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1 Introduction

The parametrically driven damped nonlinear Schrodinger (NLS) equation,

iipt + ipxx + 2M V ~ i> = M>* - iw/>i

was used to model the nonlinear Faraday resonance in a vertically oscillating wa-
ter tank [1, 2] and the effect of phase-sensitive parametric amplifiers on solitons
in optical fibers [3]. The same equation describes an easy-plane ferromagnet
with a combination of a static and hf field in the easy plane [4, 5], and the
planar weakly anisotropic XY model [6]. It also serves as a continuum limit
for the parametrically driven Prenkel-Kontorova chain (an array of diffusively
coupled pendula). The Frenkel-Kontorova system is regarded as a fairly re-
alistic model of a number of physical and biological systems and phenomena,
including ladder networks of discrete Josephson junctions, charge-density-wave
conductors, crystal dislocations in metals, DNA dynamics and proton conduc-
tivity in hydrogen-bonded chains [7].

The undamped undriven nonlinear Schrodinger equation exhibits soliton so-
lutions which can travel with arbitrary velocity and transport physical char-
acteristics such as mass, momentum and energy. (For the sake of brevity, we
are making use of the hydrodynamical interpretation of the equation here.) In
equation (1), the second term in the right-hand side accounts for dissipative
losses which occur in all physical systems. The dissipation has two visible ef-
fects on the soliton: it attenuates its speed and damps its amplitude. The main
purpose of the introduction of the pumping (represented by the first term in
the right-hand side) is to compensate for these losses. The parametric forcing
is well known to be capable of counterbalancing the damping of the quiescent
soliton's amplitude; a natural question now is whether it can sustain its motion
with a nonzero velocity.

In fact the existence of travelling solitons is a nontrivial matter even in
the absence of damping. The driving term hip* in Eq.(l) breaks the galilean
invariance of the unperturbed nonlinear Schrodinger equation and hence one
cannot obtain a moving soliton simply by boosting a static one. However the
galilean or Lorentz symmetry is not a prerequisite for the existence of moving
nonlinear waves. For example, dissipative systems do not possess any symme-
tries of this kind but are well known to support stably propagating fronts and
pulses whose velocities are determined by parameters of the model. In particu-
lar, travelling domain walls arise in the parametrically-driven Ginsburg-Landau
equations (where the motion is due to nongradient terms) [8]. As far as soli-
tons in Hamiltonian systems are concerned, the example of dark solitons in the
nonlinear Schrodinger equations suggests that they have even greater mobility
than dissipative fronts and pulses. Although in this case the galilean invariance



is broken by the presence of the nonvanishing background, the dark solitons can
propagate with arbitrary speeds bounded only by the velocity of sound waves
[9, 10, 11].

A number of nonstationary regimes were reported in the water tank exper-
iments, including the formation of oscillating soliton pairs [2], but no steadily
moving solitons were detected so far. On the other hand, numerical simula-
tions of the undamped parametrically driven NLS equation [Eq.(l) with 7 = 0]
did exhibit travelling localised objects [12], It has remained an open question
whether these moving objects preserve their speed and amplitude, or attenuate
and decay slowly due to the emission of the second-harmonic radiation. The aim
of the present paper is to study the existence of steadily propagating solitons,
and examine their stability. Here we are confining ourselves to the undamped
situation relegating the analysis of the effect of damping to future publications.

In addition to their role in transport phenomena, stably moving solitons
are also of interest as alternative attractors which may compete with (sta-
tic or oscillating) nonpropagating solutions. We will demonstrate that stable
travelling solitons do exist in the parametrically driven nonlinear Schrodinger
equation. Moreover, there are parameter ranges where moving solitons are sta-
ble whereas their quiescent counterparts are not. Unstable solitons are not
meaningless either; they arise as long-lived transients and intermediate states
in spatio-temporal chaotic regimes. In this paper we will identify oscillatory
and translational instabilities of travelling solitons and simulate their nonlinear
evolution near the transition curves.

The structure of the paper is as follows. In section 2 we derive an apriori
bound for the existence domain of travelling solitons and introduce the linearised
eigenvalue problem for their stability analysis. We also discuss some general
properties of eigenvalues and eigenfunctions and formulate a simple criterion for
the onset of the nonoscillatory instability: dP/dV = 0, where V is the velocity
of the steadily moving soliton, and P the associated momentum.

In section 3 we present several explicit quiescent (V = 0) solutions, including
a stationary complex of two solitons, and then derive the necessary condition
for a static solution to be continuable to nonzero velocities. This condition
is that the motionless solution should either not have any "free" parameters
apart from the translational shift, or, if there is an additional parameter z,
the equation dP/dz = 0 should be satisfied. Here P is the momentum of the
motionless localised solution (which, contrary to one's mechanical intuition, is
not necessarily equal to zero). There are three static solutions satisfying the
above condition, two of which being the well-known constant-phase ip+ and i\>-
solitons, respectively, while the third solution looks like a pulse with a bell-
shaped modulus and twisted phase.

The most important results of this work are contained in section 4 where we



report on the numerical continuation of various branches of solutions and their
stability analysis. In agreement with the analytical predictions of the preceding
section, we find that each of the above static solutions admits the continuation to
nonzero V. The stability properties of travelling solitons result from an intricate
interplay of two types of instability, the oscillatory and translational instability.
In accordance with the conclusions of section 2, the numerical analysis of the
linearised eigenvalues shows that the transition curves of the translational in-
stability satisfy dP/dV = 0. One interesting conclusion of the stability analysis
is that although quiescent solitons are unstable for driving strengths larger than
h = 0.064, there are stable moving solitons for any 0 < h < 1. We discuss in de-
tail the soliton's transformation as it is continued in V, paying special attention
to the dynamics of the associated linearised eigenvalues on the complex plane.
Two different scenarios of the transformation are identified, one occurring for
small h and the other one for larger driving strength, and we also describe an
interesting cross-over from one to another.

Section 5 is devoted to the direct numerical simulations of the full time-
dependent nonlinear Schrodinger equation. We show that the evolution of both
types of the soliton instability leads, as t —>• oo, to the same asymptotic at-
tractors. Finally, section 6 contains concluding remarks and outlines some open
problems.

2 Steadily travelling waves: existence and
stability

2.1 Existence domain and integrals of motion

We will confine ourselves to localised travelling waves of the simplest form,
tp(X, t) — tp(X - Vt). Transforming to the moving frame, these correspond to
time-independent soliton solutions of the equation

iipt - iVtl>x + i>xx + 2|V»I V - i> = hip*, (2)

where x = X — Vt. We will search for these static solutions by solving an
ordinary differential equation

-iVt!>x+rl>xx+2\i>\2i>-i> = hil>* (3)

under the vanishing boundary conditions \i>{x)\ —>• 0 as |a;| -» oo. Here h is
always taken positive; negative ft's can be recovered by the phase transformation
ip —> itp.

If ip{x) is a solution, then so is — ip(x). Next, it is straightforward to notice
that if the function ip{x) describes a soliton travelling with the velocity V, the



function tp*(x) describes a soliton moving with the velocity —V. We will try to
restrict ourselves to positive V's wherever possible; we will only present negative
velocities where this may help visualising how different branches of solutions are
connected. Since the soliton moving with the velocity —V is given by ip(—x),
the above observation tells us that either ip*{x) = ±ip(—x) (that is, one of the
real and imaginary part of the solution is even and the other one odd), or there
are two solutions associated with the same V. (Here we are not making any
difference between solutions which are different just in the overal sign.) In the
latter case the solutions will not exhibit the ip*{x) = ±ip(—x) symmetry.

Next, it is easy to show that solitons cannot travel faster than a certain limit
speed. Indeed, as \x\ —> oo, the soliton's asymptotic tail decays as ip(x) ~ e~KX,
where

2«2 = 2 - V2 ± V
/ ' ( 2 - V 2 ) 2 + 4 ( / i 2 - l ) . (4)

Large driving strengths, h > 1, are of little interest to us as in this case the zero
background, ip(x) — 0, is unstable with respect to continuous spectrum waves
[5]. Therefore we are not going to discuss this case here. In the complementary
region h < 1, the complex structure of K depends on the value of the velocity.
When V2 < 2 — 2Vl — h2, there are four real exponents; for 2 — 2\/l — h2 <
V2 < c2, where

c = y/2 + 2Vl - /i2, (5)

we have a quadruplet of complex K'S, and finally, for V2 > c2 all four exponents
are imaginary. Consequently, there can be no exponentially localised solitons
travelling faster than c. Physically, c represents the minimum phase velocity
of linear waves governed by Eq.(l), and our condition V < c is essentially an
exclusion principle ruling out a resonance between solitons and linear waves.

In the undamped case the parametrically driven NLS equation (2) conserves
the momentum,

and energy:

E = Re I (|^|2 + IVI2 - M4 + ̂ 2 ) dx. (7)
Noting that stationary solutions satisfy

Eq.(7) can be rewritten as

= 2Re [ (\i>\2 - |V|4 + H2) dx. (8)

Containing no derivatives, this formula for energy of stationary solutions has
obvious advantages for the numerical implementation.



2.2 Linearised eigenvalue problem

In this paper we solve the equation (3) numerically and examine the stability
of the resulting solutions by studying the associated eigenvalue problem. This
eigenvalue problem arises by assuming a small perturbation of the form

8i/>(x, t) = y(x)ext, y(x) = 6u(x) + iSv{x).

Substituting into (2) gives
UY = XJY, (9)

where the hermitean operator fi has the form

H = I{~SPX + 1) + VJdx +
h-6u2-2v2

the matrix J is given by

J=i ° 'I 1. (")
and the column-vector Y(x) = (Rey, Im y)T = (6u,5v)T. In Eq.(lO) I is the
identity matrix, and we have decomposed the stationary solution as ip(x) =
u(x) +iv(x).

For symmetric solutions satisfying ^*(a;) = ±^(—a;) eigenvalues will always
come in (A, —A)-pairs. This follows from the fact that for these solutions chang-
ing x —> — x in the operator (10) amounts to changing the sign of its off-diagonal
elements, and hence if (5u(x),Sv(x))T is an eigenfunction associated with an
eigenvalue A, the column (Su(—x), —Sv(—x))T will serve as an eigenfunction as-
sociated with an eigenvalue —A. As far as the zero eigenvalue is concerned, it will
have a twin with the eigenfunction (Su(—x), —5v(—x))T unless its eigenfunction
y = Su + i6v satisfies the symmetry y*{x) — e'vy{—x), where ip = const.

To complete the discussion of the spectrum structure, we mention that there
are two branches of the continuous spectrum lying on the imaginary axis of A:
A = iu)\fi(k), where

and — oo < k < oo. (We are still assuming h < 1). In the region V2 < <? which is
of interest to us, the continuous spectrum has a gap: u>i(k) > u>o, ufy(k) < —UQ,
where u)$ > 0. This gap can harbour discrete eigenvalues representing stable
oscillation modes.



2.3 Translational (nonoscillatory) instabilities

The aim of this subsection is to demonstrate that a pair of pure imaginary
eigenvalues can collide at A = 0 and move onto the real axis only at the point
where dP/dV = 0. This criterion is known in the context of dark solitons
of the undriven nonlinear Schrodinger equations; see [10],[11]. Here we simply
adapt the proof given in [10] to the case of the equation with the parametric
forcing. An important assumption that we make here, is that the solution whose
stability is being examined, does not have any free parameters apart from the
trivial translation parameter, XQ.

First of all we need to make a remark on the integrable case, h = 0. In this
case solutions of the ODE (3) can be obtained from a quiescent soliton of Eq.(l)
by a Galilei transformation:

(12)

where A = y/1 — V2/4. For h = 0 and any \V\ < 2, the linearised operator
H has four zero eigenvalues associated with two eigenvectors. One of these
eigenvectors originates from the translation symmetry and the other one results
from the phase invariance of Eq.(3). The term hip* breaks the phase invariance
and hence as h is increased from zero, one pair of eigenvalues (A, —A) moves away
from the origin on the complex plane. As h and V are further varied, a pair of
eigenvalues may return to the origin. If the solution of Eq.(3) at the point of
their return is a member of a family parametrised by two free parameters, we will
have, again, four zero eigenvalues with two eigenfunctions. (The eigenfunctions
are simply derivatives of the solution with respect to the free parameters.) Our
analysis will not be applicable in this case, and the equality dP/dV — 0 does
not have to be valid at the return point. (We will come across this type of a
situation in section 4.4 below.) However, a more common situation is when the
solution at the return point is a member of a one-parameter family. We will
show that in this case the relation dP/dV = 0 does have to be in place.

Let us denote Vc the velocity for which the eigenvalue of the operator (9)-(10)
vanishes. We can develop the solution ip(V; x) in powers of e = V — Vc:

if>{V;x) = tpo(x) + &l>x(x) + e2ip2{x) + ...,

where ipo = i/>(yc;x). Accordingly, the operator H expands as H = Ho + eH\ +
e27i2 + --- If the eigenvalue A moves from imaginary to the real axis, it is natural
to assume that it admits an expansion of the form

The associated eigenfunction is then developed as

Y{x) = Y0{x) + e^Yiix) + eY2{x) + .... (14)



When e = 0, we have TioYo = 0, i.e. YQ is a null eigenvector at the bifurcation
point V = Vc. Since we have assumed that ip(Vc,x) is a member of a one-
parameter family of solutions, the operator Ho has only one null eigenvector,
and we have to identify Y§ = ^Q(X). Here ^o ' s a column-vector formed by the
real and imaginary part of the soliton ipg: $0 = (uo,vo)T. The prime indicates
differentiation with respect to x.

Next, setting the coefficient of e1/2 to zero yields

= Ai JT0-

Comparing this to the equation

n°dv v=vc

which arises from the differentiation of Eq.(3) with respect to V, we get

() ^

(In the above equations $ = (u, v)T.) The coefficient of e1 produces

U0Y2 = XiJYx - U1Y0,

which has bounded solutions if the right-hand side is orthogonal to the null
eigenvector of "HQ:

Ai j YoJYidx - J YoHiYodx = 0. (15)

The second term in equation (15) is readily shown to vanish — one only needs to
expand the identity W$' = 0 in e. (The coefficient of e1 gives Wi*d = ~%o*i-
Taking the scalar product with ty'o yields the required / ^/'o'Hi^f'odx = 0.) On the
other hand, the first term in Eq.(15) is equal to (\\/2)dP/dV. Consequently,
Eq.(15) gives either dP/dV = 0 or Ai = 0. If we assume that Ai = 0, we will not
be able to conclude that dP/dV = 0 at this order of the expansion. However,
the order e2 will then give us X\dP/dV = 0, which implies either dP/dV = 0 or
A2 = 0. Proceeding by a similar token we will eventually arrive at the equation
dP/dV — 0 at some order e" where n is such that \n j= 0. (Alternatively, we
will have to conclude that all An = 0 and hence we are dealing with a symmetry
eigenvalue which is equal to zero for all V.)

Thus a pair of real or pure imaginary eigenvalues of the same magnitude and
opposite sign, can only collide for the value of V which satisfies dP/dV = 0.
Here we wish to re-emphasise that we have obtained this conclusion under the



assumption that the geometric multiplicity of the zero eigenvalue is not increased
at the point of collision. A simple example when this assumption is not valid,
is furnished by the case h = 0. In this case the momentum corresponding to
the soliton (12) is given by P = Vy/l — V2/4. Although P has a maximum for
V = \/2, the stability properties of the undriven soliton do not change at this
point. The reason is that for each V the operator K has two null eigenvectors
in this case, and hence we cannot make the identification YQ = ̂ '0. (Instead, YQ
will be a linear combination of two zero modes.) Consequently, the above proof
becomes invalid in this case.

Finally, one can easily check that the above result does not really depend on
how the eigenvalue A expands in powers of t. We assumed that the expansion
(13) starts with terms of order e1/2. This assumption is natural and supported
by the numerical evidence; however, even if we had postulated the expansion
starting with terms of order e1/4, e1/3 or say, e, we would have still arrived at
the same necessary condition for the zero crossing: dP/dV = 0.

3 Quiescent solutions (V — 0)

3.1 The "twist" soliton

In order to continue in V it is useful to have some starting solutions for V = 0.
Two such stationary solutions are given by

ip+(x) = A+sech(A+x), tp-(x) = iAsech(A-x), (16)

where A\ = \±h. The soliton ip- is unstable with respect to a nonoscillatory
mode for all h [5]. The tp+ is stable for h < ho = 0.063596 but developes an
oscillatory instability as h is increased beyond ho [5, 12].

In this section we will produce several more explicit solutions of the un-
damped, parametrically driven NLS equation (2). Writing ip = u + iv, the
stationary equation (3) transforms into the system

uxx - u - hu + 2u{u2 + v2) = 0, (17)
2+v2) = 0. (18)

We can try to find explicit solutions of this system by imposing some plausible
reductions, for instance by identifying u2 + v2 with a function of u and its
derivatives: ux, uxx and so on. In this case Eq.(17) is an equation for u only,
while Eq.(18) becomes a linear equation with variable coefficients. The simplest
choice u2 + v2 = Cu2 leads to the ip+ and ip- solitons (16). Another simple
possibility is to require that

u2 + v2 - Cu, C = const; (19)



this converts the first equation into the stationary KdV with the well-known
localised solution

The second equation has now the form of an eigenvalue problem for the Poschl-
Teller potential:

{-d\ + 1 - 6sech2£)« = Ev, (20)

where E = 1 + 4(h - l)/{h + 1). The operator (20) has two localized eigen-
functions, VQ = asech2£ associated with an eigenvalue Eo = —3, and v\ =
asech£tanh£ with an eigenvalue E\ = 0. The first eigenfunction can sat-
isfy the constraint (19) for no a while the second one will satisfy it if we set
C2 = a2 = | (1 + h).

Noticing that E = 0 corresponds to h = f, we conclude that for h = | there
is an explicit solution of the form

h^, (21)

where £ = J\x. Similarly to the solitons rp+ and ip~, the modulus of the above
solution is bell-shaped, but, unlike the constant phase of the tp+ and ip- solitons,
the phase of this solution varies. (In the case of the positive sign in (21) the
phase grows from —TT/2 at x — —oo to TT/2 at x = oo.) The solution looks like
a pulse twisted by 180° in the (u, v)-plane. For this reason we will be referring
to Eq.(21) as the "twist" soliton.

3.2 The twist soliton as a bound state

The system (17)-(18) appeared previously as a stationary system governing light
pulses in a birefringent optical fiber. Using Hirota's approach, Tratnik and Sipe
[13] have obtained the following exact solution to eqs.(3),(17)-(18):

= tp(z;x) =u

V) (22)

where

+ e26i

= A-(x-z),



the constant

the amplitudes A± are as in (16): A± = \/l ± h, and z is a real parameter which
can take arbitrary values. The solution (22) with z = 10 and -10 is plotted
in Fig.l, (a) and (c). As is clear from the figure, for sufficiently large \z\ the
solution represents a complex of two solitons, ip+ and t/>_, with the separation
approximately equal to 2|?|. It is perhaps worth emphasizing here that the
parameter z has nothing to do with shifting the solution as a whole, x —* x — XQ,
which is possible due to the translation invariance of Eqs.(l)-(3). (This overall
shift parameter, xo, is disregarded in equations (21)-(22) and in the remainder
of this text). The parameter z is nontrivial in the sense that the shape of the
solution depends on z.

It is straightforward to verify that our "twist" solution is a particular case
of Eq.(22) with h - \ . Indeed, choosing z - - \ J \ In 3 in Eqs.(22), we obtain
the soliton (21) (the one with the negative sign), centered at x = - 3 s . Since the
twist is a symmetric solution with secA-shaped modulus, it would be difficult
to interpret it as a bound state of the ip+ and >̂_ without embedding it into
a broader family of solitonic complexes. In fact, a similar symmetric solution
exists for any h, not only for h = | . To see this, we notice a simple relation
between two solutions of the form (22) — one with the parameter value z = £ + £
and the other one with z = C — (.'•

f(( + t;v-y) = rtt-t;;r] + y)- (24)
Here £ and r) are defined by the driving strength h:

< = -!(!:-£)<•
and

while £ and y can take arbitrary values. The relation (24) implies that the
solution (22) with z = £ is symmetric about the point x — r\:

4>((;v-y) = Tp*((;r}+y)- (27)

That is, the real part of this solution is even and imaginary part odd with respect
to x = Tj:

u(rj - y) = u{ri + y), v(r) - y) = -V{T) + y).

(See Fig.l (b).) This particular representative of the family (22) will play a
special role in what follows. For the ease of reference we are retaining the name
"twist" for this symmetric solution — for all h.
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Figure 1: Solution (22) for various z. (a): z = 10; (b): z = C, with £ as in (25)
(the twist soliton); (c): z = -10. Solid curve: real part; dashed line: imaginary
part.
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3.3 The moving soliton bifurcation

Suppose the equation (3) has a one-parameter family of quiescent solutions
ip(z;x). Here z can be any nontrivial parameter; the only requirement is that
z should not be just an overall shift in x. One such family is given by Eq.(22)
and there can also be other families for which tj) is not available explicitly. We
will show in this section that in order for a solution with some z = z$ to be
continuable to nonzero V, the corresponding momentum integral should satisfy

3z
= 0. (28)

Let us assume that Eq.(3) with V ^ 0 has a solution IJJ(X), and that this
solution is an analytic function of V in some neighbourhood of V = 0. Then we
can expand it in the Taylor series

xp{x) = ipo{x) + Vi/>i(x) + V2tp2{x) + ..., (29)

where rf>o(x) = ^(^o!*) = «o + wo is some representative of the family of "mo-
tionless" solutions ip(z;x) with the parameter value ZQ. Substituting (29) into
(3) and equating coefficients of like powers of V, we get, at the order V1:

Here «i +ix>i = ij)i and the operator 7i is given by Eq.(10). The equation (30) is
solvable in the class of square integrable functions if the vector in the right-hand
side is orthogonal to all homogeneous solutions, i.e. to all null eigenvectors of
the operator M. Since there is a family of "motionless" solutions parametrized
by z and by an arbitrary spatial shift xo (which we have disregarded so far), the
operator 7i has two zero modes. One is the translation modec^o = dx(uo+ivo);
the corresponding solvability condition is trivially satisfied:

J dx(u0,v0)JdJ

The other zero mode is given by the derivative dxtpo = dzuo + idzVQ. The
associated solvability condition reads

0 = f(dzuo,dzvo)Jdx
«o \ . IBP

1 ax = —-—v0 2dz'

where P is the momentum integral (6). Consequently, a solution with nonzero
V can only detach from the V = 0 branch at the point where dP/dz = 0.

12



Coming back to our explicit solutions, the 1/1+ and i/>_ solitons do not have
any free parameters apart from the trivial position shift. Consequently, both
solutions are continuable to nonzero V. Next, we have a family of solitonic
complexes (22) with a nontrivial parameter z. As one can easily check, the
momentum of the complex (22) as a function of z has a single minimum for
some finite z — z$ and tends to zero as z —> ±00. To find ZQ, we notice that the
relation (24) implies

This means that the function P(z) is even with respect to the point z — C, and
therefore, (, is the point of the minimum: ZQ = £. Thus, the only representative
of the family of the two-soliton complexes (22) that can be continued to nonzero
V, is our twist soliton, ^>(£; x). (To be more precise, there are two twist solutions,
one with positive and the other one with negative momentum. This is related to
the fact that when V = 0, we can generate new solutions to the system (17)-(18)
by changing the sign of just one component u or v.)

4 Bifurcation diagram

We used a predictor-corrector continuation algorithm with a fourth-order New-
tonian solver [14] to continue solutions of equation (3) in V. Since derivatives
of the momentum integral (6) determine stability and branching properties of
solutions, the momentum was our natural choice for the bifurcation measure.
Eq.(3) was solved under the vanishing boundary conditions ip(±L/2) = 0. We
used L = 200 (except the cases where we had to extend the interval to account
for slow decay of solutions) and the discretisation stepsize Ax = 0.005. The
eigenvalue problem (9) was solved on the interval (—50,50). Here we utilised
the Fourier method, typically with 600 harmonics.

4.1 The travelling ip- soliton

We start our description with the branch departing from the quiescent soliton
i/>_. For every h this branch continues all way to V — c, where c is the minimum
phase velocity of linear waves given by Eq.(5). (See Fig.2). As V -+ c, the decay
rate of ip{x) decreases and the soliton merges with the zero solution, with the
momentum P tending to zero. We plotted P{V) for h = 0.1,0.3,0.5,0.7 and
0.9 in Fig.2. For technical reasons we could not connect the curve P(V) to zero
although we were able to approach the value V — c as close as the fourth digit
after the decimal point. (The problem is that since the decay rate of the solution
decreases, one has to increase the length of the integration interval — and this
cannot be done indefinitely.) The only curve which is connected to zero in Fig.2,

13
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Figure 2: The momentum of the ip+ and t/i_ solitons as a function of their velocities.
Thick respectively thin lines depict stable respectively unstable solutions. Note that as
h -¥ 0, the stability domain of the ̂ _ tends to \ft < V < 2 and that of the i/>+ to
0 < V < \/2. The whole of the ft = 0 branch is stable.

is the one for the undriven case h = 0. In this case we enjoy an explicit solution
(12) with the momentum P = Vy/l - V2/4.

For each h the momentum of the soliton has a single maximum on this
branch, at V = Vc (Fig.2). To the left of Vc the linearised operator (9)-(10)
has a pair of real eigenvalues ±A and consequently, the soliton ip-, which is
well known to be unstable for V — 0 [5], remains unstable for small nonzero
velocities. As V approaches Vct the two eigenvalues converge at the origin on
the complex plane, with the associated eigenfunctions tending to the translation
mode WQ(X). Increasing V past Vc, the eigenvalues move onto the imaginary axis
and hence the i/>_ soliton becomes stable for sufficiently large velocities (where
dP/dV < 0). This change of stability properties is in exact agreement with the
scenario described in section 2.3.

4.2 The travelling ip+ soliton; h < 0.25

In agreement with conclusions of section 3.3, we have found that the soliton
V>+ is also continuable to nonzero velocities. Unlike the ^--branch where the
final product of the continuation process does not depend on the value of h,
the transformation scenario of the soliton i/>+ is different for different h. For
h < 0.28 the fate of the soliton tp+ is similar to that of the V*-- As V —> c, the
soliton develops oscillations on its tails; the width of the resulting oscillatory
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"wavepacket" grows and the amplitude decreases, until the solution becomes
equal to zero everywhere. The momentum P(V) tends to zero as V —> c and
has a single maximum at some V = Vc. Stability properties of the 7/4- soliton
depend on whether h is smaller than 0.064, lies between 0.064 and 0.25, or is
greater than 0.25.

Let, first, h < 0.25. As V is increased to Vc, a pair of imaginary eigenvalues
±A collides at the origin on the complex plane and moves onto the real axis.
This is in contrast to the ip- soliton, where two real eigenvalues converged at the
origin as V was increased. For V >VC (i.e. where the slope dP/dV is negative),
the tf}+ soliton becomes unstable. (Note that the tp- was unstable for positive
slopes dP/dV.) As in the ip~ case, this is the translational, or nonoscillatory,
instability. Since, as we checked, the eigenfunctions associated with the colliding
imaginary eigenvalues tend to ^o{x) as V —>• Vc, this instability is of the type
analysed in section 2.3. The numerically detected instability boundary, defined
by the condition dP/dV = 0, is in exact correspondence with our analytical
predictions.

In addition, for some V the V"+ soliton exhibits the oscillatory instability.
(The oscillatory instability sets in when four eigenvalues collide, pairwise, on the
imaginary axis and emerge into the complex plane.) For h < 0.064 the oscillatory
instability does not arise for any V and hence the whole range 0 < V < Vc is
stable. (See the h = 0.05 curve in Fig.2). For 0.064 < h < 0.25 the oscillatory
instability occurs for V zero and small, but as V is increased, both imaginary
and real parts of the "unstable" eigenvalues decay, with the real parts decaying
faster. Eventually the eigenvalues ±A, ±A* converge, pairwise, on the imaginary
axis and the soliton stabilizes. Increasing V still further, two of the resulting
imaginary eigenvalues, A and —A, start approaching each other. At V = Vc

where dP/dV — 0, they collide and move onto the real axis. The soliton looses
its stability once again — this time to a nonoscillatory mode. This scenario is
exemplified by the curves h = 0.1 and h = 0.15 in Fig.2.

An interesting phenomenon occurs in the undriven case, h = 0. As we men-
tioned, in this case the stationary solution of Eq.(2) is available in explicit form,
Eq.(12). We also noted that the associated momentum P = V^/l — V2/4 has a
maximum for finite V = \/2. On the other hand, in any small-ft neighbourhood
of this solution there are solitons ij)+ and tp-, of which ij>+ is stable only for
dP/dV > 0 (i.e. for V < y/2) and V>_ is stable only for dP/dV < 0 (i.e. for
V > \/2). How can this be reconciled with the fact that the solution (12) is
stable for all V for which it exists (V < 2)? The answer is related to the behav-
iour of the zero eigenvalue associated with the phase invariance of Eq.(2) with
h = 0. As A increases from zero, this eigenvalue moves away from the origin.
On the V+ branch, it passes onto the imaginary axis, while on the V- branch,
the eigenvalue moves onto the real axis instead.
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Figure 3: Stability diagram for the tp+ and ip~ solitons on the (h, V)-plane. In the
region marked "stable" one of the two one-soliton solutions is stable whereas the other
one is not. Across the solid line, the corresponding soliton looses its stability to an
oscillatory or monotonically growing mode. No solitons exist in the dashed region.

4.3 The travelling ip+ soliton; h > 0.25

Let now 0.25 < h < 0.28, and assume we are moving along the tp+ branch in the
direction of larger V. For small V we have a quadruplet of complex eigenvalues
±A, ±A* implying the oscillatory instability. As V is increased, both imaginary
and real parts decay — as in the h < 0.25 case. However, this time imaginary
parts decay faster than the real parts, and the two pairs of eigenvalues converge
on the real axis. For velocities above this point the oscillatory instability is
replaced by the translational instability. As V is increased further, one pair of
the newly born real eigenvalues grows in absolute value whereas the other pair
decreases in magnitude. At the point V = VC where P(V) reaches its maximum,
the latter pair converges at the origin and moves onto the imaginary axis. (This
does not render the soliton stable though, as the other pair remains on the real
axis.) This scenario is exemplified by the curve h = 0.27 in Fig.2.

Fig. 3 shows the stability diagram of the tp+ and tp- solitons on the (h, V)-
plane. For the ip+ soliton, the range of stable velocities approaches 0 < V < y/2
as h -¥ 0, while the stability range of ip- tends to \/2 < V < 2. Finally, the
domain of stability in the h = 0 case is the union of the above two ranges:
0 < V < 2.

Next, let h be greater than 0.28. For these h the branch P(V) emanating
from the origin, turns back at some V — VmAX (Fig.2), with the derivative OP/dV
remaining strictly positive for all V < Vmax- Below we will describe the trans-
formation this solution undergoes when continued beyond the "turning point",
while here we only wish to emphasize that no new zero eigenvalues can appear
at this point. The reason is that V = Vma.K is a bifurcation point of solutions of
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the ordinary differential equation (3) but not of the partial differential equation
(l)-(2). (In other words, V is an "internal" parameter characterising the solu-
tion and not an "external" control parameter.) Indeed, the soliton is a member
of a two-parameter (XQ and V) family of solutions of Eq.(l)-(2) and hence for
any V there are two zero eigenvalues in the spectrum of the linearised operator
H. Consequently, although being a turning point for the ODE (3), the value
V — J4nax is in no way special as far as the PDE (l)-(2) and its linearisation are
concerned. No changes of the soliton's stability properties occur at this velocity.

How does one type of behaviour of the curve P(V), occurring for h > 0.28,
replace the other one, arising for h < 0.28? We scanned the interval 0.28000 <
h < 0.28020 and discovered a tiny region of transitional behavior, around h =
0.28005. For this h, P{V) grows until it reaches a maximum at Vc = 1.051 and
then starts decreasing, as in the case of h < 0.28. However, the curve does
not decay all way to P = 0 as would be the case for h < 0.28, but reaches a
minimum at Vcc = 1.0563. After that, the momentum starts growing, and, at
VWx = 1-0565, the curve P(V) turns back — as for h > 0.28! To give an idea
of how small this window of transitional behaviour is, it suffices to say that for
h = 0.28000 the momentum P{V) tends to 0 as V -> c, whereas for h as close
as 0.28010, the curve P{V) has a "turning point".

What happens to the tp+ soliton with h > 0.28 (more precisely, with h >
0.28010) as we continue it beyond the turning point? Fig.4 (a) shows the mo-
mentum as a function of V. The point of intersection with the vertical axis V = 0
corresponds to the twist solution (Eq.(22) with z = ( given by Eq.(25).) On
the diagram Fig.4, it is marked as ipr- As we mentioned before, the (V = 0)-
twist is a representative of a two-parameter family of stationary solutions of
Eq.(2). Consequently, there should be four zero eigenvalues in the spectrum of
the operator % in this case, with two linearly independent eigenfunctions given
by dxty(z;x)\z=(- and dz

<S{z;x)\z=^. (Here ty(z;x) is a two-component vector
formed by the real and imaginary parts of Eq.(22).) Numerically, we observed
that as we approach the (V = 0)-twist from the direction of positive V, a pair
of opposite eigenvalues converges at the origin on the complex plane. The curve
P(V) does not have an extremum at this point and this may seem to be in
contradiction with predictions of section 2.3. The paradox is resolved as soon
as one recalls that the extremality condition dP/dV = 0 was derived under the
assumption that there is only one eigenvector associated with the zero eigen-
value whereas we have two linearly independent null eigenvectors in the case at
hand.

As we continue further into the region V < 0, the twist gives rise to a variety
of multisoliton complexes; we shall describe them in the next subsection. Here
we will restrict ourselves to the region V > 0 where this branch can still be
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regarded as a branch of one-soliton solutions. Although these solutions undergo
similar transformations for all h in the interval (0.28,1), there are a few differ-
ences with regard to the trajectories of eigenvalues on the complex plane. One
difference worth to be mentioned is that for the driving strength h — 0.3 and
larger h, the quadruplet of complex A persists on the entire upper branch of
P{V) (i.e. for all V > 0). This is in contrast to the case of 0.25 < h < 0.28,
where the complex quadruplet converges on the real axis. Near the left end
of the interval 0.28 < h < 1 (e.g. for h — 0.2802), we have an intermediate
pattern. Similarly to the case h < 0.28, here the complex quadruplet converges
on the real axis somewhere on the lower branch of P(V) (i.e. before the turn-
ing point), but as we move onto the upper branch, the two emerging real pairs
reunite quickly and the complex quadruplet reappears.

Next, as we know, there are only two points where a pair of eigenvalues can
pass from the real onto the imaginary axis, or vice versa. One point is V = Vc

where dP/dV = 0, and the other one is V = 0. Therefore the dynamics of
eigenvalues depends on which of the two points comes first, or, equivalently,
whether the upper branch of P(V) has the maximum for positive or negative
V. For smaller values of h in the interval (0.28,1) (e.g. h = 0.3), where Vc > 0,
two imaginary eigenvalues move to the real axis at V = Vc. These imaginary
eigenvalues have detached from the continuous spectrum somewhere before the
turning point (i.e. on the lower branch of P(V).) The two newly born real
eigenvalues first diverge from the origin but then reverse and, at V = 0, move
back onto the imaginary axis. For larger h (e.g. h — 0.7), where Vc < 0, the
pattern is different. Here, the two imaginary eigenvalues become real not at the
point Vc but at V = 0. Subsequently, as we continue the branch to negative
velocities, another pair of imaginary eigenvalues detaches from the continuum
and at the point Vc < 0 two (imaginary or real) eigenvalues pass through the
origin.

4.4 Other branches; h > 0.28

As we continue it to negative velocities, the twist (we are using this name here for
V / 0-deformations of the quiescent twist solution) gradually transforms into a
complex of two twists (plotted in Fig.5(a)). A further continuation of this branch
takes us, via several "turning points", to a solution that can be interpreted as
an association of the twist and two ip- solitons of opposite polarities (denoted
^ ( _ T - ) ) . This solution is depicted in Fig.5 (b). Fig.4 (b) shows the energy of
different branches as calculated by Eq.(8). We have eliminated the dependence
on the soliton's velocity between P{V) and E{V) to obtain B a s a function of P.
The purpose of this "Legendre transformation" is the following. The stationary
equation (3) can be regarded as a condition that the energy (7) be stationary
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under the fixed momentum (6): (SE)p = 0 or, equivalently, 6(E — VP) = 0,
where V is the Lagrange multiplier. Consequently, a steadily travelling soliton
satisfies the relation of the Hamilton mechanics, V = dE/dP, and its velocity is
given by the slope of the corresponding E(P) branch in Fig.4 (b). The relation
SE = VSP implies that the curves E(V) and P(V) have extrema at the same
set of points V = Vc which will appear as cusps on the E{P) plot. Since the
function P{V) has extrema precisely at points where linearised eigenvalues move
from the imaginary to real axis, branches of the E{P) curve separated by the
cusps may have different stability properties. One such change of stabilities
does indeed occur in Fig.4 (b) where the ip- -curve is seen to be partitioned into
stable and unstable branch. Solitons on the stable branch have lower energies
than unstable solitons with the same values of the momentum. Another branch
emanating from the origin in Fig.4 (a), is a bound state of two solitons tp+. This
solution was not obtained by the continuation from V — 0 as Fig.4 may seem
to be suggesting. Instead, we fixed a nonzero V and continued in h from the
value h = 0.05 where the complex ip(++) arises from the V-continuation of the
twist soliton (see section 4.5). Omitting details of this procedure, we start the
description of the resulting branch at some point (V, P) away from the origin. As
we approach the origin from this point, the separation between the solitons xp+
in the complex ip(++) rapidly increases so that the field values between the two
solitons become exponentially small. For example, for h = 0.7, the (numerically
calculated) separation at the point V = 0 was equal to z « 21. The value of \ip\
at the point on the £-axis, equally distanced from the left and right soliton, was
of order 10~6. Consequently, the nonlinear term in the equation (3) becomes
negligible away from the solitons' core and, in spite of an extremely small value
of the residual that we used in our numerical algorithm (10~10), we were unable
to distinguish between a genuine bound state and a linear superposition of two
distant solitons. We conjecture that the complex tl>(++) exists all way to V = 0
but as V —> 0, the intersoliton separation z —> oo. Another indication to
this effect is that as V —> 0, the imaginary part of the solution tends to zero,
rapidly and uniformly. For example, the imaginary part of the above-mentioned
numerical solution with the real part between the solitons > 10~6, was smaller
than 10"13 for all x. Since the only pure real solution that exists for V — 0
is the (single) soliton ip+t the V —> 0 limit of the ift(++) complex should be an
infinitely separated pair of the ip+'s.

If we, conversely, continue our solution away from the origin, the curve
P(V) turns left at some V and the complex Vv++) transforms into what can be
interpreted as a bound state of two twists (denoted tp(TT) m Fig-4.) This solution
is depicted in Fig.5(c). As V —> 0, the momentum of this bound state tends to
zero (Fig.4 (a)). Unfortunately, we were only able to obtain this solution away
from some small neighbourhood of V = 0. (For h = 0.7, the smallest value of
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the velocity for which we were still able to find the solution in question, was
V = 0.000283.) Whether this branch can be continued to V = 0, remains an
open question.

4.5 Other branches; h < 0.28

As we have mentioned, for h < 0.28 the branch rj}+ extends all way to V = c
where it merges with the zero solution. No other solutions can be obtained from
the ip+ soliton. However, in this case we can obtain new branches by continuing
the (quiescent) twist soliton, Eq.(22) with z = (,.

It is convenient to start our description with the motionless twist solution
with the negative momentum. As we move in the direction of positive V, the
twist gradually transforms into a bound state of two t/>+-solitons (see Fig.6 (a)).
At some V = Vmax the branch turns back, shortly after which, at the point
V = Vc, the momentum reaches its maximum and starts decreasing. Adjacent
to the turning point is a small range of velocities Vc < V < V âa: where we
have two stable solutions corresponding to each V. If we continue the branch
with posiiiue-momentum twist solution, also in the direction of positive V, the
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solution gradually transforms into a complex of two i/>_ solitons. The momentum
reaches its maximum, starts decreasing, then the branch turns back in V and
we find ourselves approaching the origin on the (V, P)-plane (Fig.6 (a)). As
we move towards the origin along the ip(++) or along the ip{—) branch, the
separation between two solitons constituing the corresponding complex grows
while the imaginary part of the solution tends to zero. Similarly to what we had
for larger h (section 4.4), we conjecture that the separation becomes infinite at
V = 0 in both cases. Fig.6 (b) shows the corresponding E{P) dependence. As in
Fig.4 (b), the cusps mark points of the zero crossing by the stability eigenvalues.
Note that as in the case of large h (Fig.4 (b)), there are solitons with the same
value of the momentum but different energies. Similarly to Fig.4 (b), the stable
branch of ip- has the lowest energy; bound states on the stable tpr ~> i}{++)
branch also have lower energies than their counterparts with the same P and
smaller |V|. However, in the case of the ip+ solitons we have an interesting
reverse of fortunes: out of the two branches with the same P, the stable branch
is the one with higher energy!

5 Nonlinear Stage of Instability

In this section we present results of our numerical simulations of the full time-
dependent nonlinear Schrodinger equation (1) (with 7 = 0.) The objective
was to study the nonlinear stage of the development of instabilities reported
in the previous section and to identify the attractors emerging as t -4 00. We
utilised a split-step pseudospectral method, with 211 = 2048 modes on the
intervals -40 < X < 40 and -80 < X < 80, and with 212 = 4096 modes
on the interval (—60,60). The method imposes periodic boundary conditions
ip{L/2,t) = ip(-L/2,t), tpx{L/2,t) ~ ipx(-L/2,t). We have simulated the
evolution of moving solitons unstable against an oscillatory mode and those with
a positive, nonoscillatory, eigenvalue in their linearized spectrum. One of our
conclusions here is that both types of instability give rise to the same asymptotic
attractors. (This is in agreement with earlier simulations of motionless solitons
[12].)

5.1 The decaying breather

Depending on the value of the driving strength, the initial conditions and the
choice of the parameters of the numerical scheme, we observed one of the two
scenarios. In the first scenario the soliton transforms into a bell-shaped struc-
ture, with a small amplitude and large spatial width, oscillating approximately
as ij) ~ etwt, with negative w. This localised solution was previously encoun-
tered in numerical simulations of Ref.[12] where it was termed breather. The
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amplitude of the breather slowly decays with time and the width slowly grows.
We have detected this scenario for the driving strength h = 0.1, with the

initial condition in the form of the ip+ soliton travelling with the velocity V —
0.05 and with V = 0.8. (For both values of the velocity the tp+ soliton is unstable
against an oscillatory mode.) Unlike earlier simulations [12] which started with
the initial condition in the form of a quiescent unstable soliton and gave rise
to a quiescent breather, the breather emerging from a travelling soliton has a
nonzero speed.

One may naturally wonder whether the speed of the breather will decay to
zero or approach a nonzero constant value as t increases. Our simulations seem
to support the latter hypothesis. In one run, the speed of the breather evolving
out of the soliton travelling with the initial velocity of V = 0.05, was seen to
slowly grow and gradually approach the constant value of 0.1. This simulation
was repeated, with the same parameters of the numerical scheme and an initial
condition which was only different from the previous one due to interpolation
errors of order 10~6. In this run the breather was first seen to slow down, stop
but then start moving in the opposite direction with the velocity close to -0.2;
see Fig.7 (a). (This remarkable sensitivity to the initial data deserves a separate
comment; see below.) The velocity of the breather evolving out of the V = 0.8
soliton, was tending to approximately 2.1. However, for large t the unambigous
interpretation of the numerical data is hindered by the growth of the amplitude
of the radiation background. The radiation waves emitted by the oscillating
breather re-enter the interval via the periodic boundary conditions and at a
certain stage their amplitudes become comparable with the amplitude of the
breather. Consequently, the constant-velocity motion of the breather may have
been induced by the interaction with the backround radiations.

5.2 The growing breather

The decaying breather was detected in simulations on the interval (—40,40)
with N = 2 U modes. Changing the numerical parameters produced an entirely
different scenario, however, — for the same value of the control parameter in
Eq.(l) (h = 0.1), and for the same initial conditions (V = 0.05 and V = 0.8).

Namely, we increased the number of the Fourier modes to N = 212 and
the length of the interval first to L = 120 and then to 160. As in the case
of L = 80 and N = 211, in simulations with the new values of N and L the
unstable travelling soliton ip+ was seen to transform into a bell-shaped structure,
oscillating roughly as ip ~ eJW*. However, this time the emerging breather has a
positive frequency u>; its amplitude is large and continues to slowly grow, while
the width is narrow and keeps on decreasing (Fig.7 (b)).
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Figure 7: The two types of asymptotic attractors resulting from the decay of
the unstable steadily travelling solitons: (a) the decaying and (b) the growing
breather, (a) corresponds to h = 0.1 and the initial condition in the form of the
ip+ soliton with V = 0.05. In (b), h — 0.05 and the initial condition was chosen
as the ip- soliton with V = 0.05. In both plots the emerging breather changes,
spontaneously, its direction of motion. (Note that this happens not as a result
of the reflection from the boundary, as the periodic boundary conditions are
imposed.)
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This attractor was also observed previously in [12]. It was found there that
the decaying and growing breather coexist. Whether the evolution of the same
unstable soliton settles to one or the other asymptotic attractor, was found to
depend on the choice of the phase of a small perturbation applied to the initial
condition. In our present simulations, the perturbation is introduced simply by
changing the parameters of the numerical scheme.

We also examined initial conditions in the form of translationally unstable
solitons, including the V"+-soliton with V = 1.4 for the driving strength h = 0.1
and the •0_-soliton with initial velocities V — 0.05 and V = 1.4, for the driving
strength h = 0.05. For each of the above three situations the simulations were
repeated with 2 U modes on the interval —40 < X < 40, and with 212 modes
on the intervals (—60,60) and (—80,80). In all nine runs the unstable soliton
was seen to evolve into the growing breather. (It is quite likely that some other
choices of the numerical parameters may give rise to the decaying breather
instead.)

The velocity of the growing breather may vary during its evolution. It can
even wander erratically, changing the direction of its motion several times, but
eventually, for t ~ 104 or even earlier, the speed of the breather locks on to
some constant value. Since the amplitudes of radiation waves are comparable
with the amplitude of the breather at that stage, this effect can be induced by
the breather-radiation interactions.

6 Concluding remarks and open problems

The main result of this paper is the demonstration of the existence of wide
classes of travelling soliton solutions of the (undamped) parametrically driven
nonlinear Schrodinger equation. We established the necessary conditions under
which motionless solitons can be continued to nonzero velocities, and, in cases
where these conditions were met, were indeed able to carry out the numerical
continuation. The stability of all resulting branches of solutions was examined;
oscillatory and translational instabilities identified, and the single-soliton sta-
bility chart compiled on the (h, F)-plane. The onset values of the translational
instabilities, obtained numerically, were shown to verify the relation dP/dV = 0
predicted by our theoretical analysis. As opposed to the case of the soliton •0_,
which undergoes similar transformations for any h, the result of the continuation
of the i>+ has turned out to be sensitive to the value of the driving strength. We
have identified two different transformation scenarios, one occurring for small
and the other one for larger h, and described an interesting cross-over from one
to the other.

In our analysis we paid a special attention to the trajectories of linearised
eigenvalues on the complex plane. Apart from the information on the stability
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of different branches of solutions, the behaviour of the eigenvalues can give
insight into the supercritical dynamics of solitons, i.e. dynamics beyond the
instability threshold [12]. The motion of the eigenvalues in the undamped case
that we are currently concerned with, allows one to even predict the asymptotic
attractors arising when there is a small but nonzero damping in the system
[12]. Relegating the corresponding bifurcation analysis to future publications,
here we have restricted ourselves to a series of numerical simulations of the
time-dependent NLS equation (1) (with 7 = 0.)

It is worth listing, separately, stable solutions obtained in this study. First,
the quiescent soliton i/>_, which is always unstable with respect to a nonoscil-
latory mode, stabilizes when travels faster than a certain critical velocity. The
stability boundary satisfies dP/dV = 0. Second, the quiscent soliton ip+ is sta-
ble for h < 0.064 and loses its stability to an oscillating soliton for h > 0.064.
For nonzero V the stability region is shown in Fig.3. The lower boundary of
this region corresponds to the onset of the oscillatory instability while along the
upper boundary the soliton becomes unstable with respect to a nonoscillatory
mode. The corresponding critical velocity satisfies dP/dV = 0. Third, the
bound state ip(++) also displays a region of stability for small h — see Fig.6.

We conclude this section by pointing out to several open questions. In the
first place, it would be interesting to continue the tp(_x-)-branch in Fig.4. Will
this multisoliton complex keep on attaching more solitons on its flanks? An-
other "open-ended" branch (V>(JT)) approaches the origin vertically down in
Fig.4 (a); it would be interesting to continue this branch as well. The striking
difference between the bifurcation diagrams for h > 0.28 (Fig.4) and h < 0.28
(Fig.6) is also worthy of a deeper analysis. Is the bifurcation diagram in Fig.6
complete, or there are other multisoliton branches similar to those arising for
large h (Fig.4)? The next open question concerns the decaying and growing
breather solutions arising as a result of the growth of the instability of steadily
travelling solitons. If the radiations were prevented from re-entering the interval
of simulation, would the velocity of the breather decay to zero or approach some
nonzero value determined by the initial velocity of the unstable soliton? Finally,
a challenging problem is to find out whether travelling solitons can exist in the
presence of damping. The effect of dissipation will be, of course, to attenuate
the soliton. It is not obvious whether the spatially uniform parametric pump-
ing is capable of compensating this type of losses and sustaining the soliton's
steady motion. It is fitting to note here that the parametrically driven, damped
nonlinear Schrodinger equation has wide classes of stationary solitons [15], some
of which may be continuable to nonzero V.
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