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l._Introduction 

Here we consider the calculation of the many-boson averages 
for a class of many-body model systems with the interaction of 

substance and finite number of modes of a boson field ( the 

Dicke-type models). The corresponding generalized Hamiltonian ~ 

n. + 11. + 
H =ZCJotao(a:o( +fo.L: (~! Lez~.. a.~+ 

~=1 o<.=i + n + · (1) 

t ~oeLo<ao<.)-t T -NL'de.KLO(L.,., 
o(.-=1., 

+ 
where aol) all( are boson operators, 

+ ' + 
a..oi a..1 - a~ ao~. -

+ + 

{ 
1..' D(= f' 
o, o(:j.~' 
0 , 

Lei, Lot' T::: T are operators of "substance subsystem" or 

" L -subsystem• l) , /II is the number of particles in the 
"substance"; Woe., Qe 0(. are real parameters, Wa~.-, 0, 

(2) 

Qe a(~ 0 ; ?. D( 
7 

'A"! are complex parameters. The L-subsystem 
operators should satisfy only the following s~ficiently general 

oondi tions: 

II Lc( II L K-1.' 

II L ol T - T L ... II i:. K 2. ' 

l)The name WL-subsystem" comes from the notation of the 

operators L o1. 

(Ja) 

(Jb) 



{
I LQ(LI -L_~Lo{/1 ~ }::3 /AI, 
{/ t«LJ- Lf Lt II ~ 1<3 /;V, 

where //,., II means the operator norm, ICi, )(2., k3 
are constants independent of AI • The Hamiltonian (1) is 
defined in the space 

(Jc) 

(/{ = 1{L @ 'J.e B , (4) 

where 'deB is the Fock space of the boson subsystem, r;Je.L. 
is the Hilbert space of L-subsystem, 

One of the best known concrete models covered by (1) is just 
the Dicke maser model, which has been proposed ( in the original 
form) in 1954. This model represents a great number J\/ of two
-level atoms coupled to one mode of a quantized radiation and 
finds applications in the theory of coherent radiation. In 
1973 K.Hepp and E.Lieb have obtained the asymptotically exact 
( in the thermodynamical limit N~ Oo ) solution of the Dicke 
model and discovered and described the "superradiant" phase 
transition in the system. These important results have stimulated 
the intensive study of the different modifications of the Dicke 
model and other models of similar mathematical structure in 
diffe.rent branches of solid-state physics and statistical me
chanics, and also initiated the developement of the mathemati
cally rigorous methods for studying such systems ( see, in parti
cular, refs./ 1-26/ and references therein), 

The most general results for the basic class of models 
(1) ~ere obtained in ref. Ill , where the whole class has been 
examined from a unique standpoint, based, in part, on the ideas 
of the method af "approximating Hamiltonians" 127/ • In parti
cular, it was shown that in the thermodynamical limit A/_,. 00 

the free energy for the system with Hamiltonian (1) coincides 
with the free energy of a simplified approximating system With 
the Hamiltonian 11. + 

H A (c)= r -NL. fjc/. (crJ.L~ + c: Lx)+ ) 
n. &1(=1.. (5 

-+ N L. '!"' I c« !2., ~o<. = 'de~-+ /?.,c 12/ c.J o( , 
o< ... i_ 

2 

, 

[-

• 

where complex variational parameters C oc. should be defined 
from the condition of absolute minimum of the 1imi t ( N ~ oo ) 

2) --free energy of the system (5) • Denote these values as ~~ 

foo [ HA (c)]= rds 
J) 

~vtt00 [HA(c)], (5a) 

C,x=Ccx. 
So /1/ 

I+N[H]- +oo[HA (c)]\ N~oo o.(6) 

In ref,/ 6/ a method for the correct definition of quasi
-averages for the class of models (1) was under discussion. 
It was proposed to introduce quasi-averages on the basis of the 
Hamiltonian 

H-e =: 
n. + If- lf)( a. "' '). o{ - Cl. o( -T H -t .2 N ~1.'t'Q. WG( ( ~ + VJ c/. col, 1/N (7) 

i- 'Ao<. - \ 
Wc/. Co<)' lc( /0 

' 
where H is the Hamiltonian (1). Then quasi-averages should 
be defined by the rule 161 

-<···'?. = 
H 

k ~ <'·. ·/H"t; ' 1:11(~0 N~t>O 

where <. • • • ) is the Gibbs average, and the order of 
the limit procedures in (7a) being essential. 

(7a) 

2) Note that Hamiltonian (5), in contrast to that of (1), does 
not contain boson operators and is defined in the space ~L • 

J) The definition of the free energy: . _ ~ /9 + 
-t [ ti J = - ~ tn 'Trt e , A ~ s3 

3 



2. Many-Boson Averages and Substitution Rule 

Relation (6) means that Hamiltonians H (1) and H A (C) 
(5) are thermodynamically equivalent to each other on the level 
of free energy, But if one raises the question of such an equi
valence on the level of equilibrium averages ( and quasi-ave~a

ges), one immediately clash with the difficulties for the 
averages which contain boson operators. Since the approxima
ting Hamiltonian HA Cc) does not involve boson operators 

&.u-, OC .,_ the boson averages taken over HA (E) do not 
exist, 

The solution of this problem, as is shown below, proceeds 
as follows: when calculating any averages over Hamiltonians H 
and H~ all boson operators can be replaced b,y the operators 
of the ~ -subsystem, after one can pass to averaging over 
Hamiltonian H A ( C ) , using standard methods 127 ' 28/ , 

; Consider the generalized operator containing boson 
operators: · + 

11 = ... x .... ~ ... x~ .. !!L ... x'~.. , (8
) 

, , vN VN 
where JC,JC,)[ are bounded in norm operators of the L-sub
system acting in ~L , while under dots one can imply 

ct "!!;: /{N or any operators of L-subs;rstem of an X type, 
taken in arbitrary amount and situated in arbitrary order, We 
shall show that when averaging such operators (8) the boson 
operators ()(. '!./fN can be replaced by the operators L t in 
accordance with the following rules: for the Gibbs averages over 
Hamiltonian H ( as N ~ 00 ) : 

# 
cto( -
{i\j ~ 

auasi-averages 4) for _ and 

~! -=lF 
we~. co( ' 

a.'!'~ 
a~ 

#: /\"' L* 
wo( "' ' 

* -* Lol. ~ co( 
~--~.;__ 4

Jwe want to note that these "substitution rules" as well 

(9a) 

(9b) 

as in general the thermodynamical equivalence of the Hamiltonians 
(1) and (5), show that the boson operators in the models under 
consideration demonstrate "C-number" features, That resembles, 
to some extent, the situation in the N.N,Bogolubov model for 
superfluidit;r proposed in 1947 1291 

4 
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• 

F0 r the simplest case of one- and two-boson operators 
in averages the rules (9) have been obtained in refs,/l, 6/, In 
particular, 

/ cto< ~ 'Aoe. -
"'"\ v;::i ( H = - Wo< C o( ' (10) 

< t"' a.o~ "- - /?. 0( lz.<L+ L "- ( ( i )'' 
A/ /1-1 - W 2. ol. ,!..fi-t 1_ + 0 N ')' 

o{ 

o(z) -·· 0. 
These relations follow from the intermediate results established 
in refs. /l, 6/ : 

n. + 
L Wo< <-Rx B"' )H N -7 oo 0 -, 

o(=i 
(11) 

n + + l 
]; wo< [ < 80( B. fH "t: + T"' <Do{ Do( ) 11 "t: j ~o c~2) 

. LCil7'0 

where 
B"' = ao~. + :Ao<. Lx. 

\[1\i Wo~. ' 

D"' = ~ + 'Aot
fN w"' C"' 

However, the extension of the substitution rules (9) to the 
general

5
fase of the many-boson operators (8) appears to be non

triTial ~ince we need here new methods, which should enable us 
majorate. the many-boson averages with a high number of boson 
operators by means of averages with a lesser number of operators. 
To derive the rules (9) we shall use the oommutation relations 
(2), general structure of the Hamiltonians H ( 1) and H"t: (7) 
and relations (ll) (12) 

6
) • We shall apply a.lao a general tne-

5) The ~roblem of such an 
6) Note also that one can 
the commutation relations 
nian (1), see ref. /7/ • 

extension was formulared in ref. Ill, 
derive the relation (11), using only 
(2) and the structure of the Bamilto-

5 



quality for equilibrium averages, which we derive in the next 
section, 

J. Auxiliary Inequality 
Let ~ be the Hamiltonian of a system, e 

rature modulus ( 8 = KT), <", / r be equilibrium 

( .. . I r = Til. (. . . e -r /~)I Trr. e- r I e 

Introduce the auxiliary quadratic form 
i. £ 

(A, B)t = Jec:e<A(-r.)B~ ol1:., 
where 0 r r 

A (-c) = e ""t 8 A e- T.. J , 
and where £. is a nonzero real parameter, 
~ Let operators A , R. and Hamiltonian 

the relation 

Ar- rA = £A+ R, 

be the tempe-
Gibbs average 

(lJ) 

(14) 

(14a) 

r satisfy 

(15) 

where t_ is a nonzero real number ( positive or negative), and 

let ~ be an arbitrary operator, Then the following relations 
hold true ?) 

c(AB- BA >r 
e £/e- .1. <BA/r - (R., B)~ 

e ( e 'i.ft!_ -i ) ' 
(16a) 

(16b) 

I _ (A B - B A )r I ~ 1 ® 
<rJA\ e/9- 1_ - !!2.0 le E/e_1 I 
~ f -t '<-/9 + V + E/8 + )' 

® \~ R R 'fr -r e < R R./r A ( B B )r t e ( B B )r . 

?)Condition (15) is not a restriction. For [A' r J = K. one can 

always put K= EA + R.E' where R~ = K-f..A • Then relations 
(16) remain valid, and one can regard E as a variational 
parameter, which should be chosen in accordance with a concrete 
problem, 

6 

~.., 

• 

Proof, Making use c:f. (15), we have 

ed..A{-c) 
q '"G ~ 

£ A (--c)- R (-c), (17) 

and hence 

t.;e ~ -r .5. e <A(-t)B{:j_- <A B)=- 8
1 je <R(cJB>~'[<16) 

( We omit here and below index f in averages) • Taking into 
aocount that <A(r) B l-c= 1 = < BA) (a consequence of 
the definitions, see (lJ) and (14a) ), we get the inequality 
in (16). 

To prove the inequality in (16), let us turn to the spectral 
formulas for binary averages 

+oo iwt 
<X(tJY> = f "Jxy (w) e olw, 

-00 
(19 ) 

+oo w iwt 
<YX(t)) = f -;;xy(w)e 8 e d..w, 

- Oo (19a ) 

-..._____/ 

X(t:)= eirtxe-irt 

In partiwlar, for t = - i L: I e ' where 1: is a real 
parameter, X {t) (19a) transforms into X (t.) (14-a.) , and 
we get the speotral representation far the bilinear form (14) 

i. ""C £. 

(X, Y )£ = f e e <X (-r)Y)cl c: -
0 (20) 

+oo E.+W 

- e J "Jxy (w) e-e-_ 1_ d..w . 
-oo £+4) 

7 



We shall also need the N.N.Bogolubov inequality /JO/ • Let a 
bilinear form Z (X, Y) of operators X, Y satisfy the 
oonditions 

+ ll* + + Z (X,X) ~ o, [Z(X,Y)J = Z(Y, Y). (21) 

then the inequality holds true 

2 + + I Z(X,Y) I ~ Z (X,X) Z (Y,Y). (2la) 

Taking into account properties of the spectral density 
dXY (v.>) ( for details see /JO/), one can easily verify that 

the b:llinear form (20) satisfies the conditions (21) and hence 8): 

2. + + 
/(X,Y)~ I L (X,X)t (Y,Y)<c. 

On the other hand, 
inequality 

(ex-i)/x 

taking into account the elementary 

~ i_ (i+ ex.) 
and representation (20), we obtain: 

(22) 

+ +oo £+w 

(X ,X) t- ~ f fJxX:(w)(i+ee-)J.CJ = C2J) 
-oo 

- ~(<xi)+ e" 1~j(x>). 
S)N0 te, that for £ = 0 the form (20) coincides with the 
Green funotion in the energy representation by zero argument/JO/: 

(X, Y)t=o = -2'7le~X;Y:>E=o 
The inequality (22) then transforms into a well-known inequality 
for Green functions due to N.N.Bogolubov, whioh has been used to 
prove 1./~t,-theorems /JO/ • 

8 
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Applying the bounds (22) am (2J) to (R., B) t. , we get 
just the inequality in (16). So, our lemma is proved. 

4. Proof of the Substitution Rules 

Consider first the rule (9a) for the case of common 
averages < ·• · /H . We shall assume N to be finite, 
taking the limit N 7 00 at the very end of calculations. 
Note first of all, that in virtue of (11) 

+ < Bo( B,. ')M 
N~ l>O o, (24a) 

-+ < Bo( B<>< )H 
N-'>oa 

> 0 (24b) 

( here (24b) follows from (24a) and (2), (Jb) ). Let us also 
take into account the general inequality /JO/ ( see (2la) ): 

I<XY>I~ L <xX><YY> 
Let us now fix in ~ 
Cl" 0 and rewrite (8) as 

one of the creation operators 

+ 
~ = c{(XI a.4>l• ~II 

v;v ' 

(25) 

(26) 

where ~ 1 
and I({: are operators analogous to ~ • We 

want to show that 0-.t.o /{IV in (26) oan be replaced by L"f«• 
in accordance with (9a). We put (26) into the form 

+ + 
..QX : a_ olo <{I + f-RL I CX II( 0 J UJ y II 

JIV i ' .r,:J - -"VC ' 
(26a) 

~~ = ~ '~'', 

9 



and note that the seoond term here does not contain "J...«.o/W 
( besides it contains the additional factor J../ N ( if not 
being zero) and, hence, it does not give any contribution to the 

first term in the limit N~ 00 ), so we have only to prove that 

+ ~ + 

l<~ ~~>H -((- ~:: L~o)~~'>f( l N-71XJ~ Q (27) , 

or, in an eqUivalent form, 

+ I< Bolo {)]:.1. JH N~()() 7 Q (27a) 

Making use of (25), we obtain: 

J < ~e ~j_ >11 l ~ ~ <B"o<o Bo(o)H <-t<i1.~1-JH ,( 28
) 

where ":2J:. 1. is an operator of the same structure as .fZJ:. 
(6). Taking into account that the boson operators all commute with 
the operators of L-subsystem, one can put ~1- into the 
for111: 

-Rl1.=XLAs, (29) 

where XL is a bounded in norm operator of L-subsystem and 

A S is a pure boson operator of the form 

As 
# # 

a. ot i. a. o{s 

-~··· 7N 
(29a) 

Then s 

-t ++ " 2+ <ir1-;u~)H =~AsXLXLAs ~ ~ //X.J (AsAs)fi·c3o) 

10 
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Taking into account (11), (28) and (Jo), we see that the 
problem of substantiation of (27) reduces to the proof of the 
following key inequality 

-I-< As As )H f. CoVlsts ' N 7 t>a 7 (Jl) 

for aJ.l finite numbers S == 1,2, ••• 

In order to prove (Jl), let us use the general inequality 
~ 

(16) by B =A 
+ -+ 

+ <AA-AA'>r 1 e <A A "'- .:: + CJ2) 
I r - e £je - 1 £ e I e f./6- 1.1 

·-v (<RR >r + e€1<-tR)r Y<AA>r + eE1<AA>r), 
where ' 

[A' r J - = £ A T {2.. , £ * 0 • (J2a) 

Let H be the Hamiltonian (1), As be the operator 
(29a), then we have 

[As,H]_ = tsAs. + Rs 
' s 

E s = ~ ( ± i) i Wcx:. 
L=.1. ~ ' 

(JJ ) 

(JJa) 

Rs .s (*~. 2. ( ± 1. )· a.o(:1 • ._ i ••• acts)~*. r (JJ b) 

(=- :t " \[/\/ V N V7l7 o~. o<; ' 

where (±1); equals +1 for o(. i corre spending to ct o<. and ( -l) 
+ ~ 

for 0(. i: corre spending to · ct « _ • 
We assUIIIe below that E s -::# 0 • If for given As fs =Fo 

we representAtA s, , using the OOIIIIRUtat1.on relations (2), in the 

ordered form ~ e + . 
+ .., k (j_)S- I I 
As As= 2: e IV Ae Ae, 

e•o 
ke ~ o, 

II 



, 
where operators Ae involve only the annihilation operators 

AI - C(o(:t.. e.- -VN 
a.ol A I t __ e ' e = cons .. ....r;v =0 , 

'With £ ~ )' 0. So, we 
when in (J8) £ 5 # 0 

Denote 

see that one can always consider the case 

.M.s- mt:NX 
{ o(i J 

+ 
<AsAs)H ' 

(J4) 

where maximum is taken over all possible sets of ~ operators C{:i in AS (29a). We haTe to proTe boundedness of _L\1. S 
for eTery ~ • We shall do it by induction. As it follows 
from (11), .M sis bounded for S = 1,2. 

Let 

.M.sj. ~ c on.st £or $1. = 1..., ~s•••, S-i. (J5) 

l.et us show that then also 

.M. s ~ eonst 
Note that in view of (2), (J), (25) and (J5) 

+ 
<'Rs Rs )H ~ consi M s-:1. ' 

+ < Rs Rs )M ~ canst .M s-:1., 

I + + 
<As As -As As )H \ ~ co,~t M S-.1. 

N 

(J6) 

(J7) 

(where oonstanta c!epend, in partioula:r, on ..M -:1., ••• _, .Ms-£ ). r 'l'hen u&l.ng 1nequalit5 (32) C f~>r the oase r:. H , A= A 5 , R. = f2s, 
aee (JJ)) we obtain 9 • 

9)Hel'e E s corresponds to a set of { C( i l , 
which realises III&X1Ipml in the definition (J4). We assume Cs + 0 
( see the discussion after formula (JJ) ). 

12 
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I f.s/e ~-i.{c lYls-J. "" .:::. e -· 1 1. + _.LV.L.,s - N 

+ C2 -JMs Ms-~} , 
(J8) 

where constants C1.. and C2. depend on .M.1..,··· ,Ms-2.. 
It follows directly from (J8) that under the assumption (J5) 
the bound (36) is also valid. So, by the induction principle, 
the bound (Jl) is proved for all S and, hence, the substitu
tion rule (9a) is proved for the case of the operator t{ oe. /lfN. 
One can prove this rule for Clo( /w in an analogous way, using 
(24b) instead of (24a). Applying this rule step by step, one can 
r~lace all the boson operators in .<'I<J. 'JH by the operators 
L~. . 

In the case of quasi-averages the proof of substitution rule 
(9b) is quite analogous to that presented above. One should 
do all necessary operations by finite 1\/ and ""C'"O( > 0 , 

passing to the limit N ~ 00., and then "1:" o<. ~ 0' at the 
very end of calculations. One should use here instead of (24) the 
analogous bounds for B 0( and Doe. which follow from (12). 
The problem then reduces to prove that averages of the type 
(Jl.), .with averaging taken over H -r;. (7), are bounded. Since 
the transition from H to H T. means only the renormal~zation 
of parameters W o<. ~ ( 1-t T.-. }WO(. and redefinition of { L D(} , 
it does not destroy the general structure of the Hamiltonian 
we have used. So, the proof represented above for the oase of 
averages over H is also valid for averages over H -c 

So, the substitution rules (9) are completelfo)roved. In 
accordance with these rules, for example, we have 

IQ) Simple illustrations for the relation (J9b) in the concrete 
case of the Dicke model one can find in ref. /2/ (see Theorems 
).) and ).1) there i n) • 

13 



+ 

< Cilo(-1. 

-w 
+ 
ao<s 
-{IV 

GtoLs ••• ao(~ ~ 
of7V -VN IH 

I Ao<1. ••. fi"'s ~~ + + 
- Wo<1.. •.• Wo<.s < L o(i. ••• Lc~-s Lols 

( ) q A) 

... Lot~® 

® c 1 + o ( ~ )) , o ( ,t ) N 7z o, 

n ao(i n Lo(. F ~ ( .s -# )( '1. # ) ~ 
1=1 VN j:i J H 

( 39b ) 

(-1.)s ( n ~, c :.) ( D c ~; --<]; jH , 
1.=-1 o(i l. J-:1. 0 

where .F is an arbitrary operator of L - subsystem. So, 
arbitrary equilibrium averages and quasi-averages with boson 
operators can be always represented through the "pure" L-sub
system averages. 

In conclusion we note that from the physical point of 
view the substitution rules (9) mean that the boson subsystems 
in the systems of the class considered ( see (1)) are completely 
driven by the corresponding L-subsystems, and every re-arranging 
in L-subsystem necessitates the correepondi~ re-arranging in the 
boson subsystem ( see also a discussion in I I ). This does not 
depend on any concrete features of the models, being a direct 
consequence of the general structure of ·the Hamiltonian and 
of the commutation relations for boso ns :J 

A c k n o w 1 e d g e m e n t s: We wish to express our 
gratitude to the members of the V.K.Fedyanin seminar for valuable 
discussion. 
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N o t e a d d e d : Just recently (November, 1979) the 
communication /Jl/ has appeared, where the many-boson correlation 
averages for the concrete case of the Dicke model were considered. 
The boundedness of the many-boson averages was proved there by a 
method generalizing that of ref. /7/ • 
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Bblwen e ceeT o~ePeAHOH HOMep )f(ypHana 114'1H3Ht<a 
3JleMeHTapHbiX 4aCTH4 H aTOMHOrO AAPa 11

, TOM 10, 
BblnycK 6. noAnHCKa Ha ~ypHall npOBOAHTCR B areHT-
CTBaX H OTAeJleH~ootRX 11COI03ne4an1 11

, B OTAeJleHI-1AX 

CBR3H, a raK*e Y o6~ecreeHHbiX pacnpocrpaHHTeneH 
ne4an1. 
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