmetric case
where the chemical potential p is fixed to U/2 . For con-
venience we replace Uy, (t) ~p by UD}(ﬂ and let v () Jump
between 1/2 and -~1/2. The autocorrelation function fi)r

a Poilsson process between 1/2 and -1/2 1is

W(t) =<p v =1 -0t
© <V1 (t) Vi © >Poisson N 4 ° ’ (4)

its Fourier transform is of Lorentzian shape,

W) = ——2 .
0%y (2)% *

The mean number of jumps « enters as a parameter the
Poisson distribution. To determine o self consistently we
use the sum rule 79/

a +
i—<Tn (¢ 0 =— +
ot 'u()ni+()>'c=o+ ?tim AR t6)

Taking into account <Tn,, (¢ >=

replag nto accou 1 Oy, (0) <Vi«)vi(0)>Pougon and
P g after Fourier transformation for the pParamagnetic

case <n -.‘> by <ui.f > we obtain the self consistency

conditioﬁ.

>, (7)
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relating the mean number of jumps with the average kinetic
energy. In terms of the retarded Green function (7) reads

2 Lty fod G . (o)
2w N RLOTe (8)

3. AVERAGE OF THE GREEN FUNCTION

In this Section we calculate the Poisson averaged Green
function in a simple approximation interpolating between band



1imit and atomic limit. For this reason we consider the
Poisson average of the iterated Dyson equation*

G[7]1=G°+ UG v'G° + UBGr'G°rv GL v] . (9)
To obtain a Dyson equation for the averaged Green function
we brake off the average of the last term,

~ URGe<r'Govs <G5> . (10)

e ~ 0™
G°<y G°V'Glv]>,
U vGrGlv] Poisson Poisson Poisson

This approximation is correct in the atomic limit (see

below). We obtain¥*#

G=<G[v]> G°+G°Z G, : (11)

Poisson=

where X denotes the second order self-energy,

3 =U2<5Go0> . (12)

Poisson

In Bloch- and energy-representation we write finally:

=G% (w-2., , ' (13)
G 2 , (@) Gﬁ‘ 1((" b3 ; T((u))
and
-5, =utls [ L g (-0)W,@. (14)
[ N 3= R k—q,t q

W-s (@) is the Fourier transform of W;; (1) =<7, () ffj (0)> poisson
and Goﬁ"f(“’)= 1/((0-5-1; +i§SgneE-). This simple scheme is
correct in order U? "and reproduces the atomic limit: For
zero bandwidth the self consistency condition (8) 1s solved
by a = O so that from (5) results W(w)=n8Q)/2. From (14)
we obtain after analytical continuation the retarded self-
energy 32l'(w)=U%/4(w +i8) reproducing the atomic limit

. ¥ For the sake of brevity we use a short hand notation
dropping all indices and integrations.

*# - =
Note, that <V>Poisson 0.

Green function GAL (w)=(1/(w +U/2 +18) +1/(0V/2+i8))/2 . To
evalute the self-energy (14) we have to know the correlation
function W .(Q). of the Poisson process. In the following
Sections thd correlation between jumps of » at different
lattice sites is either neglected or drastically over-
estimated. In both cases the ¢-dependence of W.(Q) is
extremely simple and we need only the autocorreldtion
function given by (5).

4. SINGLE SITE APPROXIMATION

In the single site approximation (SSA) we neglect the

correlation between jumps of ¥ at different lattice sites:

Wl Q) =W(Q)s or W_()=Ww4Q. (15)
) 1 .

The corresponding self-energy is f -independent. Performing

the () -integration one obtains from (14) after analytical
continuation the retarded self-energy¥* *#

U2
I (w)= -4—G°(w+2ia). (16)

G°%2) 1is the Hilbert transform of the unperturbed density
of states per lattice site

Go(z) = L £ 63 (9) = fag LB (17)
" The density of states is given by the usual single site
result ‘
pl@ ==L L S 16, (@) ==L ImGAw=-3()) . (18)
» N T k ”

* In the following we drop the spin index.

**% Tn the SSA the Poisson average procedure can be done
exactly with the same result /17,
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The self consistency condition (8) reads in the SSA

0
< =liIn [ doFlw=-3(), (19)
T -0

with F(z) defined as

.F(z):de—(-E%E—:-=ZG°(Z) -1, (20)

—00 Z -

To simplify the calculations we use in the following the
semi-elliptic model density*
2yi-g? E|<1,

m
p°(E) = , (21)

0 ! otherwise .,

The corresponding unperturbed Green function is**

Go%z) = 2(z-+v2%-1) . (22)

The set of equations
* (16,19,20,22) was

solved numerically
with the result shown
in Fig.1. The mean
number of jumps a
decreases smoothly
with increasing

AN Coulomb repulsion U
N ' and goes to zero if U
0 ; ;‘* goes to infinity. The

U/a corresponding density
of states is shown in

Fig.l. Solution of the self consis-
Fig.2. For strong

tency equation: a) SSA (solid line),
b) ASA (dashed 1line).

* The energy is measured in units of the half bandwidth
=1,

%% The complex square root has to be taken as

VZZ-1=y|zZ2-1] exp{—iz—(arg(z+1) + arg(z-1))1.

J
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Coulomb repulsion

U ~ 2 two subbands
separated by a deep
minimum of the density
of states are found.

A real gap occures
only 1f U goes to
infinity (atomic limit
and split band limit).
This can be seen
W" analytically: The

). density of states at
zero energy is

SSA

0 .
0 1 2
Fig.2. Densgity of states in SSA.

PO =2(y1 +In22(0) + m3(0) . (23)
with
(0) =1-‘-’2_2(2a -V1+@a)?). (24)

p(0) goes to zero only if Im3(0) - - o, i.e., for U + .

It is a common feature of all single site approximations for
electron-hole symmetric systems that a gap appears only if’
Im2(0) -~ . In the alloy analogy, for instance, Im3(0)
diverges for U » 1. In approximations with k -dependent
self-energy, however, a gap is possible even if ImE_i(O)= 0’19/

5. ALL SITE APPROXIMATION
In the all site approximation (ASA) we assume

W, (@) =W(Q)s . (25)
c_r() () 2.0

Here, in contrast to the SSA we overestimate the correlation
between jumps of ¢ at different lattice sites. The ASA
neglects the momentum transfer between + - and . -electrons
(cf£.(13)). The retarded self-energy is 4 -dependent

w (Q) = W@ or
1



3. eLL 60 (e 2ia)
‘k'w=4 _k,(t)+ a). . (26)

Partial fraction evaluation yields for the retarded Green
function

G (@) =--(B G%(w-B)+B G°(@+B)), (27)
K aA 1 x 2 2 x 1

with

A=y U%4-qa2

B =A% la, (28)

Go(7) =(z-¢, +18)"1, 8440,
k k
The density of states is given by

1 1 ° ,
p(w)=-71m’-2—A—('BlG (w—BE) + ‘B20°(m +‘Bl)! . (29)

It is easily prooved that | dwp () = 1. The self consis-
-—0
tency condition reads in ASA

-

%= {-——fdw[B Flo-B )+B F(w +B )]! (30)

” —80

Now we examine under which conditions (30) has a solution

a = O. For symmetric densities ( p°w) =p°(~w) ) we obtain
from (30) that we have to fulfill

u/e
0= [ depl@o. (31)

00

Obviously a = O is a self consistent solution if U > 2. In
this case the ¢ -electrons are resting on their lattice

sites and we get the physical picture of an alloy with static
energy levels O and U. From (29) we obtain two rigid
unperturbed bands shifted by + U/2

. the initial configuration {v (t =0)}

PIEIA

p(w)=—é-(p°(w-—l—2]—)+p°(m +-g—)),: (32)

Since we have not performed any sophisticated average over
this simple rigid band
result has to be expected.

For U < 2 the situation is more difficult. With the
semielliptic model density (21) we obtain from (30)

e _1 pe_imll 2_1)3 2_1)3
e {u Im[!A(Bl\/(Bz H8+B_V(B2-1 1, (33)

which has to be solved
ASA numerically. The
result is shown in
Fig.l. The mean number
of jumps a decreases
to zero if U ~» 2. The
density of states is
shown in Fig.3. A gap
occures if U is larger
than the unperturbed
bandwidth (U > 2).
In the ASA the gap
E/A is produced intrin-
sically by the
K ~dependence of the
self-energy. As dis-
cussed already above
the splitting mechanism is different from that in the S5-CPA
alloy analogy/a/,where a gap occures for U > 1, a result
suspicious to overestimate the electron correlation.
At last we mention that the ASA does not fulfill the
+ —electron number conservation as can be seen deriving the
result from the equivalent mean field Hamiltonian

HASA_He L Uv(y zn

shows drastically the importance of the k ~dependence of the
self-energy. An approximation which takes into account more
realistically the correlation of jumps at different lattice
sites gives an increased tendency of formlng the Hubbard
subbands in comparision w1th the ssa /1%,

Fig.3. Density of states in ASA.
A gap occures if U > 2.

, Nevertheless this approximation
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