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I. Introduction 

Most of the theoretical investigations on the dynamic properties of flexible macromolecules 

perforrned so far are based on the Rouse-Zimm model [1 - 5]. In this mode] the polymer 

molecule is modeled as a chain of beads under Brownian motion. The bead participates in the 

interactions with solvent molecules. The , solvent contributes a frictional force against the 

motion of a monomer and a random force to take into account the random collisions exerted 

on monomers. In the Rouse model, the solvent is considered as a continuum fluid. The Zimm 

theory incorporates a more refined hydrodynamic model, arguing that the motion of each 

monomer also affects other monomers, by way of the flow it induces in the ambient medium. 

It has been shown that the Zimm model predicts the correct dynamical behavior for dilute 

polymer solutions with substantial hydrodynamic interactions arising from solvents. The 

Rouse model is applicabl~ for good solvents, where the corrections due to the hydrodynamic 

interactions and excluded volume effects to a large extent cancel each other [5]. It also gives a 

good description of the polymer dynamics in situations when the surrounding polymers screen 

out the hydrodynamic interactions [3, 4]: Both models assume Gaussian equilibrium 

distribution of the beads. This is important for the theory since the Gaussian chain is in most 

situations the only description of a polymer that can be manipulated analytically. Less 

convenient models provide the same macroscopic properties for a free chain in the limit of a 

large number of chain segments [6, 7]. Moreover, the Gaussian chain is the minimal model 

that adequately describes several polymeric properties using the smallest number of 

phenomenological parameters. Since the microscopic statistical behavior of monomeric units 

cannot be taken into account in an analyiical theory because of the complicated interactions of 

their constituents, the description by a Gaussian function at least reproduces their qualitative 

behavior. This holds for polymer properties, which involve length scales that are large 

compared to monomer sizes. Although the Rouse-Zimm model has been proven as a universal 

theory well describing the long-time, Iong-range properties of the polymer macromolecules, 

there are still a number of unresolved problems in the understanding of the dynamics of 

flexible and semiflexible macromolecules in solution [8 - 10]. So, the q3 dependence of the 

first cumulant in the intennediate scattering vector regime is well confirmed for synthetic 

polymers and DNA, however, the experimental values are about 25% smaller than the 

theoretical predictions. Systematic deviations from the theoretical behavior at large scattering 

vectors have been also found for various synthetic polymers using quasielastic neutron 

scattering. The diffusion coefficient calculated from the continuous Rouse-Zimm model 

deviates approximately 30% from the experimental value for both the natural and synthetic 

macromolecules. For a review of these and other difficulties of the Rouse-Zimm theory we 

refer to the works {8, 10] and an earlier paper [11]; comparing thern, one can see that the 

situation has little changed during the decade. It can be concluded, that there is now evidence 

that the Rouse-Zimm model does not yield the correct static and dynamic properties for the 

same set of the model parameters, even for long flexible chains. 
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In the present work we propose a generalization of the Zimm model that could give a better 

understanding of the dynamical behavior of polymers in dilute solutions. We take into 

account the fluid inertia during the motion of the polymer in the solvent. The hydrodynamic 

interaction, i,e. the interaction between the beads mediated by the motion of the fluid, is 

considered solving the nonstationary Navier-Stokes equations. By this way the well-known 

Oseen tensor is generalized. Moreover, the resistance force on the moving bead will be 

assumed not the Stokes one, proportional to the velocity of the bead. We model this force by a 

more correct Boussinesq friction force [12] reflecting the fact that the force acting on the bead 

at a given time t is determined by the state of the bead motion in all the preceding moments of 

time. The use of the Stokes force assumes that we are interested only in the limit t ~> ~. 

Using the Boussinesq force and solving the nonstationary problem, we have a possibility to 

obtain solutions that are valid for almost arbitrary t (for incompressible fluids, of course, we 

cannot reach the exact limit t ~> O). The mentioned generalizations mean that we take into 

account the effects of hydrodynamic memory. These effects have been extensively studied in 

the physics of simple liquids and in the theory of Brownian motion (for a review_see e.g. Ref. 

[13]) with very important consequences. In particular, the memory effects reveal in such 

interesting peculiarities like the famous "long-time tails" of the velocity autocorrelation 

function, first discovered by means of computer experiments [14, 15]. The concept of the 

Brownian motion lies in the basis of the Rouse-Zimm theory of polymer dynamics. It is thus 

natural to expect that the memory effects will be important for polymers as well. In the 

present communication we will show that the inclusion of the hydrodynamic memory into the 

classical Zimm model leads to an essentially different behavil)r of the time correlation 

functions describing the polymer motion in solution. It will be demonstrated by the 

appearance of long-time tails of these functions that reflect a strong persistence of the 

correlation with the initial state of the polymer. The relaxation of the mean square 

displacement of the whole polymer, as well as the decay of the polymer intemal modes, are 

slower than in the original model. We have also shown how the tails are displayed in the long-

time behavior of the Van Hove function used in the interpretation of quasielastic scattering of 

light and neutrons. We believe that the obtained results could contribute to the solution of 

some of the existing problems between the theory and experiment. 

II. The Rouse-Zimm modeis and the effects of fluid inertia 

Within the Zimm model the motion of the nth polymer s~gment (the bead) is described by 

the equation 

d2~ (t) - -f~f' + f~'h + f~ . (1) 

M = d t 2 

Here ~ is the Position vector of the nth bead, M-is the mass of the bead, f~'h is the force with 

which the neighboring beads act on the nth bead, f~ is the random force due to the motion of 

the molecules of solvent, and f~'"f' is the friction force on the bead during its motion in the 

solvent. Within the Zimm model the latter force was the Stokes one, 

- J [ ~~~ , f~f' =_~ C~~~ v(x ) 

dt 

(2) 

with ~(~~ ) being the velocity of the solvent in the place of the nth bead due to the motion of 

other beads. The friction coefficient for a spherical particle of radius b is ~ = 6iT~b, where v is 

the solvent viscosity. However, this expression holds only in the case of steady flow. In the 

general case the resistance that a body feels during the motion in a liquid depends not only on 

the velocity that the body has at the given mornent of time. It depends also on the whole 

history of the body motion, 'i:b. on velocities and accelerations in the preceding moments of 

time [12, 16]. At the translational motion of a rigid body in an incompressible viscous fluid 

this force, for any of the Cartesian components, has a form 

ff'(t) ~/(t) Mv(t)-6~~!,(t-p2~p, M = 3 p, (3) , 2rd,3 ' 

where M rs the "effectrve hydrodynamrc mass" (= Ms/2 with Ms being the mass of the 

solvent displaced by the bead), and p is the solvent density. Equations (1 - 3) have to be 

solved together with the hydrodynamic (Navier-Stokes and continuity) equations for the 

macroscopic velocity of the liquid, 

a~ (4 ) div~ = O. = -Vp + ~A~ + ~ , p-at 
Here p is the pressure. The quantity ~ has the sense of an external force per unit volume [4, 

17], 

~(i)- f f'(~ ~(~ -~ ) (5) --~ ~ ^ ~ -

The hydrodynamic equations (4) are solved using the Fourier transformation (FT) 

fe' dxdt e (~~ )~(i,t). (6) ' k*+a' 

The solution, 

-a' _ )J -a'= [ a' ' vk I ~ (k~'~k 
q' 

k 2 k2~-iap k 
can be in the ~ -representation, for any of the component a (x, y, or z), written in the form 

(7) 
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)J v~ (7 (~ - ~/) (-') -'V w = drzJHa:fi r r q'~r ' 
fi 

The FT of the OSeen tensor 

a'(-) (2fT) ~Jk2-ia)lp/n 6afi k J 3 [ 2 e~ 1 dk'~' kakfi i~f 
Ha;p r 

can be expressed as 

rr ap H"",fi (7) = A(5'(2:fi + B 2 

After the integration in Eq. (9) w~ pbtain. 

A 1 1 e ) +3y 1-e~y 1 - e~y 

ey y B 
y 

(8) 

(9) 

(10) 

(11) 

, X = ~i(op/V (Re;If > O) and the pnme means the We have denoted here y = r;~; 

differentiation with respect to y. Now we have to substitute q7; from the FT of Eq. (5) to v~ 

from Eq. (8). The result will be ~ubstituted into the_equation of motion (1), which in the FT is 

= [- - ~~ )] ia2~c"a'a v~(x +,f~'ah'a' +f~a'or' 2a' 

We have used here the FT of the Boussinesq force (3) 

J -~ 1+;~b+; b - -G~i 2 . ) ~ , ~a' f = -v 
Up to this moment the consideration (within the fonnulation of the model) is strong. The 

obtained generalization of the Zimm equation is as follows: 

1 J 

-ia2~~~ = ( [ , ~ . (14) ) ~^ - ~~ ) f~'hfi" + f~"fi + Ma'2x~"fi ~ ~ H"a'fi (x f^'ah'" + f^"" +Ma'2x"a'. + 

~a' _ _ fi ~~~ 
In the sum entering this equation m ~ n, since the velocity field in the point n is created by all 

other beads except the nth one. The continuurn approximation of Eq. (14) is 

- i(~"wa = ~la' [fa'h a'(n) + fa" (n)+ Ma;2x~ (n)] 

J w [ +ffiw(m)+Ma'2x~(m) ' 3kBT a2x~ + f dmHa~lm 

a2 am 
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(15) 

where a is the mean square distance between neighboring beads along the chain. We have 

used here that the force between the beads along the chain can be obtained from the effective 

potential u, 

3k T N )2, u = 2~2 ~~ 2(~~ - ~ (16) x~_l 

which follows from the equilibrium (Gaussian) distribution of the beads [4], 

3 3/2 rn2m p(rnm) exp 2a In li 3 

2fza In ml 
m 

so that in the continuum approximation 

3k T a2~(t,n) 
f~'"'h ~ B an2 

a2 

r ~ ~ - Xm ' 
nm n 

(17) 

(18) 

Due to the dependence of the Oseen tensor on the difference ~~ - ~~ , the obtained 

generalized Zimm equation (15) is nonlinear and thus 'hardly solvable analytically. We shall 

use the common approximation of preaveraging of the tensor. It consists in replacing the 

tensor with its average over the equilibrium distribution (17_). Using Eqs. (10), (1 1), and (17), 

we shall have 

) ( = ~ 6~6~~P~~ (r;~ exp( = Ha:"~~ r~~ar~~fi _ _;~r~~ ) 6aflhw(n - m) ) r ) A( ~~ )6afi + B(r~~ 

r~~ 

(19) 

The result of integration is 

[ ( 2~ I -;~la~l l/2 ~ (~a)~1 1-1/~zexp z rfc(z) , = ha'(n-m)= 6fl n m z 

In the case without memory [4] the function h at large In - m I behaves as - In - ml -ll2: the 

effective interaction between the beads slowly decreases when the distance between the beads 

increases. Here the correlation between the beads disappears more rapidly, 

ha'(n-m):::~~~ I - 13/2 ' 1 

-iapa2n m 
In - ml ~F oo ' 

Since Eq. (15) now contains only diagonal terms, in the continuum approxiination it'becomes 

l(~~"(n)= I [3kBT a2~"(n) l + Ma'2~" (n) + f " (n) J 

~" a2 an 

3kBT a2~"(m) 
+ Mw2~" (m) + f " (m) J + dmh"(n-m 

a 2 am 
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This equation can be solved with the help of the FT in the variable n, 

~" (n " Pznp fznp ) f~'~ = f'~'o" + 2~ f " cos = ~~ + 2 ~ cos 

p=1 P N ' N ' p=1 

where the boundary conditions at the ends of the chain have been taken into account [4], 

a~(t,n) = O atn O andn N (23) 
an 

The inverse FT yields the following equation for the Fourier components ~~ : 

- [_ _p _ p]-1, la~:" Ma,2+K 

where we have denoted 

[ ( ) l-1, p2, p O 1 2 E:p = ~" 1+ 2-5po Nhp"p Kp = (25) N2 2 a 

The matnx hp"p rs defmed by the expression 

N N 1 

h" = 2 Jdn Jdmh"(n - m)cos apn apm (26) cos . pq 

In obtaining Eq. (25) we have already taken into account that the nondiagonal elements of the 

matrix are small in comparison with the diagonal ones and can be in the first approximation 

neglected. This "diagonalization approximation" has been proven in the case without memory 

[3, 4]. In our case it should be substantiated by numerical calculations. However, since we are 

interested in the long-time properties of the chain, only small a, corrections to the classical 

result for the Oseen tensor in the FT are expected to be the most important so that the 

approximation should possess at least qualitatively good results. The obtained equation (24) 

can be investigated as it is usually done in the theory of Brownian motion using the 

fluctuation-dissipation theorem (FDT) [18, 19] or the correlation properties of the forces f p" 

[20, 13]. The forces acting on different beads n and m are uncorrelated, so that their correlator 

' - ~an' In going to the continuum approximation the Kronneker symbol (~1 has to be rs 
~ 

replaced by the (5Lfunction, ~~n-m), so that in the Fourier representation we obtain 

( = kBT ( .) ) ~~~po fp""fq"" ReE:~6.fi5pq(~ a,+a, . (27) 
Equation (24) then yields the following expression for the time correlation function of the 

Fourier components yop: 

" ( kBT = Re E: p (28) ) J _ia;E~-Ma' +K Wp (t)= yop (O)yop(t) = da'e~'" 

Fr _= 
in agreement with the FDT [2l]. The role of the generalized susceptibility is played by the 

quantity 

[( ) l-l[_ia)E:~-Mco +K (29) 2 p J-1 , ofp (a') = of~ (a')+iof~(a')= 2-6po N 

and the generalized forces corresponding to the coordinates y;'(r are Nfp"" Then the FDT 

yi elds 

Wp(t)=k~jfTT J~e 'alof (a') kBT 7da' r ~ (30) ¥a'/cos at . =' 7zi J~ofa' P 

It was used in the last equation that the real a.nd irnaginary parts of the susceptibility are the 

even and odd functions of a;, respectively.. If we use also the Kramers-Kronig dispersion 

relation [2l], the initial value of the function ~~ at t = O follows immediately from Eq. (30): 

( )-l Wp (O) = kBTap (O) = kBT 2NKp , p>0 

Equation (30) gives the solution of the Rouse-Zimm model, within the approximations 

described, for the Fourier amplitudes of the correlation functions of the positions of beads. 

Knowing ~,(t), other correlation functions of interest can be easily found from (30), e.g. the 

velocity autocorrelation function (VAF) or the mean square displacement (MSD), 

dt2 ' (Ay (t)) 2[W (O)-Wp(t)]. cp (t)= va(0~op (t) - -

III. The Rouse-Zimm litnit without hydrodynamic memory 

Consider first the case of the absence of hydrodynamic memory. In this approximation we 

simply put a' = O in Eq. (25). For long-time properties we also neglect the inertial term in the 

equation of motion of the bead, so that M = O. Since 

INf 

~o (t) = ~ ~ ~(t, n)dn , (33) 
the mode yo describes the motion of the center of inertia of the coil. Equation (28) (or (30)) 

for this mode gives 

Wo(O)-Wo(t) 2kBT 1+Nh~ da'l-cosa;t kBT 1+Nh~ t. (34) Jo 

f~r ~ w2 N ~ 
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The quantity h~ is determined by Eq. (26). Hence, the diffusion coefficient of the whole coil 

is 

Dc = kBT[h~ ' ) 1 

+ 
N~ 

and contains as special cases both the Zimm and Rouse limits, 

Dc = kBTh~ = 8kBT (Zimm), D = k T 
3~~~~va c N~ (Rouse) 

The internal modes (p ~ O) relax exponentially, 

kBT I + 2Nhpp~ = kBT _1'1/" d a' cos al J Wp (t) = 2NKp e o~TF~r~ ~ f~N 

(35) 

(35a) 

With the relaxation times ~;p, 

hpp -

p~~~~)' l/2 ' 12fT NP Va 

(36) 

(37) 

IV. The "ptire" Zinlin model with hydrodynamic memory 

Another important case is the Rouse limit. This limit assumes that the hydrodynamic 

mteractron contnbutron to the quantity Ea'p from Eq. (2~) is negligible for all a,. Aqcordingly, 

w ~a'. The Rouse limit with the subsequent equations change only by the substitution E = 

memory is considered elsewhere [22]. Here we shall be interested in the "pure" Zimm mbdel 

with memory. When the hydrodynamic interaction is strong for all frequencies that 

significantly contribute to the studied correlation functions, we have from Eq. (25) 

J E [( p * 2~6ko)Nhpwp . (38) " * 

However, the inertial effects of the viscous solvent are still included into the consideration. 

The Oseen matrix (26) can be calculated with arbitrary degree of precision, e.g, for p = O we 

have the exact result 

31/~ 2 1 - h~ [1 )J - s r -= 
~ez erfc~-1 , z ~ 4~ oo 

Then the susceptibility (29) may be written as a fraction of two polynomials of the small 

variable (-ico)1/2. Since the polynomial' in the denominator is of a higher order, the 

susceptibility can be represented as a sum of simple fractions Al/[(-iw)~1/2.0~], where o~ are the 

simple roots of the polynomial in the denominator. The correlation functions can be then in 

the t-representation expressed through the error functions. Their asymptotic expansions allow 

us to find the main contributions to the long-time behavior of the functions of interest. Here 

we shall not give this cumbersome procedure and show only the main terms of the asymptotic 

expansion of the time correlation functions. 

In the case of the diffusion of the coil as a whole we obtain 

t n [f 1/2 

j Dc [t ~ J , 2 Vo(O) ~r (t)::~uc[t l/2 32V ( R ) "' t+ Tt + 1/~ 
(40) 

where Dc is the Zimm diffusion coefficient determined in Eq. (35). The second equality is 

written e.xactly in the form familiar in the theory of Brownian motion of rigid particles. The 

characteristic'time TR = R2p/~ is expressed through the hydrodynamic radius of the Zimm 

coil, determined from' the relation Dc = kBT/6j~V･ In the standard model of Gaussian chains 

the radius R coincides with the expression [10] (note the incorrect detennination of R and Dc, 

Eq. (15a), in Ref. [4]) 

( - ~ ~ ::::~:~ N N R I -N 2 -l r 
nm 

n=1 m=1'm~n 

(4 1 ) 

valid for N >> I , when the summation can be replaced by integration. Consider now the 

internal m.odes of the polymer, p ~ I . The calculation of the Oseen matrix is ,10w more 

complicated but for our purposes the corresponding integral in Eq. (26) simplifies to L~] 

IN ha; (s)cos ds , h-pp N 

and can lpe expressed thrpugh special functions [23], so that its expansion is known to any 

_desired power of (-ia))1/2. The, first correction to the results of the model without memory is 

determined, by the coefficient at the term * (-ia,). The first nonvanishing correction to the 

susceptibility o~(a,) from Eq. (29) is given by the term - (-ia')5/2. The coeffi,cient at ,this term 

is determined only by the expansion coefficients of the tenns proportional to (-ia') and (-i-a') 3/2 

in the ~xpansion of hpa'p . Using any of Eqs. (30), we thus find for the correlation function ~~p(t) 

Vp (t ) _ Nl/2 a)3 V -- 9 ~[1+ 16 I~j p [ t ) 3 l/2kBT 3 2 p 13 TR I~ 5l2, ~ 2 

P (3np ) ' 45PT fT 3fT p lr p T 

where p ~ 1 , t >> TR, and ~;p is the Zimm relaxation time (37). . 

Finally, we give here the result for the Van Hove function that is used in the description of 

the dynamic light or neutron scattering from a polymer coil, 

G(k~', t) = * ~ /¥exp{iZ[~^ (t) - ~~ (O)]~ ･ (44) 
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Here k is the change of the wave vector at the scattering. Acting in a similar way as in Ref. 

[3] but taking into account that our solutions are obtained for large t, Eq. (44) can be 

approximated by the expression 

[ a 'e = Wp(t) 1 N 21-2 
~ N exp - k2 [Wo (O) - Wo (t)] exp -

36 3,T Vp (O) p6 ' p=2,4 

valid for kR << I (in the opposite case the Van Hove function becomes very small at large 

times). One can see from this equation that the contribution of the internal modes is small and 

thus hardly detectable in experiments. However, our predictions concerning the diffusion of 

the coil as a whole, could be directly measured in the scattering experiments. The diffusiOn 

contributiOn dominates at the times t >> ~D, where the characteristic time for the diffusion is 

lb = R2/Dc (see Eqs.(35a) and (41)). 

V. Conclusion 

We can conclude that in the generalized Zimm model, when the inertia of the viscous 

so]vent is taken into account, the relaxation of the correlation functions that describe the 

polymer motion essentially differs from the original model. The diffusion of the polymer coil 

as a whole is described by the mean square displacement that, similarly to the Rouse model 

with hydrodynamic memory [22], at long times contains additional (to the Einstein term - t) 

contributions, the leading of which is - tl/2. The internal modes of the polymer motion now do 

not relax exponentially. As distinct from the Brownian motion of one rigid particle, as well as 

from the motion of Rouse polymers with the memory, the longest-lived contribution to the 

correlation function of the bead displacement in the Fourier representation is - t~5!2 while in 

the former cases it was - t~3/2. We believe that it would be interesting to investigate the found 

peculiarities in the behavior of the time correlation functions experimentally, e.g. by the 

dynamic light or neutron scattering. Due to the long-range character of the hydrodynamic 

field, the characteristic time of the model, I~R = R2p/n, connected with the size of the whole 

polymer coil, is for many macromolecules [8] sufficiently large from the point of view of the 

experiments. The differences from the original Zimm model thus seem to be experimentally 

accessible. This could help to solve the existing "puzzles" in the description of the dynamic 

scattering experiments on polymers [8, lO, 1 I]. The obtained theoretical results can be also 

tested using the methods of computer simulations. 
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