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1. INTRODUCTION 

The substitution of an operator in the interaction term 
by a c-number forms the basis of many approximations. ·In 
the Hartree approximation the relevant operator is substi­
tuted by its mean value. More sophisticated approximations 
use random c-numbers with an appropriate distribution 
function. The alloy analogy approximation / 1/ for the Hub­
bard model is of this type. In the equations of motion of 
the electron subsystem with spin up the particle number 
operators n i + are replaced by c -numbers v i+ randomly dis­
tributed over the values 0 or 1 with fixed averages < vi+ >v= 

= <ni+ >.Also the treatment of the electron-phonon interac­
tion in a disordered system by Chen et al. 121 belongs to 
this type. There, the linear combinations y sib 5 + y ;i b +s 
of phonon operators are replaced by random c-numbers with 
a Gaussian distribution. 

Of course, such schemes are limited in approaching the 
exact behaviour if only time-independent c-numbers are 
used. To our knowledge the first who replaced an operator 
by a time-dependent c -number in a many body problem were 
Nozieres and De Dominicis 131 in their treatment of x -ray 
absorption and emission in metals. The particle number ope­
rator of the deep hole is there substituted by a given c­
number function of time. The replacement is exact, and as 
a consequence of the simple form of the Hamiltonian the 
c-number is not random (see also ref. 161 ). 

The application of the Hubbard-Stratonovich transforma­
tion to the Anderson model and the Hubbard model (compare, 
e.g., ref. 141 ) leads to exact expressions for the partiti­
on function or Green functions, where operators in the in­
teraction terms are replaced by time-dependent random c -
numbers. Because the Hubbard-Stratonovich transformation 
applies to quadratic interactions the interaction terms 
first have to be rewritten identically which much compli­
cates the situation. 

In refs. / 5,6 / we considered the Hubbard interaction 
term U f nit n i + in its original simple form and showed 
that the Hubbard problem can be exactly transformed into 
a problem of band electrons with spin a interacting with 
time-dependent random potentials Uv i, -o (t) , The stochastic 
process vi -a (t) jumps between the values 0 and 1. In 
ref. 151 th~ probabilities are determined implicitly by the 
requirement that all l'i -a -correlation functions have to 
coincide with all T-ordered ni -a -correlation functions; 
in ref. 16 / an explicit, however f~rmal,expression for the 
probabilities is derived. 
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In Sec . 2 of this paper we again c o nsider the stoc hastic 
process v for the Hubbard model. Starting from the Gr een 
function represented as a functional integral we construc t 
by partially evaluation of this functional integral the 
probability measure of the stochastic process explicitly. 
The (free) process is like a Binomial process in the Pois­
son limit, jumping between 0 and 1; however it has to be pe­
riodic because of the periodicity condition for Bose-type 
operators in quantum statistical thermodynamics. 

In Sec. 3 we consider a simple electron-phonon interac­
tion model using the functional integral representation to 
substitute the phonon operators by a stochastic process. 
The free process turns out to be Gaussian and periodic. 

The situation in quantum statistical thermodynamics is 
similar to that in Euclidean quantum field theory (compare, 
e.g. , ref. / 7/ ) • The imaginary time is even more "natural" 
in quantum statistics. The type of the free process depends 
on the unperturbed Hamiltonian and the substituted operator. 
However, the Markovian property known in quantum field 
theory is obviously destroyed here by the periodicity con­
dition. 

2. THE STOCHASTIC PROCESS FOR THE HUBBARD MODEL 

The Hamiltonian of the Hubbard model is given by 

H=~ t 1ja~aap-otU~n1 tni!, (1) 
~ 1 

with ti~=-J.L ( fL chemical potential), t <ij> =t (<ij > means 
nearest nei-ghbours) , and for simplifying the discussion 
t .. =0 otherwise. The thermodynamical Green function of 
th~ spin ·t electron subsystem (interacting via the last 
term in (1) with the spin ! subsystem) can be represented 
as a functional integral / 8-10 / : 

+ 
Gt(jr, j'r') : - < Ta .-r(r)a.,(r') > = 

J J t 

f
D D + D D + a . (r) a+, (r , ) e S 

af af a! a! Jf J f 
(2) 

fD + . +S a fDa t Da! Da ! e 

with the action 

f3 + a 
S = - f dr l ~ a. -a. + HI. 

0 j a lU ar l U 
(3) 
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+ 
We use imaginary time t = - iT , T ~ r 0, f3]. The a' a are Grass-
mann variables, totally anticommuting (including the dif­
ferentials), and antiperiodic on the time interval: 

a . (0) =-a. ({3). 
)(}' 1(7 

(4) 

For the following we define the functional integral in the 
simplest way as a multiple integral on the equidistant time 
points rf = ft>r , f =0,1, . .. , L-1, with r 0 = 0 and rL =L/\r = f1, 
L -+ oo. Then 

+ L-1 .;, 
D a! Da! = II d a . , (r 0 ) d a . (r 0 ) , 

i,f=O I~ l 1! l 
(5) 

and we use the standard integrals 

fdaia = fda;a = 0, 
(6) 

+ + 
faiO daia = faia da ia = 1. 

For the derivative term inS we write 

f3 L- 1 a (r 0 ) -a (r 0 ) 

f d 
+ a ~ + ( ) i! I + 1 i! [ A 

T a -a = "'- a T n "r . 
0 i! ar i ! f = 0 i! I Ar 

\7) 

(7) could be written in a more symmetrical form, but this 
simpler form gives the same results. 

Now we partially evaluate the functio~al integrals in 
(2) by performing the integrations D a! D a! over the va­
riables of the spin ! subsystem. We consider the integral 
in the denominator of (2): 

+ s 
fDa!Da!e 

+ + =fDa Da II ll-a. (rn)a. (rn+ 1 ) + 
! !if HL I!t 

+ a+ ( r n ) a . ( T 0 )( 1 + 11t>r - U n (r 0 ) t>r) I x 
1 ! l u l it l 

+ 
x ll - ~ t . . a . (r f) a . (r f) t>r I = 

j(~i) IJ I! H 

(8) 

fDa Da +n ll-A . e+B.fexp[(/1-Un. (r 0 ))~rJill- ~ T .. f I. 
! ! if I I I t t j (~ i ) IJ, 
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The expansion of the exponential in the first equation of 
(8) is exact because of a~ (r n) = 0 . The integral is only 

IV L 
different from zero if any a , a + appears once. We get 3 
typical combinations: 

(i) products of B if multiplied by 

exp[(IL-Unit(r f ))vi+ (rf )1'1r1with v . (r 0 ) = 1 ; 
I .0 L 

( ii) products of A if multiplied by the same exponential 
with v i+(r f ) = 0 . 

(iii) single transfer factors T .. n changing 
IJ, L 

v i+ from 0 to 1, 
vj+ from 1 to 0. 

The final result is the following. The Green function is 
represented as 

G t(j r, j'r ') = - I P 0 [ v + ]Dv JDa tDa ~ a j t (r) a;, t(r ')eSt[ v + ] 

s [ v l 
I P [ v ] Dv IDat Da + e t + 

0 .. .. t 

'(9) 

with 
f3 

+ a + 
S t[ v ] =-I dr I ::£ a --a + ::£ t a a + 

.. . i t a it . . ij jt j t 
Q I T IJ 

+ ~(-j.t + U a; tai /r)) vi+ (r) 1. 
I 

(10) 

Eqs. (9,10) describe band electrons with spin t moving in 
stochastic potentials U v. (r). For practical calculations 
it is convenient to returh+ to the operator representation 
with respect to the a t• a~ • The stochastic process v + 
defined by the probability measure P

0 
has the following 

characteristic properties: 
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(i) v . (r) = 0 
I.> 

v . (0) = v. ({3) 
u I+ ' 

only periodic realizations are allowed, 

::£ v (r) = N , 
. i.. .. 
I 

(11) 

(12) 

(13) 

particle number conservation for the N ,. electrons 
with spin+. 

(ii) The process shows features analogous to a Binomial 
process in the Poisson limit. At any time rf the 

i 
. ~ 

• 

(unnormalized) probability for no jump is equal 
to 1, the (unnormalized) probability for a jump is 
t l'1 r ; in the Poisson limit Ltl'1r = tf3 = const 
for 1'1 r ... 0. It is essential that a jump is under­
stood as a change of two variables: a change of 
a Vi .0 at a time T f and a Change Of a neighbouring 
v .,. in the opposite sense at the same time. Thus, 
tlie normalized probability for an allowed trajecto­
ry v,. (this means for an allowed set of functions 
v p (r ) for all i,r) with r[v,.] jumps is 

p [ v ] 
0 .. 

r[ v + ] 
(tf1 T) 

r[ v ] 
I Dv + (tl'1r) + 

allowed 
trajectories 

(14) 

We draw attention to the essential fact that the perio-
dicity condition (12) excluding nonperiodic trajectories 
so to say "at the end r = f3 of the process obviously dest­
roys the Markovian property of the process. 

3. THE STOCHASTIC PROCESS FOR THE ELECTRON-PHONON MODEL 

We consider a simple Hamiltonian used for the calculation 
of the temperature dependence of the electrical resistivity 
in disordered alloys / 2/ : 

+ + 
H = ~ ti j a ia a ja + ::£s ws b s b s + 

IJ 
a 

+ ::£ ataaia (yisbs+ Y~ b+) 
ia IS S 
s 

b s , b: are the annihilation, creation operators for 

(15) 

a phonon of mode s with. energy ws;y 18 describes the elect­
ron-phonon coupling, for simplicity the interaction is rest­
ricted to terms with no transfer of electrons. We again 
represent the Green functions by functional integrals, and 
the action is now 

f3 + a a 
S = - I d r I ::£ a . -- a 1 + ::£ {3'!- - f3 + H l . 

0 ia IV ar a S S ar S 
(16) 

The a , a+ are Grassmann variables, the f3, f3 * are complex 
c -numbers. 
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The probability measure for the stochastic process ~ 
can be easily seen from (16) to be 

Po[~]= n expl[-_!_ ~~(rl'+l)+~:(rl') 
sJI 2 2 

~ ~ (r I' + 1 ) - ~ s (r I' ) 
f"lr 

+ 

(17) ~*(rn ) -~8*C..re) ~ 8(7 1'+ l)+~s(rjl) _ tH (rn)~ (rn)]Llr I. 1 
S L + f W

8 
1-' S l S L +- 2 2 Llr 

h • b . ( f / 11 /.) T e process 1s o v1ously Gaussian compare, e.g., re. . 
Again, this process is not Markovian because of the perio­
dicity condition 

~ (0) = ~ (~). s s (18) 

To compare with the static approximation of Chen et al. 
(ref. 

1 21 
) we use Fourier transformation~ 

1 - -iw r 
~ 8 (r)= ~lh ~ ~ 8 (wn)e n , wn=2nrr / {f, (19) 

and obtain for the probability 

- 2 
Po [,BJ = n exp! (iw -w ) I~ (w >I I 

n s s n sn 
(20) 

For high temperatures, ~w 8 << l, the nonstatic contribu­
tions (n ;itl) can be neglected, and we arrive at 

pstat[.BJ=n exp!-~w I~ 121 
0 s s s (21) 

in accordance with ref. 1 21
• 
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