
r .. 

N.S.Ton<-hev• , D.I.Uzunov • 

. 

COOfilllBHMR 
Ofi'bBAMHBHHOrO 

MHCTMTYT8 
RABPHbiX 

MCJ:~BAOB8NMt 

AYfiHa 

11/f -!O 
El7-80-353 

RENORMALIZATION-(; ROUP TREATMENT 

OF SYSTEMS WITH SUPERCONDUCTI N(; 

:~ ~Np OTHER ORDERI NGS 

~~--~· f~ MAG NETH: FIELD 
~~ ' oQi 

.... ~.,. ' 
l'~;~,~· 

• Institute bf Sol id State Physics , Bulg . 
of Sciences , 1184 Sofia , Bu lgaria . 

t 



I. INTRODUCTION 

The critical behaviour of systems with two interacting 
order parameters in the framework o f the generalized Ginzburg
Landau models has been intensively studied in the mean field 
approximation 111 and by the renormalization group {RG) 
approach 12•8·4•61 

systems with a fluctuating order parameter coupled to a 
gauge field, namely , a superconductor in a magnetic field 16 1 

and the transition between nematic and smectic-A liquid crys 
tal mesophases 171 have also been considered. The fluctuations 
of the gauge field {the vector potential of the magnetic field 
and the director vector in the smectic-A phase) change the 
universality at the transition point to: (i) a new Halperin
Lubensky-Ma {BLM) -type second-order phase transition for n > ne = 
= 365,9 and {ii) a weakly first-order phase transit ion for 
n < n 17/ , where 0 is the symmetry index of the order 

c 
parameter. 

Recently, the RG approach has been applied by Grewe and 
Schuh / 8/ to the problem of coexistence of superconductivity 
and ferromagnetism in a magnetic field, using the three energy 
functional proposed by Blount and Varma / 91 . In the vicinity of 
the ferromagnetic to superconducting phase-boundary, the 
critical fluctuations of the magnetic ordering are absorbed 
into the fluctuations of the vector potential. Thus one 
obtains a quantitative modification of the RLM recursion 
relations. This result is due to the fact that the magnetic 
field is conjugated to the magnetization. Hence a term linear 
in the magnetic order parameter appears to be relevant for the 
result of the RG treatment. 

In this paper we apply the RG approach 1101 to systems in 
a magnetic field which contain two interacting order parame
ters, namely, a superconducting and another {nonmagnetic) one . 
Systems with such two order parameters are, for instance , a 
superconductor with a structural distortion associated with 
doubling of the lattice periodicity / 11,12/ or a two-band 
semimetal with both exitonic a.nd superconducting phase transi
tions I 18,14/ • 



II. THE MODEL 

we start from a free energy functional of the form: 

... ... .. ... .. 2 b,p .. 4 
1lrp,¢,AI=-fdxla lr/l(x) 12 +r i <'V- tq 0 A(x))rp(x) l + 2 1r/l(x) l + 

1 .. ... 2 r ... ... bcb . ... c .. .. ( 1) 
+ -[rotA(x)] + -

2
¢ 2 (x) + ~<2 (V ¢(x)) 2 + ~4 4(x) + -¢ 2(x) lr/l(x) 12, 

Srrp 0 2 

... .. .. 
where r/l(x) is the superconducting order parameter , A(x) 
is the vector potential and ¢(x) is the other (nonmagnetic) 
order parameter . As usual ,& - a '(Tl-T rp) / Trp, r = r' (T-T<f)/T¢, 
ll is the magnetic permeability of the system, q 0 = 2e is 
twice the electron charge, b rp , b ¢ , c , y and 1< are assumed 
to be analytic functions of the temperature (including the 
critical points Trp and T¢ , T rp=T¢ ) . Here b = c = kB= 1 . 
The_; <limension of space i s d = 4 - f • The Coulomb gauge 
mvA(~ = 0 = 0 is assumed . There are se veral characteristic 
lengths in mode l (1), but the quantitative results of the RG 
treatment do not change i f we use a common cut-off for the .. 
short-wave-le ngth fluctuations of the fields u= r/1, ¢, A . 

In momentum space we shall work , for conveni enc e, with the 
dimensionless wave- vectors q = q' / q c ( q c is the moment um 
cut- off) . After some simpl e transforma tions of the fields, 
free energy (I) in moment um space r epresentation is 

1 "'~o +~Arp 2+JA2rp 2+~¢4 + 1¢f,p 2 +1rp4 

where 

2 

5 o ... - ~1 ; u"'+q 2) r/l;(v r/la (~ -: ;<r,p+q2)¢N(~ ¢N <-7v
q 

1 .. 2.. .. .. .. 
- - - Iq A 1 (Q)A1 (-q) , 

811J'
0 

1 

5 uo .. .. ..... ... ... ... 
r/14 -- 20 a,B ; ~l" · ·~~;(ql) r/lp (q2) r/1 a (q3) r/1 ~(q t q 2 -q 3) ' 

5 qo I .. .. .. ... .. .. .. 
Ar/12 =-~ . .. ... (ql+Q2)1 AI (q1-q2 ) r/J; (ql ) r/Ja (~)' 

1(1; ql q 2 

(2) 

(3 ) 

(4) 

(5) 

1 
A2rp2 

2 
qo ..... ~ ... .. .... ... .. 

=- ll ~ .. AI(ql) A I(q2)rpa"'(q3)r/Ja(q3-ql-q2), 
xz, q c·Cl..J 

(6) 

v .. __ o_ 
1¢4 

... .. .. ( .. ... ... 
• ~ -+ ¢ N(q1 )¢N(q2) ¢L (q3)¢ L -q l -q 2 -q3)' 

1 .p2rp 2 

4!'! NL,ql .. . q3 {"7) 

=-~ 
2!'! 

.... ... .. ... ... .. 
.. I ... ¢N(q 1)¢N(q2)rp~(q3) rpa(q3-q1-q2 ) . 

aN;ql ... q3 

(8) 

I n (3) - (8) fl is a dimensionless volume fl = Vqd and 
c 

a l"'= -2 
Y<l c 

uo ., ~ d-4 
y 2 q c 

r 
r = - - - 2-' 

cp IC Q C 

b ¢ d - 4 
v - - -2q c , 0 /( 

(9) 
c w

0 
.. --q d-4 

KY c 

The order pa rameters rp (i) a nd ¢ (i) a re generalized to a 
( D/2) - component complex field and to a m- component real 
field , r espectively . The vector potentia l A (~ is a d
dimensional vector. The suffixes a , N and i denote the 
components of the corresponding fie lds . The Feynman graph 
rules for model (2) are standard . The free correl ation func
tions 

( 0) .. .. .:t. ... ... 
Gaaa,(q,q' ) =<u; (v ua,(q ')>

0 
, u ;;;rp , ¢, A , 

(10) 

are 

o <O) {qq' ) -8 , 8(q-q' ) G(O){q) u ad ' aa u (11) 

with 

0 ~>(Q) 1 
(1 = rp,¢, 

r u+q2' 
(12) 
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and 

a<~(CV = 417110 / q .. 2 . ( 13) 

III . THE RENORMALIZATION-GROUP TRANSFORMATION 

Exact recursion relations to order O(E) for free energy 
(2) are obtained through a straightforward application of the 
RG approach 1 1°1• Some complications owing tc the inconsis
tency between the RG procedure and the requirement for a 
gauge invariance of the model we get over as has been propos 
ed by Halperin et al. 161 • The partial trace of probability 
distribution exp I ~ I, taken over the high momentum (e- 8 <q < 1) 
degrees of freedom oa(V is calculated to the firs t order 
in the vertex constants for parameters r r/1 and r ¢ and to the 
second order for the vertex constants u 0 , v0 , w0 and q 0 . 
The contributions to the q-dependent terms in correlation 
functions ( 12) - (13) are also accounted to order 0 (E 2 ) • Then 
we get 

s(2-71,,,) n 2 3 m 
r~ -e Y l r r/J+ -f-t(s, ry, )u 0 + ~f(s, O)q~!l + 2r(s,r¢) w0 lo4l 

s(2-71 ..~,.) n 
r~= e '1' l r ¢+(m+2)f(s, r ¢)v0 +'2f(s,rr/J)w0 I, (15) 

, s(c-2Tirp>l u - n + S g(s) u 2- ...!!!g(s) wo2- 9617~o41l4g(s) I. ( 16) 
uo""e o 2 o 2 

8 (( -21/..~,.) 

v~ = e '1' I v 
0 

- (m+8) g(s) v ~- ~ g(s) w; I , (17) 

s(c-71¢-71Y, ) 2 n +2 
w0 = e I w

0 
-2g(s) w

0
- -

2
-g(s) u0 w0 - (m+2) g(s) v 0 w 0 I, 

( 18) 

-s71 A DB 2 
~·)-1 =e !l-111 + -Qo!ll. 

1217 (19) 

4 

q, "' e 
0 

<-71 A 
--- ·~ 

2 
q 0' 

- &1/rp 11 - ~ Q ~ IL !, 
e 217 

(20) 

(21) 

where 

g(s) = . s~ 
8172 ' 

f(s,r 
0

) = _ 1_ (----8172 2 -r 0 s) ( 22) 

(0 < s < oo) and 71 r/1, 71¢ , 71 A are the anomalous dimensions of 
the fields, The parameters r r/1 , r¢ , u0 , v

0
, w

0
, and (q

0
2!l) 

are n ssumed of order 0 (€). Recursion relations (14) - (21) 
are direct generalization on those fo r a superconductor in a 
magnetic field 

16 1 
and those for two coupled fields 1 2 ' . Up t o 

order 0 (E) we have for the anomal ous dimension 'I r/1 , 71 ¢ = o. 
The assumption 71 A ~ ( in eq . (20) would lead to q~ = oo 

(if 'l A< E ) or to q<f-= 0 (if 'f/ A> l l . The first case doe s 
not give any finite fixed points . In the case q 0 = o, the 
free energy differs from the original one (2) , because ver
t i ces of type ~ Ar/1 2 and ~ A2 rp 2 would be absent in the fixed 
point free energy. 

Denoting t = Q~!l / 12 17 c , we obtain for 11y, and 'fl A (see 
(19) and ( 21) ) 

11 .rp --18d* , 

1/A =nft*. 

Having the anomalous dimensions 'fl A, '1fb and 71¢ = 0 we car, 
study the recursion relations in a reduced parameter space 
ii = ( r r/1 , r ¢ , u , v , w, t ) , where 

u = u0 / 8l- , V • v 0 / 4t, 

w = w 
0 
I s €. ( (-"' 817 2 d. 

(23) 

(24 

(25) 
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Then we obtain from (1 4 ) - (2 1) : 

r ~ .. e 28 ll + 18£8t ll r 1/J + 32(n+2) ;-r(s ,r 1/J)u + 32mt"f(8,r¢,) w + 
(26) 

+ 18c-r(s, 0) It , 

r ¢ .. e28 { r ¢/ 32 (m+ 2) ~r(8. r ¢) v + 32 n (((8, r 1/J) w}, (27) 

u ' - e£ 8 {1 + 36 £ s t II u -4(n + 8) c 8 u 2 -4m £ 8 w 2 - 27 £at 2 }, (28) 

v' = l'tv -4(m +8) c8v 2 - 4ncsw 2 1, (29) 

w' - ec 8 ( 1 + 18£st II w -16 csw 2-4(n +2) £SUW- 4(m+2) csvwl, (30) 

t' "'eca tll-nsd). (31) 

IV. ANALYSIS OF THE FIXED POINTS 

From (31) one obtains two types of fixed points p. • = (r~, •.• ) 
corresponding to t • = 0 and t • = 1/ n . In both cases the fix
ed point values u • , v • and w • are 

(1 + 36 t •) u• = 4(n + 8) u"' 2 + 4mw • 2 + 27t • 2, 

v• =4(m+8) v• 2+4nw•2, 

(1 + 18t*)w• = 16 w* 2 + 4(n+2) u*w* + 4(m +2) v•w• 

( 32) 

( 33) 

(34) 

If the values w*, v* and u* are known, r ~ and r¢ are to 
be 

9 
r~ =-2c[(n+2)u* + 2mw•+ 4 t•], 

r * =-2cl(m+2) v* + 2nw* + ..! t•] . 
¢ 4 

(35) 
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The eigenvalues e 'Yp. (p. • r 1/J, ... ) of the linearized transfor-
mation matrix for the relevant variables which determine the 
scaling behaviour of the syste.m are 

y l =-£' t • 1 ·n· (36) 

t* .. 0. y = (' 
l (37) 

y =2+d9t*-2(n+2) u*-2(m+2) v* ± 
'tp• r ¢ 

2 2 ± y'[9t* + (m+2(v*- 2(n+2) u• ] + 16mnw• l (38) 

The eigenvalues Yu , y T and y w could be found from a third 
order algebraic equation which is easily obtainable. Using 
these Y u , y T and y w one might obtain only corrections to 
the various fixed points. 

We shall shortly comment the following cases: 

A.Case t*=O 

From (23) and (24 ) we have TJ rp_ = TJ A = o. This is the above 
discussed q~ = 0 case . The fixed points (32)-(35) and the 
critical exponents (36) - (38) (despite the presence of the 
parameter in the recursion relations) to the order 0~) are 
the same as those described by Kosterlitz et a1121 • According 
to (37), in a magnetic field the fixed points of a system 
with two ordering parameters are unstable with respect to 
perturbations of the magnetic field around the value H = 0. 

B. Case t • = 1 I n 

1 . Decoupled behaviour: w* = o . In this case for n > n c 
z 365,9 one obtains an always unstable Gaussian-BLM fixed 
point and a Heisenberg-BLM fi.xed point for m :f. -8 and n > n c • 
The last one is stable if n and m satisfy the condition 

m+8 [ 216 n+2 2 
32-nm - 2n-2m+ -- D+2+ - - - --v'n -360n-2160]+0(£)<0(39) 2 n n · 

In the particular case when in the original model uo = vo 
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the Caussian- HLM f ixed point vanishes, whereas the Heisenberg
HLM fixed point is possible only i f 

108(m+8) 2 -n (n+~6) (m+8) +n(o+8) = 0, n > 365,9. ( 40) 

The c r itical exponents for n and m satisfying ( 40) are the 
sa~~ fer so different fixed points as the Heisenberg and HU1 
ones . 

He re we shall point out the following interesting 
behaviour of t he HLM fixed point when the term 27 t*2 is 
removed from equation (32) for u* • The last is possible when 
the symmetry index n is very large . Then , instead of HLM 
fixed point , we get 3 Wilson-like fixed pojnt 

n-<2 36 9 
~· ~ - -(1+-)( - - (, 
~ 2~ · ~ n ~ u* = 

1 +36/ n 
4(n + 8) (41) 

and, of course, a Gauss ian one . The critical exponents corres
ponding to the fixed point (41) are 

2 [ 18 n + 2 36 )) - y = + ( - - --(1 + - • rrp n n + 8 o 

Yu 
36 

= - (1 + --) (. 
n 

(42 ) 

whereas t* and y t are given by (36) . The origin of the term 
27 t* 

2 
in (32) is due to the presence of the vertex CJA2t/12 in (2). 

For large o its removal breaks down the gauge invariance 
of model (2). 

2 . Coupled behaviour: w* # o. The presence of terms with 
t* = 1/ n in (32)- (34) r e flects in the absence of "bicritical" 
fixed point solution of the type w* = u•= v*, The term 4mw*2 
in the equation for u* (32) modifies the critical value of the 
symmetry index n from n c to n ~ > n c for m > 0 , and to 
o~ < n c for m < 0 . When m = 0; system (32)- (34) decouples 
and the solutions for u*, v* and w• can be analytically 
determined. We have another analytic solution of system (32)
( 34) for n ... oo . Then, as seen from ( 39) , the physical 
system falls into the range of stability of the decoupled 
fixed points for m > - 2 . 

8 
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V. SUMMARY AND CONCLUDING REMARKS 

We have presented the RG recursion r e lations for a system 
containing two order parameters with an interaction of type 
¢2t/12. Moreover , one of the order parameters (r./J) , having a 
charge q 0 , is coupled to a magnetic field . Fo r such a system, 
exact recursion relations are found, which generalize the 
recursion relations for two cases: (i} for a system with two 
coupled order parameters 1 V and (ii ) for a superconductor in 
a magnetic field 161

• 
The critical behaviour of a system with two uncharged 

orde r parameters is unstable wi th respect to perturbations 
connected with the simultaneous appearance of a charge (in 
one of the order parameters) and a magnetic field H ~ 0. At 
H # 0, the coupled behaviour w* # 0 c hanges significantly . 

As a consequence, there is no stable fixed point in the 
physically interesting region n < n c = 365.9 . This is to be 
interpreted as a signal that: (i) There is no tetracritical 
behaviour, i.e., no inter-section points of two second order 
phase boundary lines on the phase diagram of the system exist. 
Thus, if a mixed " ( t/1- ¢) " phase would occur, it would not be 
bounded by second order lines only. (ii) OWing to the lack of 
a bicritical behaviour, the system has no points (on the 
phase diagram) where a first order transition lines would 
branch in two second order ones. 

These features are consequences of the fact , that the vec
tor potential makes some transition lines of weakly first 
order. 

For systems with two order parameters, an effective exten
sion of the superconducting critical regio~ is possible due 
to the influence of the other ordering ¢(~ near the point 
T t/1 = T ¢ (see ref. 1161 ) • Then one might suggest that the 
range of the weakly first order ·transition is also extended 
near this point. 

Stable coupled fixed points should be looked for when n 
and m satisfy the inverse inequality (39) . Then one has to 
find the real roots of an algebraic equation of fourth order 
in w• with coefficients being polinoms of n and m. 

In the limiting case n ... oo the effects of the vector 
potential fluctuations are negligible. 

The above-mentioned results obtained for the example of 
superconductivity are applicable to every system of two order
ing parameters one of which is coupled to a gauge field. 
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