


1. INTRODUCTION

Recent high-resolution angle-resolved photoemission spectroscopy (ARPES)
studies revealed a complicated character of electronic structure and quasiparticle
(QP) spectra in copper-oxide superconductors. In particular, a pseudogap in the
electronic spectrum and an arc-type Fermi surface at low doping were revealed, a
substantial wave-vector and energy-dependent renormalization of the QP disper-
sion («kinks») was observed (for a review, see [1,2]). As was originally pointed
out by Anderson [3], strong electron correlations in cuprates play an essential role
in explaining their normal and superconducting properties.

A conventional approach in describing strong electron correlations is based
on consideration of the Hubbard model. It has some advantages in comparison
with the t — J model which can be derived from the Hubbard model in the limit
of strong correlations. Namely, the Hubbard model allows to study a moderate
correlation limit observed experimentally in cuprates and more consistently takes
into account a two-subband character of electronic structure, in particular, a weight
transfer between subbands with doping. Various methods were proposed to study
electronic structure within the Hubbard model. An unbiased method is based
on numerical simulations for finite clusters (for a review see, e.g., [4]) which,
however, precludes to study subtle features of QP spectra due to poor energy
and wave-vector resolutions in small size clusters. In analytical calculations of
spectra mean-field type approximations are often used (for a review, see [5])
which cannot reproduce the above-mentioned effects caused by the self-energy
contributions. In the dynamical mean-field theory (DMFT) (for a review, see [6,
7]) the self-energy is treated in the single-site approximation which also unable
to describe wave-vector-dependent phenomena. To overcome this flaw of DMFT,
various types of the dynamical cluster theory were developed (for a review,
see [8,9]). In these methods a restricted wave vector and energy resolutions
can be achieved depending on the size of the cluster. By including into the
DMFT scheme an additional momentum-dependent self-energy originating from
short-range antiferromagnetic (or charge) correlations, a pseudogap state in the
Hubbard model was obtained [10]. At the same time, an equation of motion
method for the thermodynamic Green functions (GF) [11] appears to be successful
in describing physical properties of the Hubbard model (for a review, see [12]).
By taking into account the self-energy corrections in this method, one can try to
explain the peculiarity of the ARPES spectra in cuprates. For instance, calculation
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of electronic spectrum within the first order perturbation theory for the self-
energy has reproduced quite accurately quantum Monte Carlo results [13], while
application of an incremental cluster expansion for the self-energy has enabled to
observe the kink structure in the QP spectrum [14].

In the present paper, we study an effective Hubbard model reduced from the
p—d model for the CuO; plane in cuprates. We apply the Mori-type projection
technique in the equation of motion method for the thermodynamic GF in terms
of the Hubbard operators elaborated in our previous publications [15-17]. A
self-consistent solution of the Dyson equation for the model with a self-energy
derived in the noncrossing approximation (NCA) beyond a perturbation approach
is reported. A dispersion of single-particle excitations, the Fermi surface and
spectral functions are calculated. In particular, we study a hole-doped case. At
low hole concentrations the Fermi surface (FS) reveals an arc-type shape with
pseudogaps in the (7, 0) region of the Brillouin zone (BZ). A strong renormal-
ization effects of the dispersion close to the Fermi energy («kinks») are observed
due to electron scattering on antiferromagnetic (AF) spin fluctuations induced by
kinematic interaction for the Hubbard operators. Electron occupation numbers
show only a small drop at the Fermi energy. For high temperature or large
hole concentrations AF correlations become irrelevant and a crossover to a Fermi
liquid-like behavior is observed.

In the next section we briefly discuss the model and derivation of the Dyson
equation and the self-energy calculation in the NCA. The results of numerical
solution of the self-consistent system of equations for various hole concentrations
in the model are presented in Sec. 3. Conclusions are given in Sec. 4.

2. GENERAL FORMULATION

2.1. Effective Hubbard Model and Dyson Equation. Following a cell-cluster
perturbation theory (e. g., [15,18,19]) based on a consideration of the original two-
band p-d model for the CuQ; layer [20] we consider an effective two-dimensional
Hubbard model for holes

H = e1) X7+e ) X2+ ) {tx7°x7°
i,0 i i#j,o
+ B2XFX7 + 20t XP XY + He.)}, (1)

where XI'™ = |in)(im| are the Hubbard operators (HOs) for the four states
n,m=[0), |0),|2) =|1]), 0 =+1/2=(1,]), 8 = —0. Here €1 = €4 — 1 and
€2 = 2€1+ Ues, where p is the chemical potential. The effective Coulomb energy
in the Hubbard model (1) is the charge-transfer energy Usg = A = €, — €4. The
superscripts 2 and 1 refer to the two-hole p—d singlet subband and the one-hole

subband, respectively. According to the cell-cluster perturbation theory, we can
take similar values for the hopping parameters in (1): 2 = t}} = ;2 = t,;. The
bare electron dispersion defined by the hopping parameter ¢;; we determine by
the conventional equation

t(k) = 4ty(k) + 4t'v'(k) + 4t" v"(k), 2

where t,t',t” are the hopping parameters for the nearest neighbor (n.n.)
(£az,+ay), the next nearest neighbor (n.n.n.) =(a; + a,) and +2a.,+2a,
sites, respectively, and y(k) = (1/2)(cosk; + cosky), 7'(k) = coskz cosk,

and v"(k) = (1/2)(cos2k; + cos2k,) (the lattice constants a; = a, equal to
unity). To get a physically reasonable value for the charge-transfer gap for the
conventional value of ¢ ~ 0.4 eV we take A = U.g = 8t ~ 3.2 eV. The
bare bandwidth is W = 8t ~ U.g which shows that the effective p—d Hubbard
model (1) corresponds to the strong correlation limit. In what follows, we take
as an energy unit t = 1 and put €4 = 0 in £;. The chemical potential i depends
on the average hole occupation number

n=1+8=() X7 +2X7). 3)

The HOs entering (1) obey the completeness relation X204+ X174+ xH 4+ X22 =1
which rigorously preserves the constraint of no double occupancy of any quantum
state |in) at each lattice site 7. Due to the projected character of the HOs, they have
complicated commutation relations [Xf’ﬂ ,X;."s]i = 8;; (6;;,,Xf‘5 + 850 X7 ),
which results in the so-called kinematic interaction. The upper sign here refers
for the Fermi-like HOs like X?” and the lower sign is for the Bose-like ones,
like the spin or number operators.

To discuss the electronic structure within the model (1), we introduce a
thermodynamic matrix Green function (GF) [11]

Gija(t —t') = (Ric () XL, (') = —i8(t - ){({Xis (), X, () @

Yo ) and X[, = (X7 X7°).

To calculate the GF (4), we apply the Mori-type pr(;jection technique by writing
equations of motion for the Heisenberg operators in the form:

in terms of the two-component operators Xio =

Zio = [Xia, H) = Z Eijo Xjo + Zi(,i,r), &)
J

where the irreducible Z-operator is determined by the orfhogonality condition:

W28, K1) = (2 &), + R}, 207 =0 ©
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This defines the frequency matrix
&5 = (X, H, XL, 1 @7, Q)

where @ = ({Xir, X1}) = ( %2 Cgl ) The weight factors Q2 = (X2 +

X?°) =n/2 and Q1 = (X°+ XF%) =1— Q; in a paramagnetic state depend
only on the hole occupation number (3). The frequency matrix (7) determines

the QP spectra within the generalized mean-field approximation (MFA). The .

corresponding zero-order GF in MFA reads:
) A0 . . ) -1,

Go,w) = (who—£() Qs ®
where 7o is the unity matrix, and we introduced the frequency matrix (7) in the
k-representation £(k). By differentiating the many-particle GF ((Z;; (t) | X. }a N
over-the second time ¢’ and applying the same projection procedure as in (5) we
derive the Dyson equation in the form [15]

Go(k,w) ™ = G2(k,w)™! — £, (k,w). ©)

Here the self-energy matrix £, (k,w) is determined by a proper part (which
have no single zero-order GF) of the many-particle GF in the form

S0 (lk,w) = Q120 | ZE0tyEroR) G=1, (10)

Equations (8)—(10) provide an exact representation for the GF (4). However, to
calculate it one has to use approximations for the self-energy matrix (10) which
describes inelastic scattering of electrons on spin and charge fluctuations.

It is important to point out that contrary to spin-fermion models, where

electron interaction with spin- or charge fluctuations are specified by coupling

constants, in the Hubbard model these interactions are induced by the kinematic
interaction with the coupling constants equal to the original hopping parameters.
For instance, the equation of motion for the operator X7? reads
idX72/dt = [X7% H]=(e1+A)X{?
+ Z (t?lzB?tga'Xf,2 - 2at?llBi2;a’X?&,)
l#i,a'
- Do XP (X7 + 2013 X{7), - an
[
where Bf:f,, are Bose-like operators describing the number (charge) and spin
fluctuations:

Bizo?o" = (X1,22 + Xga)‘sa'a + Xg&‘sa’&
= (Ni/2+Siz)‘$a’a +qu‘$o"&1 (12)
BY, = (Ni/2+5/)8p0 — S{bs5-

Therefore, in the Hubbard model (1) we have no fitting parameters for electron
interaction with spin- or charge fluctuations.

2.2, Mean-Field Approximation. The single-particle excitations in MFA are
defined by the frequency matrix (7). By using equations of motion like (11), we
get the following energy spectrum for holes in two subbands:

e12(k) = (1/2)wa(k) +wi(k)] F (1/2)A(k),

Ak) = {[wa(k) —wr(K))® +4W (k)*}/2, (13)
where the original excitation spectra in the Hubbard subbands and the hybridiza-
tion parameter are

wi(k) = 4tary(k) +4t' A7 (k) —p,

wa(k) = 4dtoay(k)+4t' By (k) +A—p,

W(k) = 4taixy(k)+4t' fray'(k), (14)
where we omitted ¢t” contribution in (2) and introduced the renormalization pa-

rameters a;z) = Qua)[l + C1/QYz)), bre) = Qu)(l + C2/QF(y)l, a1z =
VO1Q2[1 — C1/@1Q2), b1z = VQ1Q2[1 — C2/Q1Q2] . As in the Hubbard I ap-

proximation, we neglect number fluctuations (6 N;0 N;)(i;) but take into account
contributions from the spin correlation functions for the n.n. and the n.n.n. sites:

C1 = (SiSita,/a,)» C2 = (SiSita.4a,)- (15)
For the diagonal components of the zero-order GF (8) we have

Qiz) 1 —b(k)] | Qi b(k)

0 —
Gl =", 0w T e en®’ (1o
where the parameter
b(k) = ea(k) ~wa(k) 1 wa(k)—wi(k) a7

- Ez(k) —El(k) 2 2A(k)

determines the contribution due to the hybridization.
2.3. Self-Energy Corrections. Dyson equation (9) for the GF is convenient
to write in the form

R ) - -1,
Golk,w) = (w+o — &(k) — Bo(k, w)) o, (18)
where the self-energy reads
£ (k,w) = (ZEV | ZEM)ED Q. (19)
5



To make the problem tractable, we can neglect in the self-energy matrix (19)
the off-diagonal components X2 ,(k,w) in comparison with the hybridization
parameters W (k) in (14). This enables us to write the diagonal components of
the full GF (18) in the form similar to (16)

. . 1-bk
G11(22) (k, w) = Q1(2) [ = ( )]
w —£1(2)(k) — 1122y (k, w)
Q1(2) b(k)
w —€2(1)(k) — Tazq11)(k,w)

Here the hybridization parameters b(k) are determined by the formula similar to
(17) which gives an accurate approximation for a small doping at nn ~ 1.

Now we calculate the self-energy (19) in the non-crossing (NCA) or the self-
consistent Born approximation (SCBA) by neglecting vertex renormalization. As
follows from the equation of motion (11), the Z((,ir) operators determined by (5)
are essentially a product of the Fermi-like X;(¢) and Bose-like B;(t) operators.
In SCBA, the propagation of these excitations of different types in the many-
particle GF in (19) are assumed to be independent of each other. Therefore,
they can be decoupled in the time-dependent correlation functions for lattice sites
(i # 4, L £ m) as follows:

(Bi(®)X;(O)Bi(t) Xm(t')) = (X;(t) Xm (t'))(Bi() Bi(t")).- @n

(20)

Using the spectral representation for these correlation functions, we obtain the fol-
lowing formula for the diagonal self-energy components X1 (90)(k,w) = E(k, w)
which are the same for two subbands: '

' +o00
1
Sw) = 7 ¥ [dK@lak-a)
94 -

x  (=1/m)Im[G1(q, 2) + G2(q, )], (22)
where the corresponding subband GFs are ,

1
w—e12)(q) — E(q,w)’

Gi2)(q,w) = (23)

The kernel of the integral equation (22) has a form, similar to the strong coupling
Migdal-Eliashberg theory [21,22]:

+o00
N 2 1 _de
K@ zlak-a) =@l 5= [ 2
x  [tanh(z/2T) + coth(2/2T)] Im x,c(k — q, ), (24)

where the interaction is defined by the hopping parameter ¢(q) (2). The spectral
density of bosonic excitations is determined by the dynamic susceptibility of the
Bose-like operators B;(t) in (21) — the spin and number (charge) fluctuations

Xse(@w) = ~[(SqlS-a)w + (1/4)(6Ng[0N—-q))u), (25)

where we introduced the commutator GF for the spin Sq and the number Vg =
Nq — (Ngq) operators. :

Thus we obtain a self-consistent system of equations for the GFs (23) and
the self-energy (22). A similar system of equations was obtained within the
composite operator method [13]. In comparison with the t—J model studied by
us in [16], for the Hubbard model (1) we have two contributions in the self-energy
(22) determined by the two Hubbard subbands, while in the ¢t—J model only one
subband is considered. However, depending on the position of the chemical
potential, a substantial contribution to the self-energy comes only from the GF of
those subband which is close to the Fermi energy. A contribution from the GF of
another subband which is far from the Fermi energy, is suppressed due to a large
charge-transfer energy A in the denominator of those GF. Neglecting the latter
contribution, we obtain a self-consistent system of equations for one GF close to
the Fermi energy and the corresponding self-energy function similar to the t-J
model [16].

3. RESULTS AND DISCUSSION

3.1. Self-Consistent System of Equations. To solve the system of equations
for the self-energy (22) and the GFs (23) we should specify a model for the spin-
charge susceptibility (25). Below we take into account only the spin-fluctuation
contribution xs(q,w) = —({Sq | S—4))w for which we adopt a model suggested
in numerical studies [23]

Tmxs(q,w +i0%) = xs(a) x; (@)

X0 w 1
—=— — tanh ——————. 26
T @0 7@ T @] 0
We stress that we consider the model for spin-fluctuation spectrum x, (w) in
the form of a continuum characterized by the spin-fluctuation energy w, ~ J
of the order of the exchange energy J = 0.4t. The q-dependence in x,(q) is
determined by the AF correlation length £ which doping dependence is defined
below. The coupling constant o at the AF wave vector Q = (7, 7) is fixed by
the normalization condition '



Table 1. Static spin correlation functions (29), C(£) (30) and the AF correlation length
£ (26) at various hole concentrations n =1+ §

5= 003 005 0.10 0.15 020 030
Ci 036 0.26 021 —0.18 —0.14 —0.10
C: 027 016 0.11 0.09 006 0.04
C(€) 220 591 358 267 193 1.40
€ 80 340 250 210 170 140

3 28180 = §((1- X%~ X)) = Ju - )

+o0

1 dz " 1
B /WXS(Z)Ngxs(q), @7)

which gives the following value for the coupling constant:

-1
_ 31— 14)) 1
20, {N 2 iTEn +’7(q)]} ' @9

In (27) for the hole concentration § = 1—n = (X22— X0) we assume that at the
hole doping & = (X?22) at (X90) = 0, while at the electron doping § = —(X2°)
at (X?2) = 0 which is reasonable for small }5|.
The spin correlation functions (15) in the single-particle excitation spectra
(13) in MFA are defined by the equations

1 1
Ci=y5 ¥ Car(@), Cr= ; Ca?'(a). 29)

The static correlation function Cq can be calculated from the same model (26)
as follows: )

Co = (845-1) = T ) 0
where the factor C(§) = xo (ws/2). '

To specify the doping dependence of the AF correlation length £(8) at low
temperature, we fit the correlation function C; calculated from (29) to the nu-
merical results of an exact diagonalization for finite clusters [24]. The values
of the AF correlation length, calculated values of C, and the correlation function
C(§) = (SqS—q) at the AF wave vector q = Q = (7, 7) -are given in Table 1.

To perform numerical calculations, we introduce the imaginary frequency
representation for the GF (23):

1
—e1(zy(q) — X(q, iwn)’

Gi(2)(q,iwy,) = (31

where iw, = irT(2n+1), n =0, %1, :t2 . For the self-energy (22) we obtain
the following representation:

Bion) = =37 33 Gs(aim) + Galarivm)]
X Alg, k — q iwnp — iwg). (32)
The interaction function is given here by the equation
Ma,k—qliw) = —It(q)|* xs(a) Fs(iws), (33)
where the spectral function

1 [ 2rdx 1 TWws
Folws) = T /0 72 + (w, Jws)? 1 + 2 tanh 2T -~ (34)

In the next sections we consider the results of self-consistent calculations of
the GFs (31) and the self-energy (32) in the hole-doped case for various hole
concentrations § = n—1 > 0. In Subsecs. 3.2-3.4 the calculations were performed
at temperature T = 0.03¢t ~ 140 K and T" = 0.3t for A = 8¢, ¢t ~ 0.4 eV and

= —0.3t. Several results are reported for A = 4¢,t' = --0.13¢, t"” = 0.16¢
in Subsec. 3.5. For the spin-fluctuation energy in (26) we take w, = 0.4¢t. The
AF correlation length £(8) and the static correlation functlons C1,C5 in (15) are
defined in Table 1.

3.2. Dispersion and Spectral Functions. In ARPES measurements and QMC
simulations the spectrum of single-electron excitations is determined by the spec-
tral function A(ey(k,w) = A(ny(k, —w). The spectral function for holes can be
written as follows:

1
Amyk,w) = - Im ({ake | @), )wrtio+

= [Q1+ P(k)]A1(k,w) + [Q2 — P(k)]A2(k, w). 35)
Here we introduced for the hole annihilation ay, and creation a;rw operators the

definition in terms of the Hubbard operators ax, = X?° + 20X7?, alTw =

X,f’0 + 20X2° and used all four components of the matrix GF (18) Gap(k,w)
with the diagonal components given by (20). In (35) we introduced also - the



one-band spectral functions determined by the GFs (23): A;(9)(k,w) = —(1/7)
ImGy2)(q,w). The hybridization effects are allowed for by the parameter
P(k) = (n — 1)b(k) — 2/Q10; W(K)/A(K).

The dispersion curves given by maxima of spectral functions (35) were cal-
culated for hole doping & = 0.05 — 0.3. At low hole doping, § = 0.05, 0.1,
the dispersion reveals a rather flat hole-doped band at the Fermi energy (FE)
(w = 0) as shown in the left panels in Fig. 1 and Fig. 2. The corresponding
spectral function (the right panels) demonstrates weak QP peaks at the Fermi en-
ergy. With doping, the dispersion and the intensity of the QP peaks at the Fermi
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Fig. 1. Dispersion curves (left panel) and spectral functions (right panel) in units of ¢ along
the symmetry directions I'(0,0) — M (=, 7n) — X (=,0) — I'(0,0) for § = 0.05
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Fig. 2. The same as in Fig. 1, for § = 0.1

energy substantially increase as demonstrated in Fig. 3 and Fig. 4 though a flat
band in X (7,0) — I'(0, 0) direction is still observed in accordance with ARPES
measurements in the overdoped Laj 73Srp.22CuO4 [25]. To study an influence of
AF spin correlations on the spectra, we calculate the spectral functions at high
temperature T' = 0.3t for § = 0.1 by neglecting spin correlation functions (15)

10

in the single-particle excitation spectra (13) in MFA and taking a small AF cor-
relation length (£ = 1.0) in the spin-susceptibility (26). Figure 5 shows a strong
increase of the dispersion and the intensity of the QP peaks at the Fermi energy
as in the overdoped region, § = 0.3, which proves a strong influence of AF
spin correlations on the spectra. A crude estimation of the Fermi velocity from

r M X r -60 0.0 6.0 12.0
Energy

Fig. 3. The same as in Fig. 1, for hole concentration § = 0.2
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Fig. 4. The same as in Fig. 1, for hole concentration § = 0.3

the dispersion curve in the I'(0,0) — M (w, ) direction in Fig. 4 for the over-
doped case gives the value Vg ~ 7.5¢ A ~ 3 (eV-A) for the hopping parameter
¢t = 0.4 eV which can be compared with experimental results V& ~ 2.2 (eV-A)
for overdoped Laj 7gSro.22CuOy4 [25] and Vp ~ 3.9 (eV-A) for overdoped
Bi-2212 [26]. With doping, the electronic density of states (DOS) shows a
weight transfer from the upper one-hole subband to the lower two-hole singlet
subband as shown in Fig. 6 (left panel). However, even in the overdoped case a
noticeable part of the DOS retains in the upper one-hole subband.
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Fig. 5. The same as in Fig. 1, for hole concentration § = 0.1 but at high temperature
T =023t
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Fig. 6. Doping dependence of the DOS (left panel) and FS for § = 0.1 (solid line at
T = 0.03t and dotted line at T = 0.3t), § = 0.2 (dashed line), anc¢ § = 0.3 (dot-dashed
line) (right panel)

3.3. Fermi Surface and Occupation Numbers. The Fermi surface for
the two-hole subband was determined by a conventional equation: ea(kr) +
Re3({kp,w = 0) = 0 (Fig. 6) (right panel) and then compared with those one
obtained from maxima of the spectral function Aq(k,w = 0) on the (k;, ky)-
plane for ¢ = 0.1, 0.2, 0.3 shown in Fig. 7. The FS changes from a hole arc-type
at ¢ = 0.1 to an electron-like one at é = 0.3. Experimentally an electron-like FS
was observed in the overdoped La; 78Srg.22CuQO4 [25]. The doping-dependent
FS transformation can be also observed by studying the electron occupation
numbers. The electron occupation numbers in (k)-space for one-spin direc-
tion equal to Nep)(o, k) = 1 — Nyy(o,k) where the hole occupation numbers

12

o S, — Gt

(—

S

Fig. 7. A(k,w = 0) on the FS for § = 0.1 (left panel), § = 0.2 (central panel), and
& = 0.3 (right panel)

Nny(a,k) = Npy(k) according to (3) are determined only by the diagonal GFs
(20). From the latter equation and (23) we get

Npy(k) =. [@1+ (n—1)b(k)] Ni(k)
+  [Q2 — (n — 1)b(k) Na(k),

1 dw
N1(2)(k) = —; / m{ Im G1(2)(k,w)
[e o]

i

1 T & .
5+3 > Gy (k, iwm). (36)

m=-—00

The electron occupation numbers in a quarter of the BZ (0 < kz,k, < ) are
shown in Fig. 8 for 6 = 0.1 at low temperature 7" = 0.03¢ and at high temperature
T = 0.3t. With doping the shape of the N is changing revealing a transition
of the hole-like FS to the electron-like ones in the overdoped case 6 = 0.3 as
plotted in Fig. 9. While in the underdoped case at § = 0.1, the drop of the

3.0 0.0 0.5 K ,

Fig. 8. The electronic occupation numbers Vi, for § = 0.1 at 7' = 0.03¢ (left panel) and
at T = 0.3t (right panel)
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Fig. 9. The electronic occupation numbers Ny at T = 0.03t for § = 0.2 (left panel) and
at § = 0.3 (right panel)

occupation numbers at the Fermi level crossing is rather small, ANy = 0.15,
for high temperature 7' = 0.3t or in the overdoped case at § = 0.3 when the AF
spin correlations are suppressed, the occupation number drops are substantially
increased: ANy = 0.45, 0.55, respectively. Thus, the arc formation and a small
change of the electron occupation numbers at the FS crossing at low doping further
prove a large contribution of the spin correlations in the renormalization of QP

spectra.

3.4. Self-Energy and Kinks. Energy dependence of the real and imaginary
parts of the self-energy ¥(k,w) for § = 0.1, 0.2, 0.3 at the T'(0,0), S(7/2,7/2)
and M (w, ) points are shown in Fig. 10 and Fig. 11. These plots demonstrate
a strong dependence of the self-energy on the wave-vector and the hole concen-
trations. With doping, the coupling constant substantially decreases as is seen
by the decreasing of the imaginary part and the slope of the real part at the FS
crossing which determines the coupling constant A = —(& ReX(k,w)/0w)w=0-
As shown in Fig. 11 (right panel), the coupling constant decreases from A~ 7.86
atd=0.11t A~33até=03.

At large binding energies (greater than the boson energy responsible for
the interaction) the self-energy effects vanish and the electron dispersion should
return to the bare value, giving a sharp bend, the so-called «kink» in the electron
dispersion. The amplitude of the kink and the energy scale where it occurs are
related to the strength of the electron-boson interaction and the boson energy,
respectively. In ARPES the kink is observed as a changing of the slope for
an intensity plot for the spectral function A(k,w) in a particular k-wave vector
direction below the Fermi level w < 0 (for electrons). Usually, two directions
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Fig. 11. The same as in Fig. 10, for hole concentration § = 0.3 (left panel) and ReX(k,w)
at the FS (right panel)

are studied: the nodal (I' — M) and the antinodal (X — Af). Intensity plots
for the spectral function A(k,w) at § = 0.1 are shown in Fig. 12 in the nodal
direction (left panel) and the antinodal one (right panel). The same plots at
6 = 0.3 are shown in Fig. 13 in the nodal direction (left panel) and the antinodal
X(m,0) — I'(0,0) direction (right panel). A change of dispersion is clearly
seen with increasing binding energy below the FS shown by dotted line. For the
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and M(m,m) — X(m,0) (right panel) in units of ¢t for § = 0.1, T' = 0.03t. Fermi level
crossing is shown by vertical dotted line
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Fig. 13. The same as in Fig. 12 but for § = 0.3 along the symmetry directions M(m,7) —

I'(0,0) (left panel) and X (x,0) — ['(0,0) (right panel)
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underdoped case the kink is larger than for the overdoped one. A crude estimation
of the strength of the kink from the ratio of the dispersion slope V¥ close to the FS
(w = 0) to those one V{ at large binding energy (w ~ 0.2t), V@/Ve = (1 + A),
gives the following values: (14 A) ~ 7.6,3.5 at § = 0.1 for the nodal and
antinodal directions, respectively. In the overdoped case the nodal value is much
smaller, while in the the antinodal X (m, 0) — I'(0, 0) direction is still quite large:
(14 X) ~ 2.5. These estimations are in accord with the evaluation of the coupling
constant A from the slope of the real part of the self-energy discussed above.

It is important to stress that in our theory the self-energy effects and the
corresponding kinks are induced by the spin-fluctuation spectrum in the form of
the continuum (26) which at low temperature T ~ 0.03t <« w, = 0.4¢ has a
large intensity already at small energy w ~ 0.03t and decreases slowly up to a
high energy w ~ t. In the spin-fermion model the kink phenomenon is usually
explained by electron interaction with the spin-resonance mode s ~ 40 meV
which results in a break of the electron dispersion («kink») at a certain energy
w ~ Qs + Ag, where Ay is the superconducting gap (see, e. g., [2]).. However,
the intensity of the spin-resonance mode amounts only few percents of the total
spin-fluctuation spectrum given by the sum rule (27) and its consideration should
not change our results which reveal a rather strong interaction with a smooth
energy variation without any specific kink energy.

3.5. Dispersion and FS at U.g = A = 4¢. The effective Coulomb energy in
the Hubbard model (1) U.g = 8t results in a large charge-transfer gap A ~ 3 eV
for t = 0.4 eV even in the overdoped case (Fig. 4) while experiments point to a
smaller value of the order of 1.5—2 eV. To correct this inconsistency, we present
in this section the results obtained for a smaller value of U.g = A = 4¢. We also
take into account the hoping parameter for the n.n.n. +2a,, +2a, sites by fixing
the parameters in the model dispersion (2) as follows: ¢’ = —0.13t, t”” = 016¢.

Main results for the dispersion and the spectral functions are not changed
much in comparison with the previous ones as shown in Fig. 14. Larger hy-
bridization between the subbands at small value of U.g results in increase of the
dispersion and the intensity of the upper one-hole subband. This trend is also
seen in the DOS in the left panel in Fig. 15 where the gap between the subbands
vanishes in the overdoped case at § = 0.3.

Noticeable changes are observed for the FS shown in Fig. 15 (nght panel)
and in Fig. 16. In the first plot where the FS was determined by the equation
e2(kr) + ReZ(kp,w = 0) = 0, we see a large pocket at small doping J = 0.1
which opens with doping or temperature increasing. At the overdoping for § =
0.3, the FS transforms to the electron-like as in the previous calculations. This
transformation is confirmed by calculations of the electron occupation’numbers
shown in Fig. 17. It should be noted that a pronounced hole pocket in the
new set of the model parameters is caused by the ¢’ contribution which results
in a large dispersion in the (7,0) — (0,7) direction (ox t” (cos2k; + cos2ky))
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Fig. 16. A(k,w = 0) on the FS at § = 0.05 (left panel) and § = 0.1 (central panel) at
T =0.03t, and 6 = 0.1 at T' = 0.3¢ (right panel) for A = 4¢
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Fig. 17. The electronic occupation numbers Ny at T = 0.03t for § = 0.05 (left panel) and
at 6 = 0.3 (right panel) for A = 4¢ :
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Fig. 18. Energy dependence of the real and imaginary parts of the self-energy X(k,w)
for A = 4t at the I'(0,0), S(n/2,7/2) and M(=, ) points at § = 0.1 (left panel) and
6 = 0.3 (right panel)

disregarded in the previous set of the parameters. A remarkable feature of these
results is that the part of the FS close to the I'(0, 0) point in-the nodal direction
in Fig. 15 does not shift much with doping (or temperature) being pinned to a
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large FS as observed in the ARPES experiments (see, e.g., [26]). In fact, only
this part of the FS was detected in the ARPES experiments where the spectral
function Ag)(k,w = 0), shown in Fig. 16, was measured.

Concerning the self-energy effects and kinks, they are similar to the case
for A = 8t and confirn a strong influence of spin correlations on the QP
spectra renormalization. As shown in Fig. 18, the coupling constant A =
—(0ReX(k,w)/0w),=0 being large at small doping distinctly decreases with

overdoping at § = 0.3 accompanied by suppression of the imaginary part of the

self-energy. In conclusion, the alternative set of parameters with a moderate
effective Coulomb energy U.g = 4t in the Hubbard model (1) confirms an im-
portant role of AF correlations in the electronic structure of system with large
single-site Coulomb interaction.

4. CONCLUSION

In the present paper the theory of QP spectra in the strong correlation limit
for the Hubbard model (1) in a paramagnetic state is formulated. By employ-
ing the Hubbard operator technique in the equation of motion method for the
thermodynamic GFs [11], we consistently took into account strong electron cor-
relations and derived the self-consistent system of equation for the GF (23) and
the self-energy (22) in the NCA. The latter is equivalent to the Migdal-Eliashberg
approximation where the vertex corrections are neglected. This can be justified
for a weak coupling. Though in the Hubbard model (1) the electron coupling
to the spin-fluctuation scattering is not weak, it is of the order of the hopping
parameter {, the vertex corrections should not be so important as for the strong
electron—~phonon coupling. This is due to the kinematic restrictions of electron
scattering on spin fluctuations. As was shown for the {-J model [27], the leading
two-loop crossing diagram identically vanishes, while the next three-loop crossing
diagram gives a small contribution to the self-energy. In any case, the NCA for
the self-energy can be considered as a starting approximation for a- model with
strong coupling. The most important advantage of our theory is that we have no
fitting parameters for the electron interaction with spin fluctuations as in phenom-
enological approach or spin-fermion models. However, the coupling constant A
for this interaction obtained in our calculations (see Subsec. 3.4) seems to be too
large in comparison with the ARPES results. This discrepancy can be caused
by disregarding scattering on charge fluctuations in the dynamical susceptibil-
ity model (25) and electron—phonon interaction which may reduce electron-spin
interaction.

The numerical results for the electron dispersion in Subsec. 3.2, the Fermi sur-
face and the occupation numbers in Subsec. 3.3 and the self-energy in Subsec. 3.4
unambiguously demonstrate a decisive role of spin-fluctuations in renormalization

20

[

of the electronic spectrum in strongly correlated system as cuprate superconduc-
tors. With doping or temperature increasing, spin correlations are suppressed
which results in transition from a strong to a weak coupling. This observa-
tion was confirmed by consideration of the intermediate Coulomb correlations in

Subsec. 3.5.
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