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m 1. INTRODUCTION 

Recent high-resolution angle-resolved photoemission spectroscopy (ARPES) 
studies revealed a complicated character of electronic structure and quasiparticle 
(QP) spectra in copper-oxide superconductors. In particular, a pseudogap in the 
electronic spectrum and an arc-type Fermi surface at low doping were revealed, a 
substantial wave-vector and energy-dependent renormalization of the QP disper
sion («kinks») was observed (for a review, see [1,2]). As was originally pointed 
out by Anderson [3], strong electron correlations in cuprates play an essential role 
in explaining their normal and superconducting properties. 

A conventional approach in describing strong electron correlations is based 
on consideration of the Hubbard model. It has some advantages in comparison 
with the t - J model which can be derived from the Hubbard model in the limit 
of strong correlations. Namely, the Hubbard model allows to study a moderate 
correlation limit observed experimentally in cuprates and more consistently takes 
into account a two-subband character of electronic structure, in particular, a weight 
transfer between sub bands with doping. Various methods were proposed to study 
electronic structure within the Hubbard model. An unbiased method is based 
on numerical simulations for finite clusters (for a review see, e.g., [4]) which, 
however, precludes to study subtle features of QP spectra due to poor energy 
and wave-vector resolutions in small size clusters. In analytical calculations of 
spectra mean-field type approximations are often used (for a review, see [5]) 
which cannot reproduce the above-mentioned effects caused by the self-energy 
contributions. In the dynamical mean-field theory (DMFf) (for a review, see [6, 
71) the self-energy is treated in the single-site approximation which also unable 
to describe wave-vector-dependent phenomena. To overcome this flaw of DMFf, 
various types of the dynamical cluster theory were developed (for a review, 
see [8, 91). In these methods a restricted wave vector and energy resolutions 
can be achieved depending on the size of the cluster. By including into the 
DMFf scheme an additional momentum-dependent self-energy originating from 
short-range antiferromagnetic (or charge) correlations, a pseudogap state in the 
Hubbard model was obtained [10). At the same time, an equation of motion 
method for the thermodynamic Green functions (GF) [ 11] appears to be successful 
in describing physical properties of the Hubbard model (for a review, see [121). 
By taking into account the self-energy corrections in this method, one can try to 
explain the peculiarity of the ARPES spectra in cupn1tes. For instance, calculation 
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of electronic spectrum within the first order perturbation theory for the self
energy has reproduced quite accurately quantum Monte Carlo results [13], while 
application of an incremental cluster expansion for the self-energy has enabled to 
observe the kink structure in the QP spectrum [14]. 

In the present paper, we study an effective Hubbard model reduced from the 
]rd model for the CuO2 plane in cuprates. We apply the Mori-type projection 
technique in the equation of motion method for the thermodynamic GF in terms 
of the Hubbard operators elaborated in our previous publications [15-17]. A 
self-consistent solution of. the Dyson equation for the model with a self-energy 
derived in the noncrossing approximation (NCA) beyond a perturbation approach 
is reported. A dispersion of single-particle excitations, the Fermi surface and 
spectral functions are calculated. In particular, we study a hole-doped case. At 
low hole concentrations the Fermi surface (FS) reveals an arc-type shape with 
pseudogaps in the (1r, 0) region of the Brillouin zone (BZ). A strong renormal
ization effects of the dispersion close to the Fermi energy («kinks») are observed 
due to electron scattering on antiferromagnetic (AF) spin fluctuations induced by 
kinematic interaction for the Hubbard operators. Electron occupation numbers 
show only a small drop at the Fermi energy. For high temperature or large 
hole concentrations AF correlations become irrelevant and a crossover to a Fermi 
liquid-like behavior is observed. 

In the next section we briefly discuss the model arid derivation of the Dyson 
equation and the self-energy calculation in the NCA. The results of numerical 
solution of the self-consistent system of equations for various hole concentrations 
in the model are presented in Sec. 3. Conclusions are given in Sec. 4. 

2. GENERAL FORMULATION 

2.1. Effective Hubbard Model and Dyson Equation. Following a cell-cluster 
perturbation theory (e.g., [15,18,19]) based on a consideration of the original two
band p-d model for the CuO2 layer [20] we consider an effective two-dimensional 
Hubbard model for holes 

H = c1I::xru +c2I::x'f2 + L {tUXf0xJu 
i,u i i,l,j,u 

+ t~? x?u X'!2 + 2CTt~?(x?u x~u + H c )} 
•J • J •J • J • • ' (1) 

where Xfm = lin)(iml are the Hubbard operators (HOs) for the four states 
n,m = I0), jCT),l2) =Ii!), CT= ±1/2 = (i,!), <i =-CT.Here c1 = cd-µ and 
c2 = 2c1 +Uetr, whereµ is the chemical potential. The effective Coulomb energy 
in the Hubbard model (1) is the charge-transfer energy Uetr = Ll = fp - fd. The 
superscripts 2 and 1 refer to the two-hole ]rd singlet subband and the one-hole 
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subband, respectively. According to the cell-cluster perturbation theory, we can 
take similar values for the hopping parameters in (1): t~J = t:] = t!J = tii• The 
bare electron dispersion defined by the hopping parameter ti; we determine by 
the conventional equation 

t(k) = 4t 1(k) + 4t' ,'(k) + 4t" ,"(k), (2) 

where t, t', t" are the hopping parameters for the nearest neighbor (n.n.) 
(±ax, ±ay), the next nearest neighbor (n.n.n.) ±(ax± ay) and ±2ax, ±2ay 
sites, respectively, and ,(k) = (1/2)( cos kx + cos ky), ,'(k) = cos kx cos ky 
and ,"(k) = (1/2)(cos2kx + cos2ky) (the lattice constants ax = ay equal to 
unity). To get a physically reasonable value for the charge-transfer gap for the· 
conventional value of t ~ 0.4 eV we take Ll = Ueff = 8 t ~ 3.2 eV. The 
bare bandwidth is W = 8t ~ Uetr which shows that the effective ]rd Hubbard 
model (1) corresponds to. the strong correlation limit. In what follows, we take 
as an energy unit t = 1 and put cd = 0 in c1. The chemical potential µ depends 
on the average hole occupation number 

n = 1 +o = (LXfu + 2X'f2). (3) 
u 

The HOs entering (1) obey the completeness relation xp0+xl1 +xl!+Xf2 = 1 
which rigorously preserves the constraint of no double occupancy of any quantum 
state !in) at each lattice site i. Due to the projected character of the HOs, they have 

complicated commutation relations [ x:13 , XJ°] ± = Oij ( op,.,Xf0 ± ooaX;13), 

which results in the so-called kinematic interaction. The upper sign here refers 
for the Fermi-like HOs like xpu and the lower sign is for the Bose-like ones, 
like the spin or number operators. 

To discuss the electronic structure within the model (1), we introduce a 
thermodynamic matrix Green function (GF) [11] 

Gi;u(t - t') = ((Xiu(t) 1.x]u(t'))) = -i0(t - t')({Xier(t), x]u(t')}) (4) 

A ( X!72 ) A _ 

in terms of_the two-component operators Xiu = xpu and xfu = (Xlu Xf0 ). 

To calculate the GF (4), we apply the Mori-type projection technique by writing 
equations of motion for the Heisenberg operators in the form: 

A A ~ A A A(ir) 
Zier = [Xiu, H] = L., CijuXju + Zier ' (5) 

j 

where the irreducible .Z-operator is determined by the orthogonality condition: 

({.z~ir) _xt }) = (.Z~ir) _xt + _x! .z~ir)) = 0 (6) 
iu I JU iu JU JU IU " 
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This defines the frequency matrix 
A A At A -1 
Eij = ({[Xia,H],X;u}) Q , (7) 

where Q = ({ .. tu,.X/u}) = ( ~2 J
1 

)- The weight factors Q2 = {X;2 + 
Xfu) = n/2 and Qi = (Xf0 + Xf0

"} = 1 - Q2 in a paramagnetic state depend 
only on the hole occupation number (3). The frequency matrix (7) determines 
the QP spectra within the generalized mean-field approximation (MFA). The . 
corresponding zero-order GF in MFAreads: 

G2(k,w) = (wfo-€(k))-
1
Qt (8) 

where fo is the unity matrix, and we introduced the frequency matrix (7) in the 
k-representation €(k). By differentiating the many-particle GF ((Z!~(t) IXJu(t'))) 
over,the second time t' and applying the same projection procedure as in (5) we 
derive the Dyson equation in the form (15) 

A -1 AO -1 A 

~~~ =~~~ -~~~- 00 
Here the self-energy matrix Eu(k,w) is determined by a proper part (which 
have no single zero-order GF) of the many-particle GF in the form 

Eu(k,w) = {J-1({.z~ir) 1.z~ir)t))~:p) {J-1. (10) 

Equations (8)-(10) provide an exact representation for the GF (4). However, to 
calculate it one has to use approximations for th~ self-energy matrix (10) which 
describes inelastic scattering of electrons on spin and charge fluctuations. 

It is important to point out that contrary to spin-fermion models, where 
electron interaction with spin- or charge fluctuations are specified by coupling 
constants, in the Hubbard model these interactions are· induced by the kinematic 
interaction with the coupling constants equal to the original hopping parameters. 
For instance, the equation of motion for the operator Xf2 reads 

idXf2 /dt = [Xf2,H] = (e1 +A)Xf2 

'°' (t22B22 xu'2 2 t21B21 xoa') + L.., ii iuu' I - U ii iuu' I 
l,ei,u' 

"X~2 (t~l xuo + 2o-t~l X2it) L..,i ill ill• 
l,ei 

(11) 

where Bf!, are Bose-like operators describing the number (charge) and spin 
fluctuations: 

B~2 
iaa' 

B~l 
iaa' 

(X;2 + Xfu)8u'u + X':a 8u1a 

(Ni/2 + St)8u1 u + Sf 8u'it, 

(Ni/2 + St)8u'u - S'[8u1 a• 

4 

(12) 

Therefore, in the Hubbard model (1) we have no fitting parameters for electron 
interaction with spin- or charge fluctuations. 

2.2. Mean-Field Approximation. The single-particle excitations in MFA are 
defined by the frequency matrix (7). By using equations of motion like (11), we 
get the following energy spectrum for holes in two subbands: 

e1,2(k) 

A(k) 

(1/2)[w2(k) .+ w1 (k)] =f (1/2)A(k), 

{[w2(k) -w1(k)]2 + 4W(k)2}112, (13) 

where the original excitation spectra in the Hubbard subbands and the hybridiza
tion parameter are 

w1(k) 

w2(k) 

W(k) 

4t o:n(k) + 4t' .Bn' (k) - µ, 

= 4t 0:2-y(k) + 4t' ,82,' (k) + A - µ, 

= 4t 0:12-y(k) + 4t' ,812-Y' (k), (14) 

where we omitted t" contribution in (2) and introduced the renormalization pa
rameters 0:1(2) = Q1(2)[l + Ci/Q~(2)], .81(2) = Q1(2)[l + C2/Q~(2)], 0:12 = 
v'Qi(J;[l - Ci/Q1Q2], ,812 = v'Qi(J;[l -C2/Q1Q2]. As in the Hubbard I ap
proximation, we neglect number fluctuations (8Ni8N;)(i#i) but take into account 
contributions from the spin correlation functions for the n.n. and the n.n.n. sites: 

Ci = {SiSi±a.,/a11 ), C2 = {SiSi±a.,±a11 ). (15) 

For the diagonal components of the zero-order GF (8) we have 

Gf1 22 (k,w) = Q1(2) (1 - b(k)] + Q1(2) b(k) ' (16) 
( ) w - e1(2) (k) w - e2(1) (k) 

where the parameter 

b(k) = e2(k) - w2(k) = ! _ w2(k) -w1(k) 
e2(k) - e1(k) 2 2A(k) 

(17) 

determines ·the contribution due to the hybridization. 
2.3. Self-Energy Corrections. Dyson equation (9) for the GF is convenient 

to write in the form 

Gu(k,w) ~ ( wfo - €(k) - Eu(k,w) )-l Q, (18) 

where the self-energy reads 

Eu(k, w) = ({.z~ir) I .z~ir)t))~:op) {J-1. (19) 
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To make the problem tractable, we can neglect in the self-energy matrix (19) 
the off-diagonal components E12,,,. (k, w) in comparison with the hybridization 
parameters W(k) in (14). This enables us to write the diagonal components of 
the full GF ( 18) in the form similar to (16) 

G• (k ) _ Q1(2) [1 - b(k)] 
11(22) ,w - -

w - c1(2)(k) - E11(22)(k, w) 

Q1(2) b(k) 
+ -

w - c2(1) (k) - E22(11) (k, w) 
(20) 

Here the hybridization parameters b(k) are determined by the formula similar to 
(17) which gives an accurate approximation for a small doping at n ~ 1. 

Now we calculate the self-energy (19) in the non-crossing (NCA) or the self
consistent Born approximation (SCBA) by neglecting vertex renormalization. As 

follows from the equation of motion (11 ), the zt> operators determined by (5) 
are essentially a product of the Fermi-like Xj(t) and Bose-like Bi(t) operators. 
In SCBA, the propagation of these excitations of different types in the many
particle GF in (19) are assumed to be independent of each other. Therefore, 
they can be decoupled in the time-dependent correlation functions for lattice sites 
( i =/- j, l =/- m) as follows: 

(Bi(t)Xi(t)Bz(t')Xm(t')) ~ (Xi(t)Xm(t'))(Bi(t)Bz(t')). (21) 

Using the spectral representation for these correlation functions, we obtain the fol
lowing formula for the diagonal self-energy components E 11 (22) (k, w) = E(k, w) 
which are the same for two subbands: 

+oo 

E(k,w) = ~ L JdzK(w,zlq,k-q) 
q -oo 

x (-1/7r)Im[G1(q,z)+G2(q,z)], (22) 

where the corresponding subband GFs are 

G1(2)(q,w) = ( ) ~( ) . 
W - €1(2) q - L, q,w 

1 
(23) 

The kernel of the integral equation (22) has a form, similar to the strong coupling 
Migdal-Eliashberg theory [21,22]: 

+oo 
1 / df2 K(w,zjq,k-q) = jt(q)l2 

-
2 

-- ,..,. 
7r W-Z-H 

-00 

x [tanh(z/2T) + coth(f2/2T)] Im Xsc(k - q, f2), (24) 
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where the interaction is defined by the hopping parameter t( q) (2). The spectral 
density of bosonic excitations is determined by the dynamic susceptibility of the 
Bose-like operators Bi(t) in (21) - the spin and number (charge) fluctuations 

Xsc(q,w) = -[({SqlS-q}).., + (1/4)({oNqloN_q)}..,], (25) 

where we introduced the commutator GF {or the spin Sq and the number oNq = 
Nq - (Nq} operators. 

Thus we obtain a self-consistent system of equations for the GFs (23) and 
the self-energy (22). A similar system of equations was obtained within the 
composite operator method [13]. In comparison with the t-J model studied by· 
us in [16], for the Hubbard model (1) we have two contributions in the self-energy 
(22) determined by the two Hubbard subbands, while in the t-J model only one 
subband is considered. Ho\\'.ever, depending on the position of the chemical 
potential, a substantial contribution to the self-energy comes only from the GF of 
those subband which is close to the Fermi energy. A contribution from the GF of 
another subband which is far from the Ferµii energy, is suppressed due to a large 
charge-transfer energy !::,,. in the denominator of those GF. Neglecting the latter 
contribution, we obtain a self-consistent system of equations for one GF close to 
the Fermi energy and the corresponding self-energy function similar to the t-J 
model [16]. 

3. RESULTS AND DISCUSSION 

3.1. Self-Consistent System of Equations. To solve the system of equations 
for the self-energy (22) and the GFs (23) we should specify a model for the spin
charge susceptibility (25). Below we take into account only the spin-fluctuation 
contribution Xs(q,w) = -((Sq I S_q)}w for which we adopt a model suggested 
in numerical studies [23] 

= 

Imxs(q,w + iO+) = Xs(q) x: (w) 

---,-x_o __ tanh _w __ 1 
1 + e2(1 +-y(q)) 2T 1 + (w/ws) 2 • 

(26) 

We stress that we consider the model for spin-fluctuation spectrum x: (w) in 
the form of a continuum characterized by the spin-fluctuation energy w8 ~ J 
of the order of the exchange energy J = 0.4t. The q-dependence in Xs(q) is 
determined by the AF correlation length e which doping dependence is defined 
below. The coupling constant xo at the AF wave vector Q = (1r, 1r) is fixed by 
the normalization condition 

7 



Table 1. Static spin correlation functions (29), O(~) (30) and the AF correlation length 
~ (26) at various hole concentrations n = 1 + 8 

8= 0.03 0.05 0.10 . 0.15 0.20 0.30 
01 --0.36 --0.26 --0.21 --0.18 --0.14 --0.10 
02 0.27 0.16 0.11 0.09 0.06 0.04 

O(~) 22.0 5.91 3.58 2.67 1.93 1.40 
~ 8.0 3.40 2.50 2.10 1.70 1.40 

1 ~ 3 
N 7(sisi) = 4((1- xpo - x;2)) = ¾<1 - lol) 

+oo If dz ,, I 
;: exp(z/T)-IXs(z) NLXs(q), 

-oo q 

(27) 

which gives the following value for the coupling constant: 

. -1 

3(1 - 181) { 1 ~ 1 } 
xo= 2ws N~1+e2[l+')'(q)] 

(28) 

In (27) for the hole concentration o = 1-n = (X;2 - Xf0) we assume that at the 
hole doping o = (Xf2

) at (Xf0) = 0, while at the electron doping o = -(Xf0) 

at (Xf2) = 0 which is reasonable for small loj. 
The spin correlation functions (15) in the single-particle excitation spectra 

(13) in MFA are defined by the equations 

1 
C1 =NL Cq ')'(q), C2 = ! L Cq 'Y'(q). (29) 

q q 

The static correlation function Cq can be calculated from the same model (26) 
as follows: 

C(e) 
Cq = (SqS-q) = 1 + e2[1 + 'Y(q)] ' (30) 

where the factor C(e) = Xo (ws/2). 
To specify the doping dependence of the AF correlation length e(o) at low 

temperature, we fit the correlation function C1 calculated from (29) to the nu
merical results of an exact diagonalization for finite clusters [24]. The values 
of the AF correlation length, calculated values of C2 and the correlation function 
O(e) = (SqS-q) at the AF wave vector q = Q = {7r, 7r) are given in Table I. 
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To perform numerical calculations, we introduce the imaginary frequency 
representation for the GF (23): 

1 
G1(2)(q, iwn) = iwn _ ci(2)(q) - E(q, iwn)' (3 I) 

where iwn = i7rT(2n + 1), n = 0, ±1, ±2, ... For the self-energy (22) we obtain 
the following representation: • 

E{k, iwn) = - ~ L L[G1(q, iwm) + G2(q, iwm)] 
q m 

X .\(q, k - q I iwn - iwm)- (32) 

The interaction function is given here by the equation 

.\{q,k- q I iwv) = -lt{q)l2 Xs{q) Fs(iwv), (33) 

where the spectral function 

1 100 
2xdx 1 xw8 

F8 (wv) = - 2 ( / )2 2 tanh 2T . 
11" o X + Wv W8 1 + X 

(34) 

In the next sections we consider the results of self-consistent calculations of 
the GFs (31) and the self-energy (32) in the hole-doped case for various hole 
concentrations o = n-1 > 0. In Subsecs. 3.2-3.4 the calculations were performed 
at temperature T = 0.03t ~ 140 K and T = 0.3t for ~ = St, t ~ 0.4 eV and 
t' = -0.3t. Several results are reported for ~ = 4t, t' = -0.13t, t" = 0.16t 
in Subsec. 3.5. For the spin-fluctuation energy in (26) we take W 8 = 0.4t. The 
AF correlation length e(o) and the static correlation functions C1, C2 in (15) are 
defined in Table 1. · 

3.2. Dispersion and Spectral Functions. In ARPES measurements and QMC 
simulations the spectrum of single-electron excitations is determined by the spec
tral function A(eJ)(k,w) = A(h)(k, -w). The spectral function for holes can be 
written as follows: 

1 t 
A(h){k,w) = --Im ((ak<1 I ak<1))w+i0+ 

11" 

[Q1 + P{k)]A1 {k,w) + [Q2 - P(k)]A2(k, w). (35) 

Here we introduced for the hole annihilation ak<1 and creation ai<1 operators the 
definition in terms of the Hubbard operators ak<1 = Xf(1 + 2a Xf2, ai(1 
xy0 + 2aXfii and used all four components of the matrix GF (18) G0 ,a{k,w) 
with the diagonal components given by (20). In (35) we introduced also the 
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one-band spectral functions determined by the GFs (23): A1c2)(k,w) = -(1/rr) 
ImG1c2)(q,w). The hybridization effects are allowed for by the parameter 
P(k) = (n - l)b(k) - 2J(JiQ;"W(k)/ A(k). 

The dispersion curves given by maxima of spectral functions (35) were cal
culated for hole doping 8 = 0.05 - 0.3. At low hole doping, 8 = 0.05, 0.1, 
the dispersion reveals a rather flat hole-doped band at the Fermi energy (FE) 
(w = 0) as shown in the left panels in Fig. 1 and Fig. 2. The corresponding 
spectral function (the right panels) demonstrates weak QP peaks at the Fermi en
ergy. With doping, the dispersion and the intensity of the QP peaks at the Fermi 

16 

12 

i 8 
r:: 

j:l.l 4 

0 

-4 
' -sr I I 7 ..... ...6 

r M X r 
Fig. I. Dispersion curves (left panel) and spectral functions (right panel) in units oft along· 
the symmetry directions r(0,0)-, M(1r,1r)-, X(1r,0)-, r(0,0) for 8 = 0.05 

16....----..----~--~ 

12 

~ 8 
II) 

~ 4 

0 

_g.__ ___ ..__ ___ _.__ __ __. 

r M X r 
Fig. 2. The same as in Fig. I, for 8 = 0.1 

energy substantially increase as demonstrated in Fig. 3 and Fig. 4 though a flat 
band in X(1r,0)-+ r(0,0) direction is still observed in accordance with ARPES 
measurements in the overdoped La1.78Sr0_22CuO4 [25). To study an influence of 
AF spin correlations on the spectra, we calculate the spectral functions at high 
temperature T = 0.3t for 8 = 0.1 by neglecting spin correlation functions (15) 
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in the single-particle excitation spectra (13) in MFA and taking a small AF cor
relation length ({ = 1.0) in the spin-susceptibility (26). Figure 5 shows a strong 
increase of the dispersion and the intensity of the QP peaks at the Fermi energy 
as in the overdoped region, 8 = 0.3, which proves a strong influence of AF 
spin correlations on the spectra. A crude estimation of the Fermi velocity from 

16....----,-------,,-------, 

12 

i 8 
~ 
4~ 

0 

-4 

i:.. 

:< 

~ 

_g.__ ___ ..__ ___ _._ ___ _, i:.. 

r M x r -6.o o.o 6.0 12.0 
Energy 

Fig. 3. The same as in Fig. I, for hole concentration 8 = 0.2 
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12 

i Sr I I I --#A:: ----::ti:.. 
r:: 

j:l.l 4 
:< 

~ 

=t I I I ~ f+L~ 
r M X r -6.0 0.0 6.0 12.0 

Energy 

Fig. 4. The same as in Fig. I, for hole concentration 8 = 0.3 

the dispersion curve in the r(0,0)-+ M(1r,1r) direction in Fig. 4 for the over
doped case gives the value VF := 7.5t A :: 3 (eV•A) for the hopping parameter 
t = 0.4 eV which can be compared with experimental results VF := 2.2 (eV•A) 
for overdoped La1.1sSro.22CuO4 [25] and Vp := 3.9 (eV·A) for overdoped 
Bi-2212 [26). With doping, the electronic density of states (DOS) shows a 
weight transfer from the upper one-hole subband to the lower two-hole singlet 
subband as shown in Fig. 6 (left panel). However, even in the overdoped case a 
noticeable part of the DOS retains in the upper one-hole subband. 
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Fig. 5. The same as in Fig. I, for hole concentration '5 = 0.1 but at high temperature 
T = 0.3t 
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Fig. 6. Doping dependence of the DOS (left panel) and FS for '5 = 0.1 (solid line at 
T = 0.03t and dotted line at T = 0.3t), '5 = 0.2 (dashed line), anc: '5 = 0.3 (dot-dashed 
line) (right panel) 

3.3. Fermi Surface and Occupation Numbers. The Fermi surface for 
the two-hole subband was determined by a conventional equation: c:2(kF) + 
Re :E(kF, w = 0) = 0 (Fig. 6) (right panel) and then compared with those one 
obtained from maxima of the spectral function Ae1 (k, w = 0) on the ( kx, ky )
plane for o = 0.1, 0.2, 0.3 shown in Fig. 7. The FS changes from a hole arc-type 
at J = 0.1 to an electron-like one at o = 0.3. Experimentally an electron-like FS 
was observed in the overdoped La1.1sSro.22CuO4 [25J. The doping-dependent 
FS transformation can be also observed by studying the electron occupation 
numbers. The electron occupation numbers in (k)-space for one-spin direc
tion equal to N(el)(a,k) = 1 - N(h)(a,k) where the hole occupation numbers 
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N(h)(a,k) = N(h)(k) according to (3) are determined only by the diagonal GFs 
(20). From the latter equation and (23) we get 

N(h)(k) = [Q1+(n-l)b(k)]N1(k) 

+ [Q2 - (n - l)b(k) N2(k), 

N1(2)(k) 1 100 ffi,) = -;. -oo ew/T + 1 lmG1(2)(k,w) 

l T 00 

2 + 2 L G1(2)(k, iwm)- (36) 
m=-oo 

The electron occupation numbers in a quarter of the BZ (0 < kx, ky < 1r) are 
shown in Fig. 8 for o = 0.1 at low temperature T = 0.03t and at high temperature 
T = 0.3t. With doping the shape of the Nk is changing revealing a transition 
of the hole-like FS to the electron-like ones in the overdoped case o = 0.3 as 
plotted in Fig. 9. While in the underdoped case at o = 0.1, the drop of the 
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occupation numbers at the Fermi level crossing is rather small, ,6,.N(el) ~ 0.15, 
for high temperature T = 0.3t or in the overdoped case at 8 = 0.3 when the AF 
spin correlations are suppressed, the occupation number drops are substantially 
increased: ,6,.N(el) ~ 0.45, 0.55, respectively. Thus, the arc formation and a small 
change of the electron occupation numbers at the FS crossing at low doping further 
prove a large contribution of the spin correlations in the renormalization of QP 
spectra. 

3.4. Self-Energy and Kinks. Energy dependence of the real and imaginary 
parts of the self-energy :E(k,w) for 8 = 0.1, 0.2, 0.3 at the r(o, 0), S(1r/2, 1r/2) 
and M(1r, 1r) points are shown in Fig. 10 and Fig. 11. These plots demonstrate 
a strong dependence of the self-energy on the wave-vector and the hole concen
trations. With doping, the coupling constant substantially decreases as is seen 
by the decreasing of the imaginary part and the slope of the real part at the FS 
crossing which determines the coupling constant,\= -(8ReE(k,w)/8w)w=O. 
As shown in Fig. 11 (right panel), the coupling constant decreases from ,\ ~ 7.86 
at 8 = 0.1 to ,\ ~ 3.3 at 8 = 0.3. 

At large binding energies (greater than the boson energy responsible for 
the interaction) the self-energy effects vanish and the electron dispersion should 
return to the bare value, giving a sharp bend, the so-called «kink» in the electron 
dispersion. The amplitude of the kink and the energy scale where it occurs are 
related to the strength of the electron-boson interaction and the boson energy, 
respectively. In ARPES the kink is observed as a changing of the slope for 
an intensity plot for the spectral function A(k, w) in a particular k-wave vector 
direction below the Fermi level w ~ 0 (for electrons). Usually, two directions 
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are studied: the nodal (r --+ M) and the antinodal (X --+ Af). Intensity plots 
for the spectral function A(k,w) at 8 = 0.1 are shown in Fig. 12 in the nodal 
direction (left panel) and the antinodal one (right panel). The same plots at 
8 = 0.3 are shown in Fig. 13 in the nodal direction (left panel) and the antinodal 
X(1r,0) --+ f(0,0) direction (right panel). A change of dispersion is clearly 
seen with increasing binding energy below the FS shown by dotted line. For the 
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underdoped case the kink is larger than for the overdoped one. A crude estimation 
of the strength of the kink from the ratio of the dispersion slope VF close to the FS 
(w = 0) to those one Vt at large binding energy (w ~ 0.2t), Vt /VF = (1 + ,\), 
gives the following values: (1 + ,\) ~ 7.6, 3.5 at 8 = 0.1 for the nodal and 
antinodal directions, respectively. In the overdoped case the nodal value is much 
smaller, while in the the antinodal X(1r,0)---+ r(0,0) direction is still quite large: 
(1 + ,\) ~ 2.5. These estimations are in accord with the evaluation of the coupling 
constant ,\ from the slope of the real part of the self-energy discussed above. 

It is important to stress that in our theory the self-energy effects and the 
corresponding kinks are induced by the spin-fluctuation spectrum ih the form of 
the continuum (26) which at low temperature T ~ 0.03t « w8 = 0.4t has a 
large intensity already at small energy w ~ 0.03t and decreases slowly up to a 
high energy w ~ t. In the spin-fermion model the kink phenomenon is usually 
explained by electron interaction with the spin-resonance mode nres :::: 40 meV 
which results in a break of the electron dispersion («kink») at a certain energy 
w ~ nres + .D.o, where .D.o is the superconducting gap (see, e.g., f2)). However, 
the intensity of the spin-resonance mode amounts only few percents of the total 
spin-fluctuation spectrum given by the sum rule (27) and its consideration should 
not change our results which reveal a rather strong interaction with a smooth 
energy variation without any specific kink energy. 

3.5. Dispersion and FS at Ueff = ..:l = 4t. The effective Coulomb energy in 
the Hubbard model (1) Uetr = St results in a large charge-transfer gap .D.:::: 3 eV 
for t = 0.4 eV even in the overdoped case (Fig. 4) while experiments point to a 
smaller value of the order of 1.5- 2 eV. To correct this inconsistency, we present 
in this section the results obtained for a smaller value of Uetr = .D. = 4t. We also 
take into account the hoping parameter for the n.n.n. ±2ax, ±2ay sites by fixing 
the parameters in the model dispersion (2) as follows: t' = -0.13t, t" = 016t. 

Main results for the dispersion and the spectral functions are not changed 
much in comparison with the previous ones as shown in Fig. 14. Larger hy
bridization between the subbands at small value of Ueff results in increase of the 
dispersion and the intensity of the upper one-hole subband. This trend is also 
seen in the DOS in the left panel in Fig. 15 where the gap between the subbands 
vanishes in the overdoped case at 8 = 0.3. 

Noticeable changes are observed for the FS shown in Fig. 15 (right panel) 
and in Fig. 16. In the first plqt where the FS was determined· by the equation 
c2 (kF) + Re E(kF, w = 0) = 0, we see a large pocket at small doping 8 = 0.1 
which opens with doping or temperature increasing. At the overdoping for 8 = 
0.3, the FS transforms to the electron-like as in the previous calculations. This 
transformation is confirmed by calculations of the electron occupation>numbers 
shown in Fig. 17. It should be noted that a pronounced hole pocket in the 
new set of the model parameters is caused by the t" contribution which results 
in a large dispersion in the (1r,0)---+ (0,1r) direction (ex: t"(cos2kx +cos2ky)) 
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disregarded in the previous set of the parameters. A remarkable feature of these 
results is that the part of the FS close to the I'(O, 0) point in the nodal direction 
in Fig. 15 does not shift much with doping (or temperature) being pinned to a 

19 



large FS as observed in the ARPES experiments (see, e.g., [26)). In fact, only 
this part of the FS was detected in the ARPES experiments where the spectral 
function Ae1{k,w = 0), shown in Fig. 16, was measured. 

Concerning the self-energy effects and kinks, they are similar to the case 
for a = 8t and confirm a strong influence of spin correlations on the QP 
spectra renormalization. As shown in Fig. 18, the coupling constant >.. = 
-(8ReE(k,w)/8w)w=O being large at small doping distinctly decreases with 
overdoping at o = 0.3 accompanied by suppression of the imaginary part of the 
self-energy. In conclusion, the alternative set of parameters with a moderate 
effective Coulomb energy Ueff = 4t in the Hubbard model (1) confirms an im
portant role of AF correlations in the electronic structure of system with large 
single-site Coulomb interaction .. 

4. CONCLUSION 

In the present paper the theory of QP spectra in the strong correlation limit 
for the Hubbard model (1) in a paramagnetic state is formulated. By employ
ing the Hubbard operator technique in the equation of motion method for the 
thermodynamic GFs [11], we consistently took into account strong electron cor
relations and derived the self-consistent system of equation for the GF (23) and 
the self-energy (22) in the NCA. The latter is equivalent to the 1\1igdal-Eliashberg 
approximation where the vertex corrections are neglected. This can be justified 
for a weak coupling. Though in the Hubbard model (1) the electron coupling 
to the spin-fluctuation scattering is not weak, it _is of the order of the hopping 
parameter t, the vertex corrections should not be so important as for the strong 
electron-phonon coupling. This is due to the kinematic restrictions of electron 
scattering on spin fluctuations. As was shown for the t-J model [27], the leading 
two-loop crossing diagram identically vanishes, while the next three-loop crossing 
diagram gives a small contribution to the self-energy. In any case, the NCA for 
the self-energy can be considered as a starting approximation for a model with 
strong coupling. The most important advantage of our theory is that we have no 
fitting parameters for the electron interaction with spin fluctuations as in phenom
enological approach or spin-fermion models. However, the coupling constant >.. 
for this interaction obtained in our calculations (see Subsec. 3.4) seems to be too 
large in comparison with the ARPES results. This discrepancy can be caused 
by disregarding scattering on charge fluctuations in the dynamical susceptibil
ity model (25) and electron-phonon interaction which may reduce electron-spin 
interaction. 

The numerical results for the electron dispersion in Subsec. 3.2, the Fermi sur
face and the occupation numbers in Subsec. 3.3 and the self-energy in Subsec. 3.4 
unambiguously demonstrate a decisive role of spin-fluctuations in renormalization 
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of the electronic spectrum in strongly correlated system as cuprate superconduc
tors. With doping or temperature increasing, spin correlations are suppressed 
which results in transition from a strong to a weak coupling. This observa
tion was confirmed by consideration of the intermediate Coulomb correlations in 
Subsec. 3.5. 
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