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Fifty years after the appearance of the famous work by P.E. Rousel his model continues to 

play an important role in investigations of the dynamics of polymers. There are several 

reasons why this model is still so popular. From the methodological point of view, it can be 

easily shown that the model is universal in the sense that it describes the long-time motion of 

ideal phantom polymers in nonmoving solvent independently on the details of their 
structure.2, 3 This is not so easy to prove for more sophisticated models, e.g. the Zimm model4 

that includes the hydrodynamic interaction. The Zimm model predicts the correct dynamical 

behavior for dilute polymer solutions in 6Lconditions. However, the Rouse model is 

applicable for good solvents, where the corrections due to the hydrodynamic interactions and 

excluded volume effects to a large extent cancel each other5. The dynamical behavior of 

macromolecules in semidilute solutions and polymer melts is also better described by the 

Rouse theory, since there the hydrodynamic interactions are screened out by the surrounding 

polymers. It is also very important that the model is analytic-ally tractable and open for various 

generalizations. During the passed years much effort has been devoted to improve the 

classical Rouse and Zimm models. Despite this, still some,problems in the polymer dynamics 

remain unsolved (for good reviews on the deve]opment of the Rouse-Zimm theory and 

68 existing problems we refer to the recent works ~ ). 

In the present communication we propose a generalization of the original Rouse model, that 

takes into account the viscous aftereffect during the motion of the polymer monomers 

(modeled by spherical beads) in the viscous incompressible fluid. In other words, we ir]clude 

into the consideration the hydrodynamic memory. It reflects the fact that the force on the bead 

at a given moment of time depends not only on the bead velocity at the same moment of time, 

but is influenced by the state of its motion in all the preceding times. This is a consequence of 

fluid inertia and its possible importance for the Rouse model has been already mentioned in 

Ref.9 but, to our knowledge, such a generalization did not appear in the literature so far. It is 

well known that in the theory of Brownian motion the hydrodynamic memory leads to 

interesting peculiarities, such as the famous long-time tails of the velocity autocorrelation 

function, with a very important impact on the physics of liquids,lo Since the Brownian motion 

lies in the basis of the Rouse-Zimm theory of polymer dynamics, it is natural to expect that 

the mentioned generalization will be important for polymers as well. 

Within the Rouse model of flexible polymer in solution the equation of motion for the nth 

bead of the coi] consisting of N beads is 

M d2x~ = f~'"f' + f'h + f 

d t 2 

(1) 

Here M s the mass of the bead, f~f' is the resistance force on the bead during its motion in 
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the solvent - the Stokes force that is proportional to the velocity of the bead, fl･h describes the 

influence of other beads, and f~ is the random force due to the chaotic motion of the 

molecules of solvent. The effective potential of interaction between the beads follows from 

their equilibrium (Gaussian) distribution, so that3 

u 3kBT N 2 = ~( - -~n ) ' X Xn-1 2a2 n=2 

thus the neighboring beads along the chain act on the nth bead with the force 

au 3k T f~'"'h ( 
a~ ~ 2a2 ~^.1 2~ +~~.l =- B - ~ ) 

(2) 

(3) 

The quantity a has the sense of the mean square distance between the neighbors along the 

chain. For long-wave processes the continuum approximation in the variable n is used, 

- r ¥ -r ~ -( 1 ) ~ t/ ~ x~t,n)i: a~/an + (1/ 2)a2~/an . ~'h ( 

x~¥t)~x~t,n , x~+1 The force f~ in this 
approximation reads 

f'h ~ 3k T a2~(t,n) 

a 2 an 2 
(4 ) 

The Rouse equation (1) must be in the continuum limit supplemented by boundary conditions. 

They follow from the modification of the force f due to the fact that at the ends of the ,h 

chain the beads have only one neighboring bead:3 

ax'~'(t,n) _ O at n O, n = N. (5) 
an 

In the original Rouse model (if the inertial term in Eq. (1) is neglected) we come to a 

() diffusion-type equation for the vector ~~ t with the boundary conditions (5). 

In our approach we use as the resistance force on the particle (a rigid sphere) moving in an 

incompressible fluid, instead of the Stokes force in Eq. (1), a more correct Boussinesq force. 

For any of the Cartesian components, e.g., x, this force can be written in the form: 1 1 

ff'(t) ~/(t) Mv(t)-6~f'(t-fl2~fi M' 2fzb3 p, 

3 
(6) 

where M' is the "effective hydrodynamic mass" (= M./2 with M. being the mass of the 

solvent with the same volume as the bead), p is the solvent density, ,7 its viscosity, b the 

radius of the bead, and its friction coefficient is ~ = 6jz:77b. The Fourier transform (FT) of this 

2 

J force in the time ( f f"" = (1/ 2fT) jf f' (t)exp(ia;t)dt ) is 

fr'w a' a' f = ~ , - V 
~ ~[1+;~b+~Czib)'J, ~r=~7; 

(7) 

Here ReX ~ O is the inverse penetratiori depth of the shear wave and v = /7/p is the kjnematic 

viscosity of the solvent. Using Eq. (7), the modified Rouse equation in the FT for every of the 

Cartesian components of the position vector ~ in the continuum approximation becomes 

xa'(n)(- ' - 3k T a2ai;'(n) + fa'(n) ' 2) B la'~a' Ma' = 
a2 

This equation can be sdlved with the help of the FT in the variable n: 

x"(n)= y~ +2~y cosfznp 

p=1 N ' 
~ 7Z7~p fa' =fo"+2VLf cos 

p=1 N 
In this representation we obtain the following equations for the Fourier components y~ : 

r y~ = ~-i(~;~" -Ma'2 + Kp )~I f;;, P = O, 1, 2 

Here it is denoted 

K = 3lr2kBT 2 
p P N' ' ~a~ 

Consider separately the equations for p = O and p ~ I . In the first case, since from Eq. (9) 

IN 

N 
yo (t) = ~ Jo x(t, n~n 

(8) 

(9) 

(10) 

(11) 

(12) 

Equation (10) determines the FT of the coordinate of the center of inertia of the polymer coil. 

In the absence of the hydrodynamic memory the mean square displacement (MSD) of the 

Rouse coil as a whole is given by the Einstein relation 

(Ay~(t)/¥ = /¥[y (O) y (t)] =2Dct , (13) o ~ o 2) 

where Dc is the diffusion coefficient of the coil, Dc = D/N, and D = kBT/~ is the diffusion 

coefficient for one bead. 

Equation (10) at p ~ 1 determines internal modes of the po]ymer motion. Within the model 

without memory the time correlation functions of the Rouse modes relax exponentially with 

the relaxation times ~;p, 



N2a2~ _ ~ W (t) (yp(O)yp(t)) = DcTpe t!'. _ 3ll2kTp2 ~ Kp ' P ~~ 1. (14) Tp 

To find the time correlation functions of the position of center of inertia and the internal 

modes of the polymer, one can use the correlation properties of the random force f~ in its 

Fourier p- representation. The correlation functions of the Langevin forces for one Brownian 

particle are well known. They have been proven, for instance, in the workl2 and are a 

consequence of the fluctuation-dissipation theorem,13 For different components of the force 

we have in the Fourier representation 

(f.a'fpco" k T ( _ .) (15) ) 
= B Re;:"6 6a, a, . ~ ^p fT 

Since the forces acting on different beads n ~ m, are independent, their correlator is - (~! ' In 
m 

the continuum limit the Kronneker symbol has to be replaced by the delta function, ~~m ~> 

~:n-m). Then, after the transition to the p-representation, one obtains 

fpa'afqwfi kBT ( _ ,) (16) ( " =F~,~po N ) 
Re ;~:a'6 6 a' . ~ a:fi 6pq a, 

Now it is easy to find from Eq. (10) expressions for the desired correlation functions 

( 2) Ayo (t) , ~~(t), or for the velocity autocorrelation function (VAF) that is often used in the 

description of experiments or in computer simulations, 

(Ay; (t)) . cp(t)= vp(O~p(t) - 2 
2dt 

For the function Wp (t) we find from Eq. (10), 

~f (t)_ kBT ' Re~" (18) J= 

d a, 2 cosa;t . p ~ F~F_= - ia~:" - Ma,2 + Kp 

Equation (18) represents the fluctuation-dissipation theoreml3 for the Rouse chain of N beads. 

The integral in this equation is often encountered in the theory of translational Brownian 

motion of one particle: in the case p = O the particle is free, and if p ~ O, it is in a harmonic 

field with th･e force bonstant Kp. Sudh problems for a particle in incomptessible fluid were 

solved in a number of investigations beginning from the workl4 where the first hydrodynamic 

theory of the Brownian motion has bcen developed. Adopting the knt)wnlsolutions for our 

functions describing the Rouse polymer, we have for the MSD of the polyrner coil the 

following asymptotic expression: 

(Ay~(t)) 2DCtj 2~rTTb l/'+2f4 M )Tb 7 4 M Yrb + 3/2 

= - ) ) ., -1 1/~ LT M' T 9l~~ M' jL t " 9~ 
(19) 

t >> e~b, where e~b = b2p/V defines the time for passing the distance b by the shear wave, and 

Dc is defined after Eq. (13). For small times we have 

kT (Ay~(t)) - N(M f M. /2) t2 , (20) 

where, however, t >> b/c. (c is the velocity of sound); the condition is due to the fluid 

incompressibility. The physically correct limitin~ value kBTt2/NM can be obtained only if the 

compressibility is taken into account, as discussed already in Ref.14 (for a detailed solution of 

this "hydrodynamrc paradox" see Ref.10). .The long time asymptote for the VAF of the 

polymer is 

ep (')_2~~~1 , 1 7_4 ' ' [f' ) , J *',~ ~', ~ )f; ) * -D 
6 

(2 1 ) 

Here it should be noted that based on the model of a polymer as a porous particle penetrable 

by the solvent (the Debye-Brinkmann-Bueche model), the similar long-time tails of the VAF 

for the polymer have been already derived in the workl5. The diffusion coefficient was 

however N times larger than in the Rouse model. Although the dependence Dc - 1/N is 

specific for the Rouse model, the diffusion coefficient for the coil should be in general smaller 

than for one bead. Assuming that the diffusion coefficients in both the models 1'15 are the 

same, the friction coefficient for the whole coil in the modell5 would be as for one bead only. 

The case p ~ O (Kp ~ O) is solved in Ref.10. The integral in Eq. (18) can be represented 

through the inverse Laplace transfonn. The integrand is then expanded into a sum of 

elementary fractions, for which the Laplace transforms are known. This allows one to express 

the searched integral in a closed form through the error function. The asymptotic expansions 

are then derived using known properties of these functions. (The leading terms in these large t 

asymptotes can be also easily obtained by simple expansions of the integrand in Eq. (18) for 

small a,). The long-time asymptote for the function ~~p(t) has the form 

p [[ ) ) ... 3/2 5/2 W (o) V (t kBT 1+21/~ T +3lrp rTb + IT Tb ) 

2NK Tb L t 
t 

(22) 

The dependence on the bead mass M appears only in the small - t~7n tenn.10 The longest-lived 

contribution to the function ~(t) = - d2 ~(t)/dt Is t 712 



Comparing these formulas with the results of the theory by Rouse, it is seen that for 

intemal modes (p ~~ l) the value ~,~p(O) = kBT/2NKp is the same as in the original model. The 

MSD of the whole coil at small times is different, now it is - t2 (instead of - t). The diffusion 

coefficient of the coil. Dc, Is the Rouse one. At large times, in addition to the Einstein term in 

the MSD, there are other contributions, the leading of which is - tl/2. A difference reveals also 

in the long-time dependence of other time correlation functions of the coordinates and 

velocities of the polymer segments in the Fourier representation. The inclusion of the 

hydrodynamic memory leads to the relaxation of the internal modes that now essentially 

differs from the traditional exponential decay of the correlation functions ~~p(t) and c},(t). This 

is reflected in the long-time tails of these functions. The discovery of the tails of the 

molecular VAF in simple liquids more than three decades ago (first by means of computer 

experiments) has led to enormous number of investigations in the field of the statistical theory 

of liquids and in the theory of Brownian motion.lo We believe that similar peculiarities found 

here for the Rouse polymers could stimulate new studies in the dynamics of polymers. 
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