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1. Introduction

Transition-metal oxides which contain degenerate d-level electrons are
characterized by strong correlations among them leading to different
kinds of mutually competing orders [1]-[4]. One possibility to investigate
such systems is to use the well known Hubbard model, where the quan-
tum state of an electron localized on a cell site i can be described with two
indexes: spin or and the type of the occupied orbital a. The normal pro-
duct of the Fermi operators at aja,, for the deleCtrons was replaced with
corresponding product of the 1/2-spin S and 1/2-pseudospin (isospin) 
operators by Kugel and Khornskii 1 2. Such spin-pseudospin formalism
has been used by many workers who investigated the low dimensional
quantum spin systems 59]. Discovery of the high-temperature super-
conductivity in lightly doped planar spin 12 antiferornagnetic cuprates
(see for ex. [10)) initiate also a lot of investigations on the ladder lattice
materials because one may expect that 2-leg ladder should be interme-
diate system between a chain and a plain [II].

A special attention attracted recently the a'-phase ( < x < 002)
of the Nal-.,V20,5 ladder layer compound with Na deficiency. Isobe and
Ueda 121 were the first who found a significant decrease of the macro-
scopic magnetic susceptibility in a quasi-one-dimensional transition metal
oxide compound a'-NaV205 bellow T, 34 K, and established the open-
ing of a spin gap in the magnon spectrum. That, behavior was attributed
to the spin-Peierls (SP) phase transition, where the magnetoelastic cou-
pling of the one-dimensional D) spin-1/2 chains with 3D phonons leads
to the magnetic lattice dimerization 13, 14].

One of the first theoretical attempts was performed by use of a one-
dimensional (ID) dimerized Heisenberg model showing the existence of
a low-energy magnon branch separated from the continuum [151. The
authors of the Refs. 16, 171 went beyond the presentation of a'-NaV205
as a spin-chain compound and included also the charge dynamics in terms
of the pseudospin operators. Treating on-site and inter-site Coulomb
interactions within the Hartree approximation in the model of single
d., orbital, Seo, and Fukuyama [18) found that the inter-site Coulomb
interaction induces a zigzag type of charge order (CO) along the ladders
of V-ions, resulting in localized spins between neighboring ladders to form
a spin gap.

A new view to the electronic structure of vanadate a'-NaV20,5 in
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centrosymmetric D" - Pmmn crystal structure was adopted by Horsch
and lack 191. They proposed an explanation for the isulating state,
which is not based on a charge modulation. Using the Hubbard-type
model Hamiltonian they argued that strong correlations, together with
the Heitler-London character of the relevant intermediate states, lead to
a special kind of antiferromagnetic (AF) Heisenberg chains. In order to
investigate the interplay between electron-electron Coulomb repulsion,
and electron phonon (or spin-phonon) couplings, a numerical exact dia-
gonalization technique was applied in 20]. For the corresponding set
of parameter values of the anisotropic t - J model, it was shown that
considered systems undergo instabilities toward the formation of charge
density waves, bond order waves, and generalized spin-Peierls modulated
structures.

After these theoretical attempts, a lot of experimental work have
been done also. Let us mention for example, nuclear magnetic reso-
nance (NMR) 21, 221, inelastic neutron scattering (INS) 23]-[25], angle-
resolved photoemission spectroscopy (ARPES)[26], electron paramag-
netic resonance (EPR) 27), and Raman spectroscopy 128, 29] measure-
ments.

An important prerequisite, before doing more established theoreti-
cal and experimental investigations with the intention of better under-
standing of low energy electronic properties of the considered compound,
is a detailed knowledge of its electronic structure. Several ab initio
band structure calculations bv means of standard density functional
methods i the local-densitv-approximation (LDA), local-spin-density-
approximation (LSDA), and more sophisticated LDA+U method, were
done 30]-[34]. According to the cited works, the occupied orbitals close
to the Fermi level are mostly of vanadium d,,y-type. These bands are
well separated from lower ying oxygen 2p-, and higher lying remaining
vanadium 3d-. and sodium 3s-orbitals. Tight bindidng fitting of the band
structure results showed that intra-ladder next nearest neighbor (n.n.n.)
hoppings are much larger than nearest neighbor (n.n.) V-V iDter-ladder
hopping amplitudes. This makes NaV20,5 a quarter filled system of vana-
dium two-leg ladders (so called Trellis lattice). From te estimated values
of the intra-ladder hopping along rung (t,,) and between rungs (h), where
2t, > 4tb relation is fulfilled, one can see that each rung is occupied by
a single electron in a bonding state. For the strong on-site Coulomb re-
pulsion, system becomes insulating without involving any CO. Ten the
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electron state which is delocalized on the ladder rung, can be described by
introducing two quantum numbers: spin and the occupation number of
the left or right site of the ends of the chosen rng. As in the well known
cases of systems with the orbital degeneracy, t is possible to introduce
pseudo-spin operators, in order to describe the occupancy of the left (L),
or the right (R) site, on the singled out ladder-rung 16],[l7],[35j-[37j.

Sa and Gros 135) investigated the influence of different inter-site
Coulomb repulsion on the exchange couplings and charge orderings. They
found that the effective intra-ladder exchange can become ferromagnetic
for the case of zigzag CO.

Yushankhai and Thalmeier 361 used molecular orbital representation
for intra-rung electronic states, and developed second-order perturbation
procedure in order to derive an effective spin-chain model for one ladder.
They included possible CO in mean field treatment of inter-rung Coulomb
interaction. This results in superexchange integral dependence on the
charge ordering (although they found that superexchange is always AF).

Suaud and M.-B. Lepetit 38] performed te numerical ab initio eva-
luations of the hopping and the magnetic exchange integrals in the frame-
work of the ri.n. t-J model and also evaluated the relative amplitudes
of the underlying extended Hubbard Hamiltonian. They found that the
state with an unpaired delocalized electron on each V-O-V rung is en-
ergetically more stable, and that the o�-NaV205 system can be taken
as 2D triangular Heisenberg lattice (as i n Ref. 19]), where the effective
exchange along the ladder-legs direction is antiferromagnetic (AF), while
it is ferromagnetic (FM) along the other directions.

After detailed crystal structure determination in 391, bond-valence
method was used to determine effective valencies of sodium and the
vanadium atoms in both crystal phases of a'-NaV205 compound. Using
Slater-Koster approach, there were estimated the effective V-V hopping
and the superexchange integral, and compared with the ones obtained
from band structure calculations Bernert, Thalmeier and Fulde 391 used
an extended Hubbard model for vanadium layers with on-site and inter-
site Coulomb interactions included. Than they reduce it to an effective
low-energy model with Ising chains in transverse field, in terms of the
pseud6spin operators, and with coupled Heisenberg spin chains. Taking
into account that the displacements of the oxygen ions affect superex-
change interaction between V spins, in the former Hamiltonian, they
added parts describing phonon dispersions of the lattice modes, coupling
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between lattice distortions, and additional effective field which can cause
CO. Such a model enable them to explain a number of experimental ob-
servations, such as the existence of two phase transitions, very close to
each other at T, -_ 34 K, the low-energy magnon dispersion, etc.

However, starting from extended Hubbard model 35]-137), it seems
favorable to use Hubbard operators formalism as in 361 (but without
reducing the problem to one band model). The occupancy of the left
or right rung site is included as corresponding index on the X operator,
which at the same time describes certain transition between low energy
electronic states. Due to the fact that the technique of operating with
Hubbard operators is well elaborate (see for ex. 42]) it is much eas-
ier to follow the physical meaning of approximations which should be
introduced during the calculations.

In order to describe low energy electronic spectrum of a'-NaV205
compound, we consider an extended two band Hubbard model. To get
possible low temperature charge orderings, in the main part of the tight
binding Hamiltonian for d,,y-vanadium orbitals obtained by use of band
structure calculations 30]-[34], on-site and inter-site Coulomb interac-
tions are added (like in Refs. 351 and 371). To take into account rigor-
ously the projected character of electron operators, we employ the Hub-
bard operator technique as in 36]. Using the cell perturbation method
[19, 36, 40), we reduce considered Hamiltonian to effective one-particle
and singlet two-band asymmetric Hubbard model, without further reduc-
tion to corresponding one-band t-J model 381,[36). Further reduction to
a corresponding one band t-J model has some disadvantages. For ex-
ample, it neglects completely the charge fluctuations between the two
particle and the one-particle states. This modifies the spectrum in a
considerable way and can be serious shortcominig. The t-J model may
not reproduce in a correct way the spectral weight changes which occur
with doping. To avoid these shortcomings we present in this paper an
effective Hubbard model for one-particle and two-particle singlet states.
That keeps the possibility to describe the dynamical effects of the ex-
change interaction in terms of Green's functions 42].

The appearance of singlet quasiparticle states inside the d-charge
transfer gap can be expected and should be proved by different methods
based on exact diagonalization, cluster calculations, projection technique
and other calculations. It should be noted that the commonly used local
density approximation cannot describe such a singlet band formation due
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to the insufficient accuracy in the treatment of electronic correlations.
The main purpose of the present work consists in the presentation

of a new Hamiltonian to describe low-energy pysics in the ce'-NaV205
compound similarly to the two-band singlet-hole model proposed for the
copper-oxide plane 42]. Contrary to the usual Hubbard model, one ends
up with an asymmetric model, with different opping integrals for the
singlet and the one-particle bands. Using such Hamiltonian has some
practical advantages since several well established techniques are for the
Green's functions decoupling schemes can be eploited here 421.

We also apply the projection technique for te two-time matrix GF in
terms of Hubbard operators. We ends up with the Dyson equation, where
the zero-order GF in a generalized mean-field approximation (GMFA is
introduced. Zero-order GF is defined through the frequency matrix. Its
components are determined by the energy shifts and by the renormali-
zed hopping parameters. Both contain the correlation functions which
take care of many body effects in systems with pronounced electronic
correlation effects. Additional work should be done in order to obtain
the self-consistent system of the equations for the one-particle GF, whose
numerical solutions will give the electronic structure and the density of
states for the a'-NaV205 compound.

The paper is organized as follows: after preventing the reduction pro-
cedure from the V-d,,y two bands model to an effective two-subband
Hubbard model in Sect. IL we define the one-particle GF in Sect. III. In
Sect. IV. we discuss results of obtained energy shifts and the renormali-
zedgv title hopping prameters. The self-consistent system of equations
and the results of a numerical calculation will be presented elsewhere.
Finally, in Sect. V. we summarize the results and briefly describe our
further intentions.

IL Two-band model Hamiltonian

Taking into account band structure calculations 301-[341, experimental
[12][211-[291, and theoretical results 151-[201 and 35]-[37), we consider
an effective electronic Hamiltonian for the quarter-filled two-leg ladder
vanadate a'-NaV205 compound, which has a general form of an extended
two-band Hubbard model already applied in 351,[36]-[371. This Hamil-
tonian takes into account strong electronic correlations at the vanadium
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sites and strong Coulomb interactions between them, and has the form:

H=Ho+H,+Ht (1)

First part Ho describe intra-cell (intra-rung) interactions

Ho=t,,E(R+ Li,,+H.c.)+Uj:(,nR n R +nL L )+V,,Yn R nLim zM i� inif im im irno'
imo, im imao"

(2)
where t is the hoping integral between left and right sites on the same
ladder-rung, R is the creation operator of an electron in d y vanadiumim
state on the right site of unit cell in (Z' denotes rung of the ladder m)
and Li,,,, is the corresponding one-particle annihilation operator on the
left site of the unit cell im (cf. Fig.1).

La) Ra)
E)

t tl td ',,Vd
b

b, b
t., VI'

Fig. 1. Part of schematic ladder structure

Electron density operators at these sites are and n L with spin
or and U and V, are the on-site and inter-site Coulomb
repulsion in a rung, respectively. The inter-rung Coulomb interactions H,
can be divided in the intra-ladder parts H(V - along ladder-legs, and
H,,(Vd - along the diagonal connecting different ends of the neighboring
rungs of the same ladder, and the inter-ladders part H(V,,b) as follows:

Hv == Hv (V) + Hv (Vd) + Hu Vb) (3)

L L R RH, (V = im, nimol IMU 3U(n + n n (4)
(ij)MUO"
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R LH, (Vd = Vd E (n' ,,njR,,,, + n ,n (5)im im jm
(ij)Mag,

H,,(Vb = Vb E n�' n (6)
(ij)MO-O'

where n = m I and the summation is performed over n.n. sites (i, j),
ladder m and spins a, or', correspondingly. Corresponding Coulomb terms
are estimated phenomenologicaly by taking ito account electron screen-
ing interactions 35] V 037 eV, 036 eV, Vd 026 eV and
Vb 043 eV. We also adduce values of inter-site Coulomb repulsive
interactions, used in different works cf. Table 1).

Table 1: Values (in eV) of the inter-site Coulomb interactions used in
different works.

Ref. V,, V Vd I Vb Ref. V. Vb Vd Vb

(30, 33] [19, 34]
(181 1 1 2 (35] 0.37 0.36 0.26 0.43

[39] 0.344 [381 1.076

The hopping interactions Ht can be divided in the intra- and inter-
ladder hopping. Both of them contain parts with n.n. and the next
nearest neighbor (n.n.n.) interacted sites. The hoping parameters of the
n.n. parts are tb, td and t,b and for the n.n.n., they are t' and eb. Re-b
spectively, the intra- (b, d) and inter-ladder (ab) with (n.n.) and (n.n.n.)
parts are according to the sense given in the following Eqs.

Ht = Ht(tb) + Ht(tb) + Ht(td) + Ht(tab) + Ht(tab) (7)

Ht (tb) = t E Ri.,,, Rj. + Lt ,, Lj,.,, + H� c.) (8)
OX-

Ht(t') = t' 1: R..Rj.,, + Lt Lim, H.c.) (9)
b b %Ma

Wj))-

lh(td) = td E (Rj..,Ljm, + Lt,,,Rjm,, + H.c.) (10)
(ij)ma

Ht(tab)=tab E (R�-mLjm+j,.,+H.c.), (11)
(ij)maarl
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Ht(t' t' 1: (R+,Ljm+ja+Hc.)j (12)ab ab im
((IIj))MUO"

where (i, j) and (Ii, j)) respectively mean the summation over n.n. and
n.n.n. correspondingsites. Thehoppingparameterst,,,andon-site
Coulomb interactions U obtained by use of various band structure meth-
ods are presented in the Table 2.

Table 2 Values (in eV) of the hopping parameters t, and on-site
Coulomb interaction U, obtained on the basis of band-structure calcula-
tions 

tl t/
Ref. t' tb 'b td t.b ab U

[30, 351 -0-38 -0.17 0.012 2.8
[18, 191 -0.35 -0.15 -0.3 4.0

[381 0.5382 0.1246 -0.0442 6.8
[331 -0.085 0.085
(391 0.172 0.049 0.062 -0-110 4.

1 [34] 1 -0.35 1 009 1 0.03 1 -0.15 1 0.02 003 6.8

To derive the singlet band one can apply cell-perturbation method
following mainly 19, 36, 40]) and references cited therein. Firstly, one
should diagonalize the intra-rung (intra-cell) hamiltonian 2) in the one-
particle and two-particle sectors, which acts in the manifold of the fol-
lowing set of states:

• vacuu - 0),

• one-particle states: Ro,) = R10) and jLa) L+10),

• two-particle states:
singlets

- 11 = RR+10),I
- 102 = LL+ 10),t �

13 = 2 R�+L� - RLt) 10),

and triplets
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- 11 = RL+10),T
- 16) = (R�L + RL+)10),2 1 t

- 16) = RL+10).I �

One can propose that the low energy excitations in the system can be
described taking into account only transitions inside the manifold, con-
structed with upper intra-cell states. Because of shortness, cell ladder
indexes will be omitted any time when it could not leads to cumbersomes.

The action of the upper Fermi operators can be expressed as a sum
of the transition operators, or Hubbard X-operators X," = 1a)(01:

- XR0r'0 + or XP3,L& + jt"X�ILt IR,+, _X6,L& + j�"Xk3,L� + aXIbIIa
v'2 vf2

(13)
L+ - XLo,,O _ -Or X103A& - St""XCIRf XC2,R& - J�',"XbR� +aX02,L&

V2 -vF2
(14)

Using this representation, intra-cell Hamiltonian can be represented as a
sum of distinct (non-overlapping) sectors, i.e.:

Ho = Ho R, L) + Ho (VI, Ib2, ;3) + Ho (�I) + HO 6) + HO 63) (15)

where
Ho R, L) = t. E XZLo, + H.c.) (16)

ima

Ho (V51,02, 03 =

EJU(X�1,111 +X12.112) +V 343 + t.,�F2 (XiP�3'42 -X;�1'*'+H.c.) , 17)

im
Ho(�I = E X,11 "I 12,12 _(�3) V 13,6

J EXi.

im im im
(18)

One should diagonalize the first two terms:

Ho(RL = Ra)t.(Laj+jLa)t,(Raj

Ro, I La)) 0 t. (Raj

( t. 0 ) (Laj

IROI)t.(Rql - ILrIr)t-(L0II (19)
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where
187) T-' JRa) (20)

( ILCI) ) ( I La) )

are new molecular diagonalizing one-particle intra-cell states. Corre-
sponding transformation 20) realize the following orthogonal
(T-' = T T) matrix

T-' 0 t" (21)
,,F2 ta 0

For the singlet sector, one has

U 0 - t v/-2 (V)
HO N)1, *2, V (0' 1

�'3) 101) 102) 103) 0 U t,, V2
t,, V2 t v'-2 V,, (V)31

JV;I)EP� �V)l I V)2)E 1�2(V)21 I 3) Et, (031 (22)

where

IV)2) S i V)2) (23)
1 03) 103)

Here and E. are new molecular diagonalizing intra-cell singlet states
and correspond�ing energies, which are obtained after diagonalizing square
matrix in 23) using corresponding orthogonal transformation matrix
S -I = ST. One can calculate their values as a function the model param-
eters t, U, and b use of V = 037 eV (V,, is taken from Ref. 35]). The
corresponding values of the singlet energies E a given in the Table
3. One should note that the matrix elements orS transformation matrix
(which transform 10,) - V6)) satisfy the following relation 13 823-

Band structure calculations 301-[341 indicate that a'-NaV205 can be
considered as quarter filled ladder compound with. In order to investigate
physical characteristics caused by the low-energy electron excitations in
the considered system, one can propose that it is enough to consider a
restriction to the manifold constructed with the lowest one-particle and
two-particle states. As one can see, the bonding state IRa) has about
21tJ -- 07 eV lower energy then antibonding one-hole state LU) which
can be neglected in the subspace of one-hole states. The singlet states
103) are the lowest among the two-hole states, and have to be filled first
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Table 3 Values (in eV) of the corresponding eergy eigenvalues for diag-
onalized singlet states, calculated by using the parameter values obtained
in different cited works and with = 037 eV ([35]). Only in [18], there
proposed value = eV, is used.

Ref. Ep,_ I Ep� Eg, Ref. Ep, Ep� Ep�,

__31 3.01 2.8 . 0.15 [35) 6.97 6.8 0.19

(191 4.13 4.0 0.24 [391 4.03 4.0 0.34
[18] 4.15 4.0 0.84 (341 6.89 6.82 0.29

with doping. Other singlet states, 101) and JV2) with very high energies
EV,1,2 of about few eV cf. Table 3, and the triplet states with the energy

le�Jel It,,J + V 07 eV, are above the referent one-particle bonding level
at t, -_ 0.35 eV. At small doping levels we can also neglect the higher
singlet states. This is permitted due to the epectation that the mixing
between lower singlet and higher singlet and tiplet bands is rather small.

Intra-cell (intra-rung) Hamiltonian can be written as

113,113fto t X-4"'a + Ep I,' (24)
IM P3

Here, and further on, i will denote site of the chain m. Recall that after
diagonalization of the intra-cell Hamiltonian., and after projecting it to
the subspace (or manifold) of the low energy states, ladder 'compress' to
a chain.

The products of Fermi operators with different cell indexes, which
are contained in the inter-cell interaction parts H, and Ht, can be pre-
sented in terms of the Hubbard operator products with corresponding
indexes. That Hubbard X operators describe transition between states
inside reduced low-energy manifold builded with vacuum 10) and molec-
ular diagonalizing intra-cell states Rq) and t3), which are associated
to all rung. It becomes superfluous further to take care of left/right
rung side (site). However,.it does not mean tat the corresponding inter-
chain ('inter-ladder') Coulomb interactions between one chain-site and
the neighboring sites on left and right neighbor chains, should be the
same as in the charge ordered phase (T < 34 K).
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Underline will be omitted in further notations and we will use the
following shorthanded designations: Kq) = la) and I 12). Thus,
by projecting the original Fermi R and L operators in the inter-cell part
oi Hamiltonian, onto the subspace of one-particle la) and two-particle
12) states 22) and 24), one obtains:

R = X` + uAX2& , L+ XaO - aAX2& (25)Im '_ im im im im irnv 2 v1_2

with the coefficient

A = S33 -S13 (26)
2 v'2

and = ±1. Now, we can write the inter-cell terms in Eqs. 3 and
(7) as a sum of different parts describing Coulomb repulsion H, and
the hopping interactions Ht between intra- and inter-chain sites ('ladder
rungs'), in te form of the corresponding Hubbard transition operators
between one I) and two particle 2 states:

E X,22ko + Hnt , flo = ki Y X` + (27)
irna irn

In the intra-cell part of Hamiltonian fto the one- and two-particle energies
are respectively El = t c 0.38 eV and E2 0.15 eV. The chemical
potential and the particle number operator are introduced:

N = 2X22 + F Xaa), (28)im _ im
im 01

and the relation [N, HI is valid. Part Ht describing inter-cell inter-
actions is given by:

Hi.t = Hv + Ht, H = �11 + C12 + �22 Ht = fall + 112 + t22 , 29)

mn a Vmnx22x22
11 'OXj"n '�22 22 im nX E (30)

(zJ)(mnJao,' (i'DIM-1

Vrnn(XcFoX?2 + X22 X�a
1�1 2 = 1: 1 2 irn In zYn in) (31)

�zj)frnn}o,

where Ej) means summation over n.n. (i, j) cell site index i and j and
E(mnj contains two parts n = m and n = m + 1, i.e. the same and
n.n. chains (ladders). Model parameters for Coulomb interactions H,
are given in the Table 4.
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Table 4 The dependence of effective v parameters for n.n. Coulomb
interactions on corresponding original model arameters.

M Min Mn mn mn
vilm V12 1 V2m2 m VII I 12 1 V22

(V + Vd)/4 C(V + Vd) I 2C2(2V + Va) Vb/4 I CVb I 4C:V,,b

The hopping interactions can be summarized as follows:

tmn i j X?,OX9,
1 1 sm n + H.c.) (32)

[ij],fmn)-

tmn(ij)a(X,TOX,&2_ _Vi2,Xj,,,
P12 12 n m n + H.c.) (33)

rnn (i, j) (Xi2�5 X3�2V22 n + H. c.) (34)

where E[ijj means summing over n.n. (ij) and n.n.n. ((ij)) cell site
index i and j and where E fm,) contains two parts n = m and n = m + 1,
Le, the same and n.n. chains (ladders). Model parameters for hopping
interactions Ht are given in the Table .

Table 5: Form of dependence t paranieters, for n.n. and n.n.n. hopping
interactions, on corresponding original model parameters.

tMM tMM tMM tmn tmn tmn
11 12 22 11 12 22

n.n. + 0 2A (th - td) tb/2 -Atb/Nf2 --- Ttb
n.n.n. 0 2A2tb -At' f2Ah

Using values of the model parameters 1-7) which follows from band
structure calculations 30] and 34], one can calculate the parameters in
the inter-ceR interaction put of the hamiltonian Ht. Values of the co-
efficients A and C, which appear in the Eq. 25) and in the Tables 4 and
5, are defined with use of te elements of the orthogonal transformation
matrix 10,,) - 10,,) a = 2 3 These coefficients express the origi-
nal Fermi operators in terms of the Hubbard operators with transitions
between new diagonalizing states la) and 12) and they are given in the

Table 6.
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Table 6 alues (in eV) of the coefficients A and C which appear in the
Eq. 25) and in the Tables 4 and .

Ref. A C Ref. A C
[30, 351 0.345 0.497 [38] 0.574 0.500

[31] -0.400 0.5 [39] 0.545 0.500
[18] -0.379 0.5 [33] 0.44 0.49

The numerical values for the renormalized Coulomb vo and the hop-
ping parameters are given in the Tables 7 and .

Table 7 alues (in e) of the intra-chain Coulomb = v" parameters0
for n.n. and the intra-chain hopping t, -_ t"' parameters for n.D ada
ii.n.n. interactions with (ce 11712,22) and according to the alues
given in the Tables I and 2

t1Ref. Vii V12 V22 til t22 t 'I 22

[30� 35] 0.31 0.62 0.97 -0.17 -0.041
'3 1, -0.15 -0.048
[181 0.5 1 2 -0.15 -0.048

L381 0.54 1.08 2.15 0.12 0.08
[33] -0.24 0.023 -0.03 0.12

L3_f�i 0.172 0.344 0.688 0.111 -0-008

One can se that the opping parameters t1 ad t2 are absent i teI
Table 7 because theV are equal to zero Tus tere is o opping terms

between one-particle and snglet band if one do not take into account
verv small inter-ladder contributions t". Fom these one can expect12

insulating behavior of the considered system, if the filling of the band
is lower than one half. That corresponds to the oginal quarter-filled
bonding band, before projection.
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Table 8: Values (in eV) of the (n = m + 1) inter-chain v" for ri.n.
nCoulomb and t' for n.n. and n.n.n. hopping parameters with (a

I 12, 22) and according to the values given i the Tables and 2 
Mn I Vmn Vmn tMn timn

Rel 11 11 tm, I tm, timn Imn
12 22 12 22 11 t 12 22

[35]1 0.11 0.21 042 0.006 0.003 1 -0.001 0.015 0.007 0003
(31]1 -0.15 0.085 0.048
181 0.35 0.705 1.41 -0.15 0.08 0.04

[38] -0.06 -0.04 0.03
I 0.01 10.006 -0.004 0015 0009 0006

III. Green's functions and Dyson equation

In order to consider the electron excitation spectrum for the two-band
model 27-34) we employ the equation of motion method for the two-time
Green function (GF). By use of the projection technique we obtain the
Dyson equation which will be solved in a GMFA with neglecting the finite
lifetime effects. To study the two-band problem we have to introduce the
matrix Green's function:

"W - (35)
(t e) (t); X' (e)))

where we have used Zubarev's'notjitions 401 for the anticommutator GF
for the two-Ornponent operators:

fc X2.a X.& 0
J (36)

By differentiating the GF 35) over time t w get for the Fourier compo-

nent the follovang equation:

wGimj.,.,(w) 66..R + ((Zi, I jna))., (37)

where. the equation of motion for the Hubbard operator has the

form:

i d-kima (t) H) E (irr) (38)
dt kp,,,,Xkp,, + ZiMOI

kP
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with

D (39)XI ) 

and the matrix elements representing the averaged anticommutators:

X'P = IX,,2, XJ2oj = XIP ' = X22 + X,6),
im im im im

X3&01 = XD, = Xo,,7+ XOO
XD XiOM&, im im im) (40)

Here, and in what follows, we consider a spin-singlet state for which the
correlation functions (18) do not depend on the spin o. For the two-band
model 27) we have:

X00 xac + x22
im im im (41)

and that implies that: XD 1 Xp. The elements of the frequency
matrix:

-e'imJno, �imo, 7 H], tno, (42)

are defined by the projection condition:

(f (irr) 
Zim I Xjna ) 0 (43)

Here, A, BI and A, are the anticommutator and the commutator,

respectively for A, operators.

Neglecting finite lifetime effects due to the scattering described by

the irreducible part of the equation of motion 38), one can introduce

the zero-order GF in the GMFA as:

00
iMj.,,(W = 'MiiJmn - timJnI01} (44)

where �o is the unity matrix. Performing the same procedure for the GF

right-hand side operator I�jn,(t') and taking into account the projection

condition one becomes to the Dyson equation for the GF

dimJno,(W = jn,,(W) + do kp,,(W)Mkpira(W)dlrjno,(w),

im irn
kptr

where the self-energy operator is defined by the equation:

0
timJna(W = kimJna(W) + E A�i.,kp,,,,(W)(�kp,ir,o,(W)Trjn,o,(w) 45)

kpIr
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The scattering matrix is given by the equation

iz I zi.,,, (46)

Equations 44)-(46) give an exact representation for the one-particle GF
(35).

IV. Results and discussion

After performing the necessary commutations of the Hubbard operators
with the Hamiltonian 27-34) we obtain the following representation for
the frequency matrix 42):

El, - ED - A A00 0 AiOD
Eimino = kb.. A DP a ADD (47)ED-14+ )

K" KioD, K:�jn,,,
+ ( - ) Jmn 9 + (I J0M.)Kj�, KDf Kr.D( n, or j""a

The on-site contributions to the frequency matrix components are deter-
mined by the following energy shifts:

AO = AO(v) + A*O(t); ADD ADD(V + ADD(t), (48)

with a = i for m = n if sites i and j are in the same chain (m _- n)
and a =_ im, jn for n = m + 1 The corresponding main diagonal matrix
elements contain the following singlet energy shifts:

,10*(v)X = 2 {(VMP ,np) ((X� X;W)12 Vil sm
WX-P)

(x? Xp )) + (v22 - v 12mP) (x� X22)
am am

Al*(t)X# 2 Q (XIX42)) (49)
(it)fMP)

and the following one-particle state energy shifts:
ADD mp((XD Xk,7 + XP 22) 1,

P _X;�) + V,(XD Xk
ff MXD 12vil ima %me 12 ima

(ik)fmp)

17



ADD v&2x2a) + tnp(Xa0X0a)).MXD = -2 E (t-P (50)22 irn kp 11 im kp
[zk]f-pj

The skew diagonal frequency matrix elements contain the energy shifts:

AVD )7 (trn -2 0 tMP(xa0xv2
XD = -2 P(Xa Xa ) + 22 im kp)), (51)

,ik] {-p}

and for the skew diagonal matrix elements the following relation is valid:

D, n X = W�D
EzM'j -zmjn,,)+XD (52)

The frequency-matrix has two terms with different site idexes (second
and third term in the Eq. 47)). The second term, which is < (1 - bj) 6m,
means that the sites i / j are in the same chain. The third term, which
is oc ( - 6.,J,,), means that the sites Z' j are in the neighboring chains
n = m + 1. These marix components are determined by the renormalized
hopping parameters:

K" = K(v) + K"(t) , K DD = K DD(V + (53)au 001 Cka au

where the main diagonal matrix elements contain the following snglet
state hopping parameters:

mn) (Xo,2 y2a2(v" - 2v'-'7 + 2211 12 im"in

It-n X0 VI 0 + aUxm - t1, (xO2 VOK"(t) X = 2 22 urn Xjn im n im',jn)j1 54)Oa

and the one-particle state hopping parameters:

If,�,D(V) XD = 2Vn(X06'XC0)' (55)11 im jn

(XD _ XD _ Xu& Xqru
K"(t) XD = 2t" ' - 2tTnT' (X02X�o (56)11 imu na im 22 im n-

The corresponding skew diagonal element is:

K OD XD Vmn - 2vmnxxu2x�0 (57)
OU 12 11 im JD-

It should be stressed here that for the contribution connected the addend
oc (I - J,,, i.e., for the term whose sites i and j are in the same
chain (m = n), one should set a = ij and the superscript indexes on the

18



parameter v should be omitted or set to mn-t. Similarly, for the parts
which are connected with (I - i.e., if the sites i j are from
the neighboring chains nm, (n = + 1) oe should keep superscript
indexes mn as already written there.

There are two sorts of the contributions in the expressions for the
energy shifts and the hopping parameters. In ddition to the terms ,, (t)
and K(t), which appear due to the hopping interactions Ht as in 42],
the (v) and K(v) appear due to the Coulomb interactions H. One
can also see that the energy shifts caused by hoppings A#), and by
renormalized hopping parameters determined by Coulomb interactions
&(v), are defined through the correlation functions of the pairs of the
Fermi-like Hubbard operators. On the contrary, the energy shifts A,,(v)
and the renormalized. hopping parameters &(t) are determined through
the correlation functions of the pairs of the Bose-like Hubbard operators.

ODThe skew diagonal matrix elements E, and E'P contain only AO'(t)
and KL(v). One should especially stress that the sign ` in the inter-
band hopping part of Hamiltonian 42, instead of the "+" sign obtained
in 421, cause zero contribution in the energy shifts A,, and hopping

terms, which contain paramete t' In the Ref. 42] the nonzero
S Dcontributions appear only in the skew diagonal energy shift O and

hopping K OD parameters. It is also worth noting that in the case of sign
77 -77 one has T12 = 0, so hopping between zones give zero contribution
to the mean energy (H = of the considered system.

Instead of the two addends in the expression for the frequency matrix
in 421, here we have. tree. They,. describe. the energy shifts and re-
normalized hopping parameters on-site and between sites in the same
and in the neighboring chains ('ladders'). The square lattice has been
considered iW Ref 421, while here we consider Trellis ladder lattice,
which after applyingcell-perturbation procedure becomes the lattice of
the parallely-shifted chains. lActuding interactions between the chains,
the latter one can be sen As tiangular lattice.

Further 'one can troduce the epresentation, of the spin operator
components, for a -) and 6 = -or:

or - - X�&) SF xva,
St 2 1 1 t i

which leads to the form of the Hubbard operators with more obvious
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physical meaning:

X '7 Xua + 2X22) + - (XUOI Nim + CS,,nl
zM 2 irn im 2 im irn 2

and
D zim -Nim + oi,.X 2

As in the 421, we decouple the product N,Njn of the number operators
on different lattice sites im :i� jn like in the Hubbard - I approximation,
but keep spin correlations (Si .. Sj,,). In sch a case, one have

'X 1P + O'& Xj�.) X,�XV, + (SinSj-n),
(xzrn ja im

(X' X + I Xv,(X - 2 + (Si.Sj.),

O(zM'XjO t'r5A33'n') -- X'Al - P) (Si.sj.).

By analogy with 42), we can also neglect correlations in the creation and
anihilation of pairs, i.e.

(xO2x2O) (XO2)(XO = 
im jn im Jn

V. Conclusions and further intentions

In summary, we derived two-band Hubbard model for the ladder a-
NaV205 compound. Due to very small inter-band hopping, the corre-
sponding ground state will be insulating. By means of modeling fqj-
dependence of the Fourier transform of the diagonal X"XOO) correla-
tion functions, one can obtain some of the possible inter-ladder charge
orderings. The influence of the short-range AF spin fluctuations on the
electronic spectra can be naturally investigated. In order to do that, one
should keep the spin-spin correlation function (SimSj,,) as a parameter
and use the experimental results for the spin susceptibility.

The essential differences between the present work and Ref. 42] can
be listed as follows:

Coulomb interactions included;
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• Sign -" in the inter-band 12 Hamiltonian which produces that
there is no contributions of the hopping oc &D in the frequency
matrix;

• here we have effectively triangular lattice bands.

The diagonal hopping term, which we are taking into account, leads
to the widening and shortening of the one-particle lo) and ) zones,
respectively (cf. Table 5).

In the future work we intend to express te correlation functions in
the frequency matrix through the corresponding GF (like in Ref. 421)
and to derive self-consistent system of equations. Approximate solutions
for the zero-order GF should give the two-band spectrum for d-like one
- particle and singlet states. We shall consider only the paramagnetic
state which may have, however, strong short-range antiferromagnetic
correlations (characteristic for the low-dimensional magnetic systems).
Evidently, this system of equations have the spin correlation functions as
parameters. The main task of our future numerical calculations will be
the analysis of the influence of short range antiferromagnetic spin fluctu-
ations, and some of the possible CO, on the properties of the one-particle
GF.
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