

сообщвиия
 обьединенного
 ииститута
 ядерных исследований
 дубна

$1545 / 2-80$

$$
7 / 4-80
$$

E17-13050

V.N. Plechko

SEVERAL ORDER PARAMETERS
IN CRITICAL REGION

1. Here we consider a set of order parameters in the critical region. We define order parameters as quasi-averages in the sense of N.N.Bogolubov, Jr. Some generalized functional relations for order parameters will be derived and applied to analyse the critical behaviour ${ }^{1 /}$.

Consider a many-body system Γ / θ with Hamiltonian Γ and temperature modulus $\theta=K T$. Given a set of n operator order parameters $S \alpha$, which we suppose to be hermitian ${ }^{2 /}$

$$
\begin{equation*}
S_{\alpha}=S_{\alpha}^{+}, \quad \alpha=1,2, \ldots, n \tag{1}
\end{equation*}
$$

We shall also suppose that $S \alpha$ are of the "quasi-additive" type and satisfy the conditions due to N.N.Bogolubov, Jr.:
$\left|S_{\alpha}\right| \leq K_{1},\left|S_{\alpha} \Gamma-\Gamma S_{\alpha}\right| \leqslant K_{2},\left|S_{\alpha} S_{\beta}-S_{\beta} S_{\alpha}\right| \leqslant \frac{K_{2}}{N_{9}}(2)$ where |...| means the operator norm, K_{1}, K_{2}, K_{3} are constants, N is the number of particles, proportional to the volume of a system $V(N / V=$ const as $N, V \rightarrow \infty)$.

The quantities of physical interest are equilibrium Gibbs averages $\left\langle\mathrm{S}_{\alpha}\right\rangle_{r, \theta}$ - numerical order parameters (real numbers). Strictly speaking, we should deal not with common Gibbs averages, but with the averages with spontaneously broken symmetry, ie., with the "quasi-averages" $/ 2 /$:

where Γ_{τ} is Hamiltonian Γ with additional small symmetry breaking terms ("sources"), introduced by small parameters $\{\tau\}$ which should be removed $(\{\tau\} \rightarrow 0)$ after the limit $N \rightarrow \infty$.

[^0]

We shall denote below the quasi-averagea $\langle S \alpha\rangle r, \theta$ as $S_{\alpha}[\Gamma / \theta]$.

An effective definition of quasi-averagea (the choice of "sources") has been proposed by N.N.Bogolubor, Jr./3.4/. On this basis it is posaible to deduce (under the conditions (2)) that the following "aelf-consiatence" equations for the order parameters hold true ${ }^{3 /}$:

$$
\begin{align*}
& S_{\alpha}[\Gamma / \theta]=S_{\alpha}\left[\Gamma+R_{n} / \theta\right], \alpha=1, \ldots, n \\
R_{n} \equiv N & \sum_{\beta=1}^{n} \rho_{\beta}\left(S_{\beta}-S_{\beta}[\Gamma / \theta]\right)^{2}, \rho_{\beta}>0, \tag{4}
\end{align*}
$$

where $\rho_{\beta}>0$ are arbitrary positive parameters. One can also put (4) into the form:
$S_{\alpha}[\Gamma / \theta]=S_{\alpha}\left[\Gamma+N \sum_{\beta=1}^{n}\left(\rho_{\beta} S_{\beta}^{2}-h_{\beta} S_{\beta}\right) / \theta\right]_{h_{\beta}=2 \rho_{\beta} S_{\beta}[\Gamma / \theta] .}^{(\alpha=1, \ldots, n)}$. put (4) into the form:
$S_{\alpha}[\Gamma / \theta]=S_{\alpha}\left[\Gamma+N \sum_{\beta=1}^{n}\left(\rho_{\beta} S_{\beta}^{2}-h_{\beta} S_{\beta}\right) / \theta\right]_{h_{\beta}=2 \rho_{\beta} S_{\beta}[\Gamma / \theta]} \begin{gathered}(\alpha=1, \ldots, n)\end{gathered}$.

Introduce for the order parameters (1) a set of ausceptibilities (for definition see Appendix A):

$$
\mathcal{X}_{\alpha \beta}[\Gamma / \theta] \equiv \mathcal{X}_{S_{\alpha} S_{\beta}}[\Gamma / \theta] ; \alpha, \beta=1, \ldots, n .(5)
$$

The form (5) is bilinear in S_{α}, S_{β} and satiafies all the propertiea of the scalar products

$$
0 \leq x_{\alpha \alpha}[r / \theta], x_{\alpha \beta}[r / \theta]=x_{\beta \alpha}[r / \theta],
$$

$$
\begin{equation*}
\left|x_{\alpha \beta}[r / \theta]\right|^{2} \leq x_{\alpha \alpha}[r / \theta] x_{\beta \beta}[r / \theta] . \tag{6}
\end{equation*}
$$

These properties make it possible to intnoduce "cosine of the angle Detween operators S_{α} and S_{β} with meapect to the mystem $T / \theta^{4}=$

$\left.\cos _{\alpha \beta}^{2}[\Gamma / \theta]=\mid X_{\alpha \beta}[\Gamma / \theta]\right]^{2} / \chi_{\alpha \alpha \alpha}[\Gamma / \theta] X_{\beta \beta}[\Gamma / \theta]_{,(7)}$

From the eusceptibilitiea (5) one can arrange the $n \times n$ real matrix:

$$
\begin{equation*}
x[r / \theta]=\left\|x_{\alpha \beta}[r / \theta]\right\| . \tag{8}
\end{equation*}
$$

3/we represent here the retult in the form appropriate for our needs; for details see ref./5/ and kppendix a therein.

In view of (6) this matrix is symetric, and all its eigenvalues, trace, and determinant are non-negative, independent of the system Γ / θ.

Starting with (4) we now obtain some functional relations for suaceptibilities. "Switching on" external fields in the sygtem Γ / θ in (4), 1.e., making therein the substitution

$$
\begin{equation*}
r / \theta \rightarrow \Gamma-N \sum_{\beta=1}^{n} h_{\beta} S_{\beta} / \theta \tag{9}
\end{equation*}
$$

differentiating the reaulting relations with reapect to h_{β} and putting then $h_{\beta} \rightarrow 0$, we get:

$$
\begin{equation*}
x_{\alpha \beta}[\Gamma / \theta]=x_{\alpha \beta}\left[\Gamma+R_{n} / \theta\right]+ \tag{10}
\end{equation*}
$$

$$
+\sum_{\gamma=1}^{n} 2 \rho_{\gamma} \chi_{\alpha \gamma}\left[\Gamma+R_{n} / \theta\right] X_{\gamma \beta}[\Gamma / \theta] \text { (for } R_{n} \text { вee }
$$

Uaing (8) one can rewrite these relationa into the matrix form:

$$
X[\Gamma / \theta]=X\left[r+R_{n} / \theta\right]+X\left[r+R_{n} / \theta\right] 2 \hat{p} X[\Gamma / \theta]_{2}(11)
$$

where $\hat{\rho}$ ie a diagonal matrix with the diagonal elements ρ_{α}, $\alpha=1, \ldots, n$.

$$
\text { If } X^{-1}[\Gamma / \theta] \text { and } X^{-1}\left[\Gamma+R_{n} / \theta\right] \text { are non- }
$$ zero matrices, one can put (11) into the form

$$
\begin{equation*}
X^{-1}\left[\Gamma+R_{n} / \theta\right]=X^{-1}[r / \theta]+2 \hat{\rho} \tag{11a}
\end{equation*}
$$

2. Up to now ayatem Γ / θ was arbitrary. Consider now aystem near its critical point.

For the sake of simplisity let us consider a conventional "ferromagnetic" system with Hamiltonian H and critical temperature θ_{c}. For non-zero magnetic field $h>0$ the Hamiltonian of the system will be

$$
\begin{equation*}
H_{h}=H-h N S, \quad S=S^{+} \tag{12}
\end{equation*}
$$

where S is the magnetization operator of the syatem (par particle), N is the number of particles. We suppose that for $\theta<\theta_{C}$ the epontaneous ordering appears:

$$
S\left[H / \theta_{c}(1-\varepsilon)\right]=\left\{\begin{array}{l}
>0, \varepsilon>0 ; \\
\rightarrow 0, \varepsilon \rightarrow 0 ;
\end{array} \quad S\left[\frac{H}{\theta_{c}(1+\varepsilon)}\right] \equiv 0,(13)\right.
$$

One can regard (13) as the condition of criticality of the sygtem H / θ_{c}. However, it is more convenient to us to take the formal critical-point condition in the form

$$
S\left[H-\zeta_{0} N S^{2} / \theta_{c}\right]=\left\{\begin{array}{l}
>0, \zeta_{>}>0 \\
\rightarrow 0, \tau_{0} \rightarrow 0!
\end{array}\right.
$$

Here the "ferromagnetic" term ($-T_{0} N S^{2}$) models the renormalization of the Hamiltonian, which is equivalent to the lowering of temperature below Θ_{c} in (13). Note that in view of (4) in the disordered phase (analogous to $\theta>\theta_{c}$) we have

$$
S\left[H+\rho N S^{2} / \theta_{c}\right] \equiv S\left[H / \theta_{c}\right]=0, \rho>0 .
$$

Let us now introduce, in addition to the basic order param meter S, two extra order parameters A and B, normed by the condition ${ }^{4 /}$:

$$
\begin{equation*}
A\left[H / \theta_{c}\right]=B\left[H / \theta_{c}\right]=S\left[H / \theta_{c}\right]=0 . \tag{16}
\end{equation*}
$$

We shall also suppose that the external field $h>0$ removes the system from the critical point, so that all order parameters become non-zero and all susceptibilities become finite:

$$
\begin{gather*}
\left.Y(h) \equiv Y\left[H-h N S / \theta_{c}\right]=\left\{\begin{array}{l}
\neq 0, h>0 \\
\rightarrow 0, h \rightarrow 0, \\
\mid X_{X Y}-1 \\
\left.\hline X_{X Y}[h)|\equiv| X_{X}-17 a\right)
\end{array}\right] \right\rvert\,>0, h>0, \quad(17 b) \tag{17a}\\
X, Y=A, B, S .
\end{gather*}
$$

Consider now general relationa (10) for the case of three order parameters

[^1]$$
R_{3}=N \sum_{[z,} \rho_{z}(Z-Z[r / \theta])^{2}, \rho_{z}>0,
$$ merere X, Y, Z run over $\{A, B, S\}$. choose here $\Gamma / \theta=H-$ ธTNS $2 / \theta_{c}$ and put $\rho_{S}=\zeta>0, \rho_{A}=\rho_{B}=0^{5}$. Beesides, instead of variables $X,{ }_{S}, \bar{Y}$, we enall write directly A, B, keeping in mind that A, B may coincide with each other and with $S(A=B, A=B=S$, etc.).

Then we obtain the basic relation in the form:

$$
\begin{gathered}
\chi_{A B}\left[H-\zeta N S^{2} / \theta_{c}\right]=\chi_{A B}\left[H-h(\zeta) w S / \theta_{c}\right]+ \\
+2 \zeta_{0} \chi_{A S}\left[H-\zeta N S^{2} / \theta_{c}\right] \chi_{S B}\left[H-h(\zeta) N S / \theta_{c}\right], \\
h(\zeta) \equiv 2 \zeta_{0} S\left[H-\zeta_{0} N S^{2} / \theta_{c}\right] .
\end{gathered}
$$

In view of (4) we have also for the order parameters:
$Y\left[H-\right.$ 万NS $\left.{ }^{2} / \theta_{c}\right]=Y\left[H-h(弓) N S / \theta_{c}\right], Y=A_{,} B_{,} S$. (20)
So, we have the relations which connect the characteristics of the system in the ordered phase $H-\zeta_{0} N S^{2} / \theta_{c}$ with those of the system with external effective field $h\left(C_{0}\right)(19 a)$. In order to represent these relations in a more appropriste form, let us introduce "index-function":
$\delta_{Y S}(h)=\frac{Y(h)}{h} / \frac{d Y(h)}{d h}, Y(h) \equiv Y\left[H-h N S / \theta_{c}\right]_{,(2 v)}$ $\delta_{Y S}^{*}(\zeta) \equiv \delta_{Y S}(h=h(\zeta)), Y=A, B, S, \quad(22)$ for $h(\zeta)$ bee (19a).
mhe function Sty $^{(h)}$) characterizee the ayyaptotical behavisur of $Y(h)$ as $h \rightarrow 0$ and coincides $\begin{gathered}\text { ith } \\ \text { the correa- }\end{gathered}$ ponding critical index in the case of quasi-power asymptotics. let

[^2]\[

$$
\begin{equation*}
Y(h)=h^{\frac{1}{\gamma_{r s}}} \varphi_{Y s}(h), \tag{23}
\end{equation*}
$$

\]

where $\delta_{Y S}$ is constant (critical index), and $\varphi_{Y S}(h)$ va ries as $h \rightarrow 0$ strictly slower than by the power lav. Then one can easily derive

$$
\begin{align*}
& \frac{1}{\delta_{Y S}(h)}=\frac{1}{\delta Y}+\omega_{Y S}(h), \tag{24}\\
\omega_{Y S}(h) \equiv & \frac{d \varphi_{Y S}(h)}{d h} / \frac{\varphi_{Y S}(h)}{h} \xrightarrow{h} \xrightarrow{h \rightarrow 0} 0, \tag{24a}
\end{align*}
$$ by the power law).

Note also that in view of (20) for (22) the relation is va11d:

$$
\delta_{Y S}^{*}(\zeta)=\frac{Y\left[\zeta_{0}\right]}{S\left[\zeta_{0}\right]} \frac{1}{2 \zeta_{S} \chi_{Y S}\left[H-h\left(\zeta_{s}\right) N S / \theta_{c}\right](25)}
$$

where $Y=A, B, S$; for $h(\zeta)$ see (19a). Here we have used a short notation of the form: $F[\zeta] \equiv F\left[H-\zeta N S 2 / \theta_{c}\right]$, where F is order parameter or susceptibility. We shall slso use thia notation below.

Making use of the "index-functions" and taking into account (25) and basic relation (19),(20) we obtain, in particular:

$$
\begin{align*}
& \chi_{S S}\left[\tau_{0}\right]=\frac{1}{\delta_{S S}^{*}\left(\tau_{0}\right)-1} \cdot \frac{1}{2 \tau_{0}}, \tau_{s}>0 ; \text { (26) } \\
& X_{A S}[\zeta]=\frac{\delta_{S S}^{*}(\zeta)}{\delta_{A S}^{*}(\zeta)} \frac{A[\zeta]}{S[\zeta]}\left\{\frac{1}{\delta_{S S}^{*}(\zeta)-1} \frac{1}{2 \zeta}\right\} ; \text { (27) } \\
& \chi_{A B}[\zeta]\left(1-\frac{1}{\delta_{S S}^{*}(\zeta)} \cdot \frac{x_{A S}[\zeta] x_{B S}[\zeta]}{x_{A B}[\zeta] x_{S S}[\zeta]}\right)=x_{A B}\left[\frac{H-h(\zeta)}{\theta_{c}(28)}\right. \\
& \chi_{A A}[\zeta]\left(1-\frac{1}{\delta_{S S}^{*}(\zeta)} \cos _{A S}^{2}[\zeta]\right)=\chi_{A A}\left[H-h(\zeta) N S / \theta_{c}\right] \text {, } \\
& \cos _{A S}^{2}[\zeta] \equiv\left|\chi_{A S}[\zeta]\right|^{2} / \chi_{A A}\left[\zeta_{0}\right] \chi_{S S}\left[\zeta_{S}\right] ;(29 a) \\
& \frac{\chi_{A S}[\zeta]}{\chi_{B S}[\zeta]}=\frac{\delta_{B S}^{*}(\zeta)}{\delta \stackrel{*}{*}(\zeta)} \frac{A[\zeta]}{B[\zeta]} \text {. } \tag{30}
\end{align*}
$$

Hote that here A and B may coincide with each other or S; one can interchange A and B or replace through (26) to (30) A by B or S, etc.

Pormulas (26) to (30) are exact. Por the case of quasi-
 constants as $\zeta_{S} \rightarrow 0$, and one can use these formulae to anslyse the asymptotical behaviour of the order parameters and ausceptibilities for the aystem

$$
\begin{equation*}
H-\tau_{0} N S^{2} / \theta_{c}, \quad \zeta>0 . \tag{31}
\end{equation*}
$$

However, this system is not "experimentally observable" and it would be desirable to find formulas for an arbitrary system in the ordered phase, e.g., for the system $H / \theta_{c}(1-\varepsilon), \varepsilon>0$.

Such a generalization of the above results under some additional conaitions eppaars to be possible. So, we have critical system $H / \theta_{c} ;$ consider a system in the ordered phsse $H+V / \theta_{c,}$ where V is a variation of the Hamiltonian of the ordering type, so that

$$
\left|S\left[H+V / \theta_{c}\right]\right|=\left\{\begin{array}{l}
>0, V \neq 0 \tag{32}\\
>0, V \rightarrow 0
\end{array}\right.
$$

Suppose also that the variation V is of the weak type, so that there exista such a finite value of the parameter
$\Delta=\Delta(v)>0$ that by introducing into the Hamiltonian of the "disordering" term $+\Delta N S^{2}$ by $\Delta=\Delta(V)$ we turn the syetem $H+V / \theta_{C}$ into the critical points

$$
\begin{gather*}
\frac{H_{v}}{\theta_{c}} \equiv \frac{H+V+\Delta(V) N S^{2}}{\theta_{c}}=\left\{\begin{array}{l}
\text { the critical syaten } \\
\text { with respect to } S
\end{array}\right\} \\
\Delta(V)=\left\{\begin{array}{l}
>0, V \neq 0 \\
\rightarrow 0, V \rightarrow 0
\end{array}\right. \tag{33}
\end{gather*}
$$

It is mufficiently now to take in (26)-(30), instead of H / θ_{c}, the system (33) and put $\tau_{c}=\Delta(V)$. Then $H-\zeta N S^{2} / \theta_{c}$ passes to $H+V / \theta_{C}$ and $H-h(\zeta) N S / \theta_{c}$ passes to $H_{V}-h(V) N S / \theta_{C}$, where $H V / \theta_{C}$ is the critical syatem (33) and

$$
\begin{equation*}
h(V) \equiv 2 \Delta(V) S\left[H+V / \theta_{c}\right] \tag{34}
\end{equation*}
$$

As a simple example of the system $H+V / \theta_{c}$ one can take the initial one for $\theta<\theta_{c}$:

$$
\begin{equation*}
H / \theta_{c}(1-\varepsilon), \quad \varepsilon>0 . \tag{35}
\end{equation*}
$$

It is quite clear that for a wide class of systems, e.g., for the Iaing-type lattice models, the temperature variation will be of the "weak ordering $\mathrm{f}_{\mathrm{t}}^{\mathrm{z}} \mathrm{p} \mathrm{e}_{\mathrm{g}}$ " in the above sense.

Introduce short notation:
$F[v] \equiv F\left[H+V / \theta_{c}\right], F=A, B, S, X_{A B}$, etc., (36)
$\delta_{Y S}[v]=\delta_{Y S}^{(v)}\left(h=2 \Delta(v) S\left[H+v / \theta_{c}\right]\right)$,
where $\mathcal{O}_{Y S}^{(V)}(h)_{\text {is }}$ the function (21) for the system $H_{v}-h N S / \theta_{c}$ On the basis of (26) to (30) we then obtain:

$$
\begin{aligned}
& \chi_{S S}[V]=\frac{1}{\delta_{S S}[v]-1} \frac{1}{2 \Delta(v)} ; \\
& \chi_{A B}[v]=\frac{\delta_{S S}[v]}{\delta_{S S}[v]-C_{A B S}[v]} \chi_{A B}\left[\frac{H_{v} h(v) N S}{\theta_{C}}\right]_{9}(39) \\
& C_{A B S}[v] \equiv \chi_{A S}[v] \chi_{B S}[v] / \chi_{A B}[v] \chi_{S S}[v] ; \\
& \chi_{A S}[v]=\frac{\tilde{\delta}_{S S}[v]}{\tilde{\delta}_{S S}[v]-1} \chi_{A S}\left[H_{v} h(v) N S / \theta_{C}\right] ; \text { (40) } \\
& \chi_{A A}[v]=\frac{\delta_{s s}[v]}{\delta_{s s}[v]-\cos _{A S}^{2}[v]} \chi_{A A}\left[H_{v} h(v) N S / \theta_{C}\right]_{g}^{(41)} \\
& \chi_{A S}[v] / X_{B S}[v]=\delta_{B S}[v] A[v] / \delta_{A S}[v] B[v] ; \text { (42) } \\
& \text { and also (see (20)) } \\
& Y\left[H+V / \theta_{c}\right] \equiv Y\left[H_{V}-h(V) N S / \theta_{c}\right],(43) \\
& Y=A, B, S \text {, }
\end{aligned}
$$

where for the field $h(V)$ in (39) to (43) we have, taking into account (38):
$h(v)=2 \Delta(v) S\left[H+v / \theta_{c}\right]=S[v] /\left(\delta_{S S}[v]-1\right) x_{S S}[v]$. (44)
So, we have obtained a aet of exact relations for the case of weak ordering variation of the Hamiltonian V, which we can specify, for example, as the temperature variation. These relations, however, involve the auxiliary critical syatem H_{V} / θ_{c}. If we accept the physical asaumption that pusaing from H / θ_{c} to $H V / \theta_{c}$ does not change the behaviour of the index-functions $\delta_{Y S}(h)$ (or at least their limit values), we then get a set of functional relations establishing the connection between the critical characteriatics of the systems $H+V / \theta_{c}$ and $H-h N S / \theta_{c}$.

These relations demonatrate the exiatence of interrelations in the critical behaviour of the order parameters and susceptibilities. Under concrete assumptions on the critical asymptotics of these quantities one gets relations for the parameters of these abymptotica (critical indices and amplitudes).
3. Let us consider in more detail the consequences of our relations for the case of two order parameters S and L correaponding to the external magnetic field and variation of temperature: $H-h N S / \theta_{c}(1-\varepsilon)$. Note that the temperature order parameter L is proportional to the Hamiltonien ($L \backsim H / N$) and $X_{L L}$ is the specific heat of a system.

In this case there are six independent functions of interest: $S(\varepsilon), L(\varepsilon), \chi_{s s}(\varepsilon), S(h), L(h), \chi_{L L}(h)$, for which we suppose the power asymptotics with logarithmic corrections to hold true:

$$
\begin{align*}
& S(\varepsilon)=B \varepsilon^{\beta}|\ln \varepsilon|^{P_{\beta}} \\
& L(\varepsilon)=\frac{A-}{\alpha(1-\alpha)} \varepsilon^{1-\alpha}|\ln \varepsilon|^{P_{\alpha}}, \tag{45}\\
& \chi_{S S}(\varepsilon)=\Gamma_{-} \varepsilon^{-\gamma|\ln \varepsilon|^{P_{\gamma}}},
\end{align*}
$$

$$
\begin{align*}
& S(h)=(h / D)^{1 / \delta}|\ln h|^{P_{\delta}}, \\
& L(h)=Z h^{\zeta}|\ln h|^{P_{亏}^{5}},\left(\zeta \equiv 1 / \delta_{L 5}\right), \\
& X_{L L}(h)=E h^{-\epsilon}|\ln h|_{,}^{P_{E}}, \tag{45}
\end{align*}
$$

where the critical indices $\alpha, \beta, \gamma, \delta, \tau_{0} \in$ are positive numbexs, $\delta>1,1>\propto>0$; the logarithmic indices $P_{\alpha}, P_{\beta}, P_{\gamma}, P_{\delta}, P_{\tau_{0}}, P_{G}$ are arbitrary real numbers; the critical amplitudes $A-, B, \Gamma_{-}, D, Z$, E are positive numbers. Here we have used a short notation of the forms $F(\varepsilon) \equiv F\left[H / \theta_{c}(1-\varepsilon)\right], F(h) \equiv F\left[H-h N S / \theta_{c}\right]$.

We shall assume the temperature variation to be weak, Bo, we can introduce the auxiliary critical ayatem (aee (33)):

$$
\frac{H_{\varepsilon}}{\theta_{c}} \equiv \frac{H+\Delta(\varepsilon) N S^{2}}{\theta_{c}(1-\varepsilon)}=\left\{\begin{array}{l}
\text { the criticail } \\
\text { ayatem }
\end{array}\right\}^{(46)}
$$

We shall also assume that the asymptotics like in the last three relations in (45) remain valid for the case of the gystem (46).

Let us now specify the syetem $H+V / \theta_{C}$ in (38),(41)(44) as $H / \theta_{c}(1-\varepsilon)$, and the aystem H_{V} / θ_{c} as (46), and put $A=L, B=S$. We then get (under the above assumptions) a set of relations for the critical parameters in (45). Famely, we obtain for critical indices:

$$
\begin{array}{ll}
\gamma=\beta\left(\delta^{0}-1\right), & \zeta^{0}(\gamma+\beta)=1-\alpha \tag{47}\\
\gamma+2 \beta+\alpha=2, & \epsilon^{0}(\gamma+\beta)=\alpha,
\end{array}
$$

for logarithmic indices:

$$
\begin{aligned}
\delta^{\circ} P_{\delta}^{0}=P_{\gamma}+P_{\beta}\left(\delta^{0}-1\right), & P_{\zeta}^{0}=P_{\alpha}+\sigma^{0}\left(P_{\gamma}-P_{\beta}\right)_{(48)} \\
P_{\alpha}+P_{\beta}=2 P_{\gamma}, & P_{\epsilon}^{0}=P_{\alpha}+\epsilon^{\circ}\left(P_{\beta}-P_{\gamma}\right),
\end{aligned}
$$

and for critical amplitudes:

$$
\begin{align*}
& \left(\delta^{0}-1\right) \Gamma_{-} D^{0} B^{\delta^{0}-1}=(\gamma+\beta)^{\delta^{0} P^{0}} \tag{49}\\
& \frac{\alpha(1-\alpha) Z^{0}}{A-}\left(\frac{B}{\left(\delta^{0}-1\right) \Gamma_{-}}\right)^{\zeta_{0}^{0}}(\gamma+\beta)^{P_{亏}^{0}}=1 \\
& \alpha \beta^{2} B^{2} / A-\Gamma_{-}=1 \\
& \frac{\alpha \delta^{0} E^{\circ}}{\left(\delta^{0}-1\right) A}\left(\frac{B}{\left(\delta^{0}-1\right) \Gamma_{-}}\right)^{-\epsilon^{0}}(\gamma+\beta)^{P_{\epsilon}^{0}}=1
\end{align*}
$$

Here the superacript O means that the corresponding parameters belong to the auxiliary oritical system (46).

The relations (47) (if we omit the auperacript O) are well-known quasi-phenomenological acaling laws $/ 6 /$. These relations are confirmed by numerous experimental studies and by results for the Ising model and some other simple concrete models ${ }^{6 /}$. So, we have an argument in favour of our assumption that the critical behaviour of the systems H / θ_{c} and $H V / \theta_{c}(46)$ is similar (and even the same on the level of critical indices). We can also hope that the relations (48) for the logarithmic indices remain hold true even if we omit superscript O therein? However, for the critical amplitudes (see (49)) it seems to be wrong in the general case. Nevertheless, one can use (49) for approximate estimates.

Por an additional disceussion of the relations for critical indices see Appendix C.
4. Let us give a few remarks on the disordered phase. As the aimpleat example of the system in the disordered phase, we shall take

[^3]\[

$$
\begin{equation*}
H+\rho N S^{2} / \theta_{0}, \rho>0, \tag{50}
\end{equation*}
$$

\]

where H / θ_{C} is our critical "ferromagnetic" system with

$$
\begin{equation*}
\chi_{S S}\left[H / \theta_{c}\right]=+\infty, S\left[H / \theta_{c}\right]=0 \tag{51}
\end{equation*}
$$

(11a): Consider first the case of only one order parameter S in

$$
\begin{equation*}
\chi_{s s}^{-1}\left[r+\rho N(s-s[r / \theta])^{2} / \theta\right]=\chi_{s s}^{-1}[r / \theta]+2 \rho . \tag{52}
\end{equation*}
$$

Passing here to the limit $\Gamma / \theta^{\rightarrow} \rightarrow H / \theta_{c}$ and taking into account (51) we get (see also /5/):

$$
\begin{equation*}
x_{S S}\left[H+\rho N S^{2} / \theta_{c}\right]=\frac{1}{2 \rho}, S\left[H / \theta_{c}\right]=0.1 \tag{53}
\end{equation*}
$$

In the general case of n order parameters S_{α} we can suppose that the inverse matrix of susceptibilities X^{-1} (se e(8)) becomes zero at the critical point:

$$
X^{-1}[\Gamma / \theta]=\left\{\begin{array}{l}
\neq 0, \Gamma / \theta \neq H / \theta_{c} \tag{54}\\
\rightarrow 0, \Gamma / \theta \rightarrow H / \theta_{c}
\end{array}\right.
$$

Then in view of (11a) we obtain:

$$
\begin{gathered}
x^{-1}\left[H+R_{n} / \theta_{c}\right]=2 \hat{\rho} \\
x_{\alpha \beta}\left[H+N \sum_{\gamma=1}^{n} \rho_{\gamma}\left(S_{\gamma}-S_{\gamma}\left[H / \theta_{c}\right]\right)^{2} / \theta_{c}\right]=\frac{1}{2 \rho_{\alpha}} \Delta_{\alpha \beta}^{(55 a)}
\end{gathered}
$$

where $\Delta_{\alpha \beta}$ is the Kronecker symbol.

APPENDIX A.
Let Γ / θ be an arbitrary system, N be the number of particles in the system, $A=A^{+}$and $B=B^{+}$be hermitian operators (order parameters). Then the generalized susceptibility $\chi_{A B}[\Gamma / \theta]$ is defined as follows:

$$
x_{A B}[\Gamma / \theta]=\left(\frac{\partial}{\partial h}\langle B\rangle_{\Gamma-h N A / \theta}\right)_{h=0}=\left(\frac{\partial}{\partial h}\langle A\rangle_{\Gamma-h N B / \theta}\right)_{h=0}(A 1)
$$

and the following representation holds true:

$$
\begin{aligned}
& \left.X_{A B}[\Gamma / \theta]=\frac{N}{\theta} \int_{0}^{1} \tilde{A}(\tau) \tilde{B}\right\rangle_{r \mid \theta} d \tau ; \\
& \tilde{A}=A-\langle A\rangle_{r / \theta}, \tilde{B}=B-\langle B\rangle_{r / \theta} ; \tilde{A}(\tau)=e^{\tau \frac{\Gamma}{\theta}} \tilde{A} e^{\tau \tau \Gamma}
\end{aligned}
$$

where $\langle\because\rangle_{r / \theta m e a n s ~ t h e ~ e q u i l i b r i u m ~ G i b b s ~ a v e r a g e ~ f o r ~ s y s t e m ~}^{\text {m }}$ $\Gamma / \theta^{8 /}$

$$
\begin{equation*}
\langle\ldots\rangle_{r / \theta}=\frac{I_{r}\left(\ldots e^{-\Gamma / \theta}\right)}{I_{r} e^{-\Gamma / \theta}} \tag{AB}
\end{equation*}
$$

In the case of non-hermition operators $A \neq A^{+}, B \neq B^{+}$the susceptibility is defined analogously:

$$
\begin{aligned}
& \chi_{A B}[\Gamma / \theta]=\left[\frac{\partial}{\partial h^{*}}\langle B\rangle_{\left.\Gamma-N\left(h^{*} A+h A^{+}\right) / \theta\right] h^{*}=0}\right. \\
& \chi_{A^{+} B}[\Gamma / \theta]=\left[\frac{\partial}{\partial h}\langle B\rangle \Gamma-N\left(h^{*} A+h A^{+}\right) / \theta\right]_{h^{*}=0, \text { etc. }}
\end{aligned}
$$

The representation (A2) remains valid also in this case. Making use of (A2) one can show $/ 2 /$ that the bilinear form $X_{A B}+[\Gamma / \theta] \equiv$ $\equiv \chi_{B^{+} A}[\Gamma / O]$ can be treated as the scalar product of the operators (A, B).

8/ In the above considerations susceptibility appears as a derivative not of the common averages, but of the quasi-averages (see (3)). However, this difference does not matter much, since for "regular" systems the operations of differentiating and passing to the limits in (3) commute, while "singular" points (egg. the critical point) are considered by the limit procedure in final results.

APPENDIX B.
One can easily extend the acheme described above to the case of non-hermitien order parameters $S_{\alpha}, S_{\alpha}^{+}\left(S_{\alpha} \neq S_{\alpha}^{+}\right), \alpha=1_{3}, n$. Conditions (2) should be euplemented by $\left|S_{\alpha} S_{\beta}^{+}-S_{\beta}^{\dagger} S_{\alpha}\right| \leqslant K_{3} / N$. As before, the identities (4) for quasi-averages hold true, being now the complex identities; now in (4)

$$
R_{n}=\sum_{\gamma=1}^{n} \rho_{\gamma}\left(S_{\gamma}-S_{\gamma}[\Gamma / \theta]\right)\left(S_{\gamma}^{+}-S_{\gamma}^{+}[\Gamma / \theta]\right), \rho_{\gamma}>0_{0}^{(A 5)}
$$

Introducing a set of susceptibilities
$\chi_{\alpha \beta^{*}} \equiv \chi_{\beta^{*} \alpha}=\chi_{S_{\alpha} S_{\beta}^{+}}, \chi_{\alpha \beta} \equiv \chi_{\beta \alpha}=\chi_{\delta_{\alpha} S_{\beta}}$, $\chi_{\alpha^{*}} \beta^{*} \equiv \chi_{\beta^{*} \alpha^{*}}=\chi_{S \alpha}^{+}{ }_{S}^{+}{ }_{\beta}$, and with the reesoning analogoua to those when substantiating (10), we obtain the relations generalizing (10)(we omit θ for simplicity):

$$
\begin{align*}
& x_{\alpha \beta^{*}}(\Gamma)=x_{\alpha \beta^{*}}\left(\Gamma+R_{n}\right)+ \tag{A6}\\
& +\sum_{\gamma=1}^{n} \rho_{\gamma}\left[\chi_{\alpha \gamma *}\left(\Gamma+R_{n}\right) \chi_{\gamma \beta *}(\Gamma)+\chi_{\alpha \gamma}\left(\Gamma+R_{n}\right) x_{\left.\gamma * \beta^{*}(\Gamma)\right]}\right. \\
& x_{\alpha \beta}(\Gamma)=\chi_{\alpha \beta}\left(\Gamma+R_{n}\right)+
\end{align*}
$$

$+\sum_{\gamma=1}^{n} \rho_{\gamma}\left[X_{\alpha \gamma}\left(\Gamma+R_{n}\right) X_{\gamma * \beta}(r)+X_{\alpha \gamma *}\left(\Gamma+R_{n}\right) X_{\gamma \beta}(r)\right]$, (plus complex conjugated relations). These relations can be also written in the matrix form (see (11)).

It should be noted that the relations (A6) are not more general, in principle, than (10) for hermitian order parameters. Since
S_{2}^{2} one can always write $S_{\alpha}=S_{\alpha}^{1}+i S_{\alpha}^{2}$, where S_{α}^{1} and S_{α}^{2} are bermitian, (A6) are equivalent to a set of relations for hermitian $S_{\alpha}^{1}, S_{\alpha}^{2}(\alpha=1, \ldots, n)$ analogous to (10).

The simplification occurs in the special case when in view of the aymmetry of the system $\Gamma / \theta \quad \chi_{\alpha \beta} \equiv \chi_{\alpha^{*} \beta^{*}} \equiv 0$
 $\chi_{\alpha \beta^{*}}(\Gamma)=\chi_{\alpha \beta *}\left(\Gamma+R_{n}\right)+\sum_{\gamma=1}^{n} \rho_{\gamma} \chi_{\alpha \gamma *}\left(\Gamma+R_{n}\right) \chi_{\gamma \beta *}(\Gamma)(A 7)$
These relations coincide with (10) (with evident replacementa $\chi_{\alpha \beta} \rightarrow \chi_{\alpha \beta^{*}}$ and $\left.R_{n}(4) \rightarrow R_{n}(A 5)\right)$ with the only diffe-
rence: instead of $2 \rho_{\gamma}$ in (10) we have ρ_{γ} in (A7).
In a particular case of one order parameter S we can derive, on the basis of (A7), the relation analogous to (53):
$\chi_{S S}+\left[H+\rho N S S^{+} / \theta_{C}\right]=\frac{1}{\rho}$,
$\left(x_{S S}\left[H+\rho N S S+/ \theta_{c}\right] \equiv \chi_{S+S}+[H+\rho N S S+/ \theta] \equiv 0\right)$, where $\rho>0, H / \theta_{c}$ is the critical syatem, $S\left[H / \theta_{c}\right]=0$.

APPENDIX C.
Let us return to the relations (38)-(44) (Section 2) for the system $H+V / \theta_{C}$. Assume that the variation V is characterized by a small parameter $\xi>0, V \equiv V(\xi) \rightarrow 0$ as $\xi \rightarrow 0$, and that the quasi-power asymptotics hold true:
$\chi_{X Y}(\xi) \sim \xi \xi^{-\lambda}, Y(\xi) \sim \xi D_{Y}, \chi_{S S}(\xi) \sim \xi_{\xi}-\gamma$, $S(\xi) \sim \xi^{\beta}, \chi_{X Y}(h) \sim h^{-M_{X Y}, Y(h) \sim h^{1 / \delta_{Y S}}, ~}$ $S(h) \sim h^{1 / \delta_{s s}}\left(\delta_{s s}>1\right)$; where $F(\xi) \equiv F[V(\xi)]$, $X, Y=\{A, B, S\}$.

Then on the basis of (40) to (44) we obtain the following relations for the critical indices:

$$
\begin{aligned}
& \lambda_{X S}+D_{X}=\lambda Y S+\nu_{Y,} \lambda_{Y S}=(\gamma+\beta) \mu_{Y S{ }_{Y}{ }_{(19)}}^{0} \\
& D_{Y} \delta_{Y S}^{0}=\gamma+\beta, \quad \lambda Y Y=(\gamma+\beta) \mu_{Y}^{\circ}{ }_{Y Y} \text {, }
\end{aligned}
$$

where $X, Y=A, B, S$. Eram 639) we also find that one of the following three poesibilities hold trues
a) $\lambda_{A B}=\left(\gamma+\beta \lambda_{A B}^{0}, \lambda_{A S}+\lambda_{B S}<\lambda_{A B}+\gamma ;(110)\right.$
b) $\lambda_{A B}+\gamma=\lambda_{A S}+\lambda_{B S}$, $(\gamma+\beta) M_{A B}^{\circ}<\lambda_{A B}$;
-) $\lambda_{A B}=(\gamma+\beta) M_{A B}^{O}=\lambda_{A S}+\lambda_{B S}-\gamma$.
The edditional euperacript O in (49), ((10) means that the eorresponding quantities velong to the auxiliery oritical ane tom (33).

Acknowledgemente

The author would like to thank Prof. N. N.Bogolubov, Jr. for valuable discussions.

References

1. Kadanoff L.P. In "Phase Traneitions and Critical Phenomena", vol.5A, ed. C.Domb and M.S.Green, 1976, p.1.
2. Bogolubov N.N. Preprint JINR D-781, Dubna, 1971 (ses also: Bogolubov N.N. Lectures on Quantum Statistics. vol.2. Qua-Bi-Averages., M.Y., Gordon and Breach, 1971).
3. Bogolubov N.N., Jr. TMF, 1970, 5, p. 136.
4. Bogolubov N.N., Jr. A Method for Studying Model Hamiltonians. Pergamon Press, Oxford, 1972.
5. Plechko V.N. Preprint JINR, E17-12818, Dubna, 1979.
6. Stanley H.E. Introduction to Phase Transitiona and Critical Phenomena. Clarendon Press, Oxford, 1971.

[^0]: 1/We shall not discuss here the physical reasoning why the study of several order parameters in the critical region is of interest, for details see, egg., ref./i/.

 2/ The case of non-hermitian order parameters, which is in fact not more general, is discussed in Appendix B.

[^1]: 4/We shall often call "order parameter" both averages and operatore.

[^2]: 5/Here $\rho_{A}=0, \rho_{B}=0$ is meant in the sense of the limit $\rho_{A} \rightarrow 0, \rho_{B} \rightarrow 0$. Such a limit procedure is possible if no one of susceptibilities in (18) becomes $\pm \infty$. This condition holds true due to (17b) if $\zeta>0$ (see below).

[^3]: 6/To be more exact, we must note that in full measure this is just so only for the two left equalitios in (47).
 $7 /$ It is worth to note that in practice the logarithmic corrections are rare, more often $P_{\alpha}=P_{\beta}=P_{\gamma}=P_{\delta}=P_{\zeta}=P_{\epsilon}=0$.

