

ОбъЕДИНЕННЫЙ ИНСТИТУT яаерНых

 исследованийдубна
$1093 / 2-80$ $18 / 3-80$
E17-12987
N.N.Bogolubov, Jr., V.I.Vosyakov, V.N.Plechko

MANY-BOSON AVERAGES
FOR THE DICKE-TYPE MODEL SYSTEMS

Submitted to $\boldsymbol{T M \Phi}$

1. Introduction

Here we consider the calculation of the many-boson averages for a class of many-body model systems with the interaction of substance and finite number of modes of a boson field (the Dicke-tJpe models). The corresponding generalized Hamiltonian is

$$
\begin{align*}
& H=\sum_{\alpha=1}^{n} \omega_{\alpha}{ }^{+} a_{\alpha} a_{\alpha}+\sqrt{N} \sum_{\alpha=1}^{n}\left(\lambda_{\alpha}^{*} \stackrel{+}{L}_{\alpha} a_{\alpha}+\right. \\
& \left.+\lambda \alpha L_{\alpha} \dot{a}_{\alpha}\right)+T-N \sum_{\alpha=1}^{n} x_{\alpha} \stackrel{+}{L}_{\alpha} L_{\alpha}, \tag{1}
\end{align*}
$$

where a_{α}, a_{α} are boson operators,

$$
a_{\alpha} \alpha_{\beta}-\alpha_{\beta} a_{\alpha}=\left\{\begin{array}{l}
1, \alpha=\beta \\
0, \alpha \neq \beta
\end{array}\right.
$$

$a_{\alpha} a_{\beta}-a_{\beta} a_{\alpha}=0$,
$L_{\alpha,} L_{\alpha}^{+}, T=T$
are operators of "substance subsystem" or " L-subsystem" 1), $N 1 s$ the number of partioles in the "substance"; ω_{α}, dee α are real parameters, $\omega_{\alpha}>0$, ${\text { थ } \alpha \geqslant 0 ; \lambda_{\alpha} \geqslant \lambda_{\alpha}^{m} \text { are complex parameters. The L-subsystem }}^{m}$ operators should satisfy only the following sufficiently general conditions:

$$
\begin{align*}
& \left\|L_{\alpha}\right\| \leq K_{1}, \tag{3a}\\
& \left\|L_{\alpha} T-T L_{\alpha}\right\| \leq K_{2}, \tag{3b}
\end{align*}
$$

1) The name "L-subsystem" pomes from the notation of the operators $L \alpha$.

$$
\left\{\begin{array}{l}
\left\|L_{\alpha} L_{\beta}-L_{\beta} L_{\alpha}\right\| \leq K_{3} / N \tag{3c}\\
\left\|L_{\alpha} L_{\beta}-L_{\beta} L_{\alpha}^{+}\right\| \leq K_{3} / N,
\end{array}\right.
$$

where \|...\| means the operator norm, K_{1}, K_{2}, K_{3} are constants independent of N. The Hamiltonian (2) is defined in the space

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{L} \otimes \mathcal{H}_{B} \tag{4}
\end{equation*}
$$

where \mathscr{H}_{B} is the Fock space of the boson subsystem, \mathscr{H}_{L} is the Hilbert space of I-subsystem.

One of the best known concrete models oovered by (1) is just the Dicke maser model, which has been proposed (in the original form) in 1954. This model represents a great number N of twom -level atoms coupled to one mode of a quantized radiation and finds applioations in the theory of ooherent radiation. In 1973 K. Hepp and E.Lieb have obtained the asymptotically exaot (in the thermodynamical limit $N \rightarrow \infty$) solution of the Dicke model and discovered and described the "superradiant" phase transition in the system. These important results have stimulated the intensive study of the different modifioations of the Dioke model and other models of similar mathematical structure in different branches of solid-state physics and statistioal mechanics, and also initiated the developement of the mathematically rigorous methods for studjing such systems (see, in partin oular, refi./ 1-26/ and references therein).

The most general results for the basic alass of models (1) were obtained in ref. $/ 1 /$, where the whole olass has been examined from a unique standpoint, based, in part, on the 1deas of the mothod of "approximating Hamiltonians" $/ 27$ / . In particular, it was shown that in the thermodynamical limit $\quad \mathrm{N} \rightarrow \infty$ the free energy for the system with Eamiltonian (1) coincides with the free onergy of a simplified approximating system with the Hamilitonian

$$
\begin{aligned}
& H_{A}(C)=T-N \sum_{\alpha=1}^{n} g_{\alpha}\left(C_{\alpha} L_{\alpha}+C_{\alpha}^{*} L_{\alpha}\right)+{ }_{(5)} \\
& +N \sum_{\alpha=1}^{n} g_{\alpha}\left|C_{\alpha}\right|^{2}, \quad g_{\alpha} \equiv e_{\alpha}+\left|\lambda_{\alpha}\right|^{2} / \omega_{\alpha},
\end{aligned}
$$

Where complex variational parameters $C \propto$ should be defined from the condition of absolute minimum of the limit ($N \rightarrow \infty$) free energy of the system (5) 2). Denote these values as C_{α}

$$
\begin{gather*}
f_{\infty}\left[H_{A}(\bar{C})\right]=a b s \min _{C} f_{\infty}\left[H_{A}(C)\right]^{3)} \\
C \alpha=\bar{C}_{\alpha} . \\
\text { so } 1 /: \quad\left|f_{N}[H]-f_{\infty}\left[H_{A}(\bar{C})\right]\right| \xrightarrow[N \rightarrow \infty]{ } 0 \tag{6}
\end{gather*}
$$

In ref. ${ }^{/ 6 /}$ a method for the correct definition of quasi--averages for the class of models (1) was under discussion. It was proposed to introduce quasi-averages on the basis of the Hamiltonian

$$
\begin{align*}
H_{\tau}= & H+2 N \sum_{\alpha=1}^{n} \tau_{\alpha} \omega_{\alpha}\left(\frac{a_{\alpha}}{\sqrt{N}}+\frac{\lambda_{\alpha}^{*}}{\omega_{\alpha}} \bar{C}_{\alpha}^{*}\right)\left(\frac{a_{\alpha}}{\sqrt{N}}+\right. \tag{7}\\
& \left.+\frac{\lambda_{\alpha}}{\omega_{\alpha}} C_{\alpha}\right)_{,} \quad \tau_{\alpha}>0
\end{align*}
$$

where H is the Hamiltonian (1). Then quasi-averages should be defined by the rule $/ 6 /$

$$
\begin{equation*}
\prec \cdots\rangle_{H}=\lim _{\tau_{\alpha} \rightarrow 0} \lim _{N \rightarrow \infty}\langle\cdots\rangle_{H_{\tau}}, \tag{7a}
\end{equation*}
$$

where $\langle\ldots\rangle$ is the Gibbs average, and the order of the limit prooedures in (7a) being essential.

[^0]
2. Many-Boson Averages and Substitution Rule

Relation (6) means that Kamiltonians H (1) and $H_{A}(\overline{\mathrm{C}})$ (5) are thermodynamically equivalent to each other on the level of free energy. But if one raises the question of such an equivalenoe on the level of equilibrium averages (and quasi-averages), one immediately clash with the difficulties for the averages whioh contain boson operators. Since the approximam ting Hamiltonian $H_{A}(\bar{C})$ does not involve boson operators
$\dot{a}_{\alpha}, \alpha_{a}$ the boson averages taken over $H_{A}(\bar{C})$ do not exist.

The solution of this problem, as is shown below, proceeds as follows: when calculating any averages over Hamiltonians H and H_{τ} all boson operators can be replaced by the operators of the L-subsystem, after one oan pass to averaging over Hamiltonian $H_{A}(\bar{C})$, using standard methods $/ 27,28 /$.

- Consider the generalized operator oontaining boson operators:

$$
\begin{equation*}
2 Y=\ldots X{ }^{+} \frac{\alpha}{\alpha}_{\sqrt{N}}^{\sqrt{N}} \ldots X^{\prime} \cdots \frac{a_{\beta}}{\sqrt{N}} \ldots X^{\prime \prime} \ldots \tag{8}
\end{equation*}
$$

where $X, X^{\prime}, X^{\prime \prime}$ are bounded in norm operators of the I-subsystem aoting in \mathcal{H}_{L}, while under dots one can imply
$\alpha_{\alpha}^{\#} / \sqrt{N}$ or any operators of L-subsystem of an X type, taken in arbitrary amount and situated in arbitrary order. We shall show that when averaging such operators (8) the boson operators $\alpha_{\alpha}^{\#} / \sqrt{N}$ can be replaoed by the operators $L_{\alpha}^{\#}$ in aocordance with the following rules: for the Glbbs averages over Hamiltonian H (as $N \rightarrow \infty$):

$$
\begin{equation*}
\frac{\alpha_{\alpha}^{\#}}{\sqrt{N}} \longleftrightarrow-\frac{\lambda_{\alpha}^{\#}}{\omega_{\alpha}} L_{\alpha}^{\#} \tag{9a}
\end{equation*}
$$

and for quasi-averages 4)

$$
\begin{equation*}
\frac{a_{\alpha}^{\#}}{\sqrt{N}} \longleftrightarrow-\frac{\lambda_{\alpha}^{\#}}{\omega_{\alpha}} \bar{C}_{\alpha}^{\#}, L_{\alpha}^{\#} \longleftrightarrow \bar{C}_{\alpha}^{\#} \tag{9b}
\end{equation*}
$$

[^1]For the simplest case of one- and two-boson operators In averages the rules (9) have been obtained in refs. $11,6 /$. In particular,

$$
\begin{align*}
&\left\langle\frac{\alpha_{\alpha}}{\sqrt{N}}\right\rangle_{H}= \tag{10}\\
&\left\langle\frac{\stackrel{+}{\alpha}_{\alpha} a_{\alpha}}{N}\right\rangle_{H}=\frac{\left|\lambda_{\alpha}\right|^{2}}{\omega_{\alpha}^{2}} \bar{C}_{\alpha} \\
& \quad O\left(L_{\alpha}^{+} L_{\alpha}\right\rangle_{H}\left(1+O\left(\frac{1}{N}\right)\right) \\
& O\left(\frac{1}{N}\right) \xrightarrow[N \rightarrow \infty]{ } 0
\end{align*}
$$

These relations follow from the intermediate results established in rafs. $/ 1,6 /$:

$$
\begin{equation*}
\sum_{\alpha=1}^{n} w_{\alpha}\left\langle\vec{B}_{\alpha}^{+} B_{\alpha}\right\rangle_{H} \xrightarrow[N \rightarrow \infty]{ } 0 \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& B_{\alpha}=\frac{a_{\alpha}}{\sqrt{N}}+\frac{\lambda_{\alpha}}{\omega_{\alpha}} L_{\alpha} \\
& D_{\alpha}=\frac{a_{\alpha}}{\sqrt{N}}+\frac{\lambda_{\alpha}}{\omega_{\alpha}} \bar{C}_{\alpha}
\end{aligned}
$$

However, the extension of the substitution rules (9) to the general 5) ase of the many-boson operatora (B) appears to be nontrivial since we need here new methods, whioh should enable us majorate, the manymoson averages with a high number of boson operators by means of averages with a lesser number of operators. To derive the rules (9) we shall use the commutation relations (2), ganeral structure of the Hamiltoniane H (1) and H_{τ} (7) and relations (11) (I2) ${ }^{6}$). We shail apply also a general tne-
5) The problem of such an extension was formulared in ref. /1/.
6) Note also that one can derive the relation (11), using only the commutation relations (2) and the struoture of the Bamiltonian (1), soe ref. /7/.
quality for equilibrium averages, which we derive in the next section.
3. Auxiliary Inequality

Let I be the Hamiltonian of a system, θ be the temperature modulus ($\theta=K T$), $\langle\ldots\rangle_{\Gamma}$ be equilibrium Gibbs average

$$
\begin{equation*}
\langle\cdots\rangle_{r}=\operatorname{Tr}\left(\ldots e^{-r / \theta}\right) / T_{r} e^{-r / \theta} \tag{13}
\end{equation*}
$$

Introduce the auxiliary quadratic form

$$
\begin{equation*}
(A, B)_{\varepsilon}=\int_{0}^{1} e^{\tau \frac{\varepsilon}{\theta}}\langle A(\tau) B\rangle_{r} d \tau \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\tau)=e^{\tau \frac{\Gamma}{\theta}} A e^{-\tau \frac{\Gamma}{\theta}} \tag{14a}
\end{equation*}
$$

and where \mathcal{E} is a nonzero real parameter.
Lemma, Let operators A, R and Hamiltonian I satisfy the relation

$$
\begin{equation*}
A \Gamma-\Gamma A=\varepsilon A+R \tag{15}
\end{equation*}
$$

where \mathcal{E} is a nonzero real number (positive or negative), and let B be an arbitrary operator. Then the following relations hold true ${ }^{7}$)

$$
\begin{align*}
& \langle B A\rangle_{r}=\frac{\langle A B-B A\rangle_{r}}{e^{\varepsilon / \theta}-1}-\frac{(R, B)_{\varepsilon}}{\theta\left(e^{\varepsilon / \theta}-1\right)} \tag{16a}\\
& \left|\langle B A\rangle_{r}-\frac{\langle A B-B A\rangle_{r}}{e^{\varepsilon / \theta}-1}\right| \leqslant \frac{1}{2 \theta\left|e^{\varepsilon / \theta}-1\right|} \tag{16b}\\
& \otimes \sqrt{\left(\left\langle R R_{r}^{+}\right\rangle_{r}+e^{\varepsilon / \theta}\langle R R\rangle_{r}^{+}\right)\left(\langle B B\rangle_{r}^{+}+e^{\varepsilon / \theta}\langle B B\rangle_{r}^{+}\right)}
\end{align*}
$$

7) Condition (15) is not a restriction. $\operatorname{For}[A, \Gamma]=K$ one can always pho $K=\varepsilon A+R_{\varepsilon}$, where $R_{\varepsilon}=K-\varepsilon A$. Then relations (16) remain valid, and one an regard \mathcal{E} as a variational parameter, which should be chosen in acoordanoe with a concrete problem.

Proof e Making use of (15), we have

$$
\begin{equation*}
\theta \frac{d A(\tau)}{d \tau}=-\varepsilon A(\tau)-R(\tau) \tag{17}
\end{equation*}
$$

and hence

$$
e^{\varepsilon / \theta}\langle A(\tau) B\rangle_{\tau=1}-\langle A B\rangle=-\frac{1}{\theta} \int_{0}^{1} e^{\tau \frac{\varepsilon}{\theta}}\langle R(\tau) B\rangle d \tau^{(1 B)}
$$

(We omit here and below index Γ in averages). Taking into account that $\langle A(\tau) B\rangle_{\tau=1}=\langle B A\rangle$ (a oonsequence of the definitions, see (13) and (14a)), we get the inequality in (16).

To prove the inequality in (16), let us turn to the spectral formulas for biliary averages

$$
\begin{align*}
& \langle X(t) Y\rangle={ }_{-\infty}^{+0} J_{X Y}(\omega) e^{i \omega t} d \omega, \tag{19}\\
& \langle Y X(t)\rangle=\int_{-\infty}^{+\infty}{ }_{J X Y}(\omega) e^{\frac{U}{D}} e^{i \omega t}{ }_{d \omega} \text {, } \tag{19a}\\
& X(t)=e^{i r t} X e^{-i r t} .
\end{align*}
$$

In particular, for $t=-i \tau / \theta$, where τ is a real parameter, $X(t)(19 a)$ transforms into $X(\tau)(14 a)$, and we get the spectral representation for the bilinear form (14)

$$
\begin{align*}
& (X, Y)_{\varepsilon}=\int_{0}^{1} e^{\tau \varepsilon}\langle X(\tau) Y\rangle \alpha \tau= \tag{20}\\
& =\theta \int_{-\infty}^{+\infty} J_{X Y}(\omega) \frac{\frac{e^{\frac{\varepsilon}{+}}-}{\varepsilon}-1}{\varepsilon+\omega} d \omega \text {. }
\end{align*}
$$

We shall also need the NoN. Bogolubor inequality /30/ . Let a bilinear form $Z(X, Y)$ of operators X, Y satisfy the conditions

$$
\begin{equation*}
Z\left(X, \frac{+}{X}\right) \geqslant 0,[Z(X, Y)]^{*}=Z(\stackrel{+}{Y}, X) . \tag{21}
\end{equation*}
$$

then the inequality holds true

Taking into account properties of the spectral density $J_{X Y}(\omega)($ for details see $/ 30 /$), one can easily verify that the bilinear form (20) satisfies the conditions (21) and hence 8):

$$
\begin{equation*}
\left|(X, Y)_{\varepsilon}\right|^{2} \leq\left(X, \frac{ \pm}{X}\right)_{\varepsilon}\left(\frac{1}{V}, Y\right)_{\varepsilon} . \tag{22}
\end{equation*}
$$

On the other hand, taking into account the elementary inequality

$$
\left(e^{x}-1\right) / x \leq \frac{1}{2}\left(1+e^{x}\right)
$$

and representation (20), we obtain:

$$
\begin{align*}
& =\frac{1}{2}\left(\langle X X\rangle+e^{\varepsilon / \theta}\left\langle\frac{ \pm}{X} X\right\rangle\right) \text {. } \tag{23}
\end{align*}
$$

8) Note, that for $\varepsilon=0$ the form (20) coincides with the Green function in the energy representation by zero argument /30/:

$$
(X, Y)_{\varepsilon=0}=-2 \pi \theta \ll X_{;} Y>_{E=0} .
$$

The inequality (22) then transforms into a well -known inequality for Green functions due to N.N. Bogolubov, which has been used to prove $1 / 9^{2}$-theorems $/ 30 /$.

Applying the bounds (22) and (23) to $(R, B)_{\varepsilon}$, we get just the inequality in (16). So, our lemma is proved.
4. Proof of the Substitution Rules

Consider first the rule (qa) for the ouse of common averages $\langle\cdots\rangle$ H. We shall assume N to be finite, talking the limit $\quad N \rightarrow \infty$ at the very end of calculations. Note first of all, that in virtue of (il)

$$
\begin{equation*}
\left\langle\stackrel{+}{B}_{\alpha} B_{\alpha}\right\rangle_{H} \xrightarrow[N \rightarrow \infty]{ } 0 \text {, } \tag{24a}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle B_{\alpha} \stackrel{+}{B}_{\alpha}\right\rangle_{H} \xrightarrow[N \rightarrow \infty]{ } 0 \tag{24b}
\end{equation*}
$$

(hero (24b) follows from (24a) and (2), (3b)). Let us also take into account the general inequality 130 (see (2la)):

$$
\begin{equation*}
|\langle X Y\rangle|^{2} \leq\langle X X X\rangle\langle\vec{Y} Y\rangle . \tag{25}
\end{equation*}
$$

Let us now fix in \mathcal{Z} one of the oreation operators $\dot{a}_{\alpha_{0}}$ and rewrite (8) as

$$
\begin{equation*}
2 x^{\prime}=2 x^{\prime} \frac{a_{\alpha}}{\sqrt{N}} 22^{\prime \prime} \tag{26}
\end{equation*}
$$

 want to show that $\dot{\alpha}_{\alpha \cdot} / \sqrt{N} \quad$ in (26) on be replaced by L_{α}^{+} In accordance with (9a). We put (26) into the form

$$
\begin{align*}
& 2 x_{1} \equiv 2 x^{\prime \prime} x^{\prime} \text { ", } \tag{26a}
\end{align*}
$$

and note that the second term here does not contain $\dot{\alpha}_{\alpha_{0}} / \sqrt{N}$ (besides it contains the additional factor $1 / \mathrm{N}$ (if not being zero) and, hence, it does not give any contribution to the first term in the limit $N \rightarrow \infty$), so we have only to prove that

$$
\left|\left\langle\frac{+}{\frac{\alpha_{\alpha_{0}}}{N}} \mathscr{X X}_{1}\right\rangle_{H}-\left\langle\left(-\frac{\lambda_{\alpha_{0}}^{*}+}{\omega_{\alpha_{0}}} L_{\alpha_{0}}\right) \mathscr{X _ { 1 }}\right\rangle_{H}\right| \xrightarrow[N \rightarrow \infty]{\longrightarrow}
$$

or, in an equivalent form,

$$
\begin{equation*}
1\left\langle{\left.\stackrel{B}{B_{\alpha_{0}}}-2 X_{1}\right\rangle_{H} \mid \xrightarrow[N \rightarrow \infty]{ } 0 . . . ~ . ~}\right. \tag{27a}
\end{equation*}
$$

Making use of (25), we obtains

$$
\begin{equation*}
\left|\left\langle B_{\alpha_{0}}^{+} y X_{1}\right\rangle_{H}\right| \leq \sqrt{\left\langle B_{\alpha_{0}} B_{\alpha_{0}}\right\rangle_{H}\left\langle\partial^{+} X_{1} 2 X_{1}\right\rangle_{H}} \tag{28}
\end{equation*}
$$

Where $\mathcal{L C}_{1}$ is on operator of the same structure as \mathcal{X} (B). Faking into account that the boson operators all commute with the operators of L-subsystem, one can put $2 K_{1}$ into the form:

$$
\begin{equation*}
2 X_{1}=X_{L} A_{S}, \tag{20}
\end{equation*}
$$

mere X_{L} is a bounded in norm operator of L-subsystem and A_{s} is a pure boson operator of the form

$$
\begin{equation*}
A_{s}=\underbrace{\frac{a_{\alpha_{s}}^{\#}}{\sqrt{N}} \cdots \frac{a_{\alpha_{s}}^{\#}}{\sqrt{N}}}_{s} \tag{29a}
\end{equation*}
$$

Then

$$
\left\langle\dot{W}_{1}^{+} 2 Q_{1}\right\rangle_{H}=\left\langle\stackrel{+}{A}_{S}^{+} \dot{X}_{L} X_{L} A_{S}\right\rangle_{H} \leqslant\left\|X_{L}\right\|^{2}\left\langle\stackrel{A}{A}_{S} A_{S}\right\rangle_{H^{+}(30)}
$$

Taking into account (11), (28) and (30), we see that the problem of substantiation of (27) reduces to the proof of the following key inequality

$$
\begin{equation*}
\left\langle A_{S} A_{S}\right\rangle_{H} \leqslant \text { constr }_{S}, N \rightarrow \infty \text {, } \tag{31}
\end{equation*}
$$

for all finite numbers $S=1,2, \ldots$.
In order to prove (31), let us use the general inequality (16) by $B=\vec{A}$

$$
\begin{align*}
& \text { (16) by } \left.B=A \quad A^{+} A\right\rangle_{\Gamma}^{+} \leqslant \frac{\langle A A-A}{e^{\varepsilon / \theta}-1}+\frac{1}{2 \theta\left|e^{\varepsilon / \theta}-1\right|}{ }_{\text {(32) }} \\
& \cdot \sqrt{\left(\left\langle R^{+} R^{+}\right\rangle_{\Gamma}+e^{\varepsilon / \theta}\left\langle R^{+} R\right\rangle_{\Gamma}\right)\left(\left\langle A A{ }^{+}\right\rangle_{\Gamma}+e^{\varepsilon / \theta}\left\langle A^{+} A\right\rangle_{\Gamma}\right),} \\
& {[A, \Gamma]_{-}=\varepsilon A+R, \quad \varepsilon \neq 0 .} \tag{32a}
\end{align*}
$$

Let H be the Hamiltonian (1), A_{S} be the operator (29a), then we have

$$
\begin{align*}
& {\left[A_{s}, H\right]_{-}=\varepsilon_{s} A_{s}+R_{s}, } \tag{33}\\
& \varepsilon_{s}=\sum_{i=1}^{s}(\pm 1)_{i} \omega_{\alpha_{i}}, \tag{33a}\\
& R_{s}= \sum_{i=1}^{s}(\pm 1)_{i}\left(\frac{a_{\alpha_{1}}^{*}}{\sqrt{N}} \cdots \frac{a_{\alpha_{i}}^{*}}{\sqrt{N}} \cdots \frac{\alpha_{\alpha_{s}}^{*}}{\sqrt{N}}\right) \lambda_{\alpha_{i}}^{*} L_{\alpha_{i}}^{*(33},
\end{align*}
$$

There (± 1); equals +1 for α_{i} corresponding to $\alpha_{\alpha_{i}}$ and (-1) for α_{i} corresponding to $\dot{a}_{i}^{+} \alpha_{i}$.

To assume below that $\varepsilon_{s} \neq 0$. If for given $A_{s} \varepsilon_{s} \neq 0$ wo represent $A_{S}^{+} A_{S}$, using the commutation relations (2), in the ordered form

$$
A_{s}^{+} A_{s}=\sum_{l=0}^{s} k_{l}\left(\frac{1}{N}\right)^{s-l} A_{l}^{\prime} A_{l}^{\prime}, k_{l} \geqslant 0,
$$

where operators A_{e}^{f} involve only the annihilation operators

$$
A_{l}^{\prime}=\frac{\alpha_{\alpha_{1}}}{\sqrt{N}} \cdots \frac{\alpha_{\alpha_{l}}}{\sqrt{N}}, A_{\ell=0}^{\prime}=\text { const }
$$

with $\mathcal{E}^{\prime} \ell>0$. So, we see that one can always oonsider the case when In (38) $\varepsilon_{\mathrm{S}} \neq 0$

$$
\begin{equation*}
M_{S}=\max _{\left\{\alpha_{i}\right\}}\left\langle A_{S} A_{S}\right\rangle_{H}, \tag{34}
\end{equation*}
$$

Whore maximum is taken over all possible sets of S operators $a_{\alpha_{i}}^{\#}$ in $A_{S}(29 a)$. We have to prove boundedness of M_{s} for every S. We shall do it by induction. As it follows from (11), $M s$ is bounded for $S=1,2$.

Let

$$
M_{s_{1}} \leqslant \operatorname{const} \text { for } S_{1}=1,2, \ldots, S-1
$$

let us show that then also

$$
\begin{equation*}
M_{s} \leq \text { const } \tag{36}
\end{equation*}
$$

Note that in fiew of (2), (3), (25) and (35)

$$
\begin{align*}
& \left\langle R_{S} \stackrel{+}{R}_{S}\right\rangle_{H} \leqslant \text { const } M_{S-1} \tag{37}\\
& \left\langle\stackrel{+}{R}_{S} R_{S}\right\rangle_{H} \leqslant \text { const } M_{S-1} \\
& \left|\left\langle A_{S} A_{S}-\dot{A}_{S} A_{S}\right\rangle_{H}\right| \leqslant \operatorname{const} \frac{M_{S-2}}{N}
\end{align*}
$$

(whore oonstante depond, in partioular, on $M_{1, \ldots,} M_{S-2}$). Then rading inequality (32) (for the oase $\Gamma=H, A=A_{S}, R=R_{S}$, see (33))we obtain 9).
${ }^{9}$ Here ε_{S} oorrespends to a set of $\left\{\alpha_{i}\right\}$,
whioh realises macimum in the dofinition (34). We assume $\varepsilon_{S} \neq 0$ (see the disoussion after formula (33)).

$$
M_{s} \leq\left|e^{\varepsilon_{s} / \theta}-1\right|^{-1}\left\{C_{1} \frac{M_{s-1}}{N}+\right.
$$

$$
\begin{equation*}
\left.+C_{2} \sqrt{M_{s} M_{s-1}}\right\} \tag{38}
\end{equation*}
$$

where oonstants C_{1} and C_{2} depend on $M_{1, \ldots,} M_{s-2}$. It follows directly from (38) that under the assumption (35) the bound (36) 1s also valid. So, by the induotion principle, the bound (31) is proved for all S and, hence, the substitution rule (9a) is proved for the case of the operator ${ }_{\alpha} \alpha_{\alpha} / \sqrt{N}$. one can prove this rule for a_{α} / \sqrt{N} in an analogous way, using (24b) instead of (24a). Applying this rule step by step, one can replace all the boson operators in $\langle\mathcal{N}\rangle_{H}$ by the operators着 α 。

In the case of quasi-averages the proof of substitution rule (9b) is quite analogous to that presented above. One should do all necessary operations by flnfite N and $\tau_{\alpha}>0$, passing to the limit $N \rightarrow \infty$, and then $\tau_{\alpha} \rightarrow 0$, at the very end of calculations. One should use here instesd of (24) the analogous bounds for B_{α} and D_{α} which follow from (12). The problem then reduces to prove that averages of the type (31), with averaging taken over H_{τ} (7), are bounded. Sinoe the transition from H to H_{τ} means only the renormalization of parameters $\omega_{\alpha} \rightarrow\left(1+\tau_{\alpha}\right) \omega_{\alpha}$ and redefinition of $\left\{L_{\alpha}\right\}$, it does not destroy the general structure of the Hamiltonian we have used. So, the proof represented above for the case of averages over H is also valld for averages over H_{τ}.

So, the substitution rules (9) are oompletelyproved. In accordance dith these rules, for example, wo have ${ }^{10 \text {) }}$

IO) Simple illustrations for the relation (39b) in the concrete case of the Dicke model one can find in ref. /2/ (see Theorems 3.3 and 3.13 therein).

$$
\begin{aligned}
& 0\left(1+O\left(\frac{1}{N}\right)\right), O\left(\frac{1}{N}\right) \underset{N \rightarrow \infty}{ } 0 \text {, } \\
& \left\langle\left(\prod_{i=1}^{s} \frac{a_{\alpha_{i}}^{\#}}{\sqrt{N}}\right)\left(\prod_{j=1}^{r} L_{\alpha_{j}}^{\#}\right) E\right\rangle_{H}= \\
& =(-1)^{S}\left(\prod_{i=1}^{S} \frac{\lambda_{\alpha_{i}}^{\#}}{\omega_{\alpha_{i}}} \bar{C}_{\alpha_{i}}^{\#}\right)\left(\prod_{j=1}^{\pi} \bar{C}_{\alpha_{j}}^{\#}\right)\{E\rangle_{H},
\end{aligned}
$$

where E is an arbitrary operator of L - subsystem. so, arbitrary equilibrium averages and quasi-averages with boson operators can be always represented through the "pure" L-subsystem averages.

In conclusion we note that from the physical point of Fiew the substitution rules (9) mean that the boson subsystems 1 the systems of the class considered (see (1)) are oompletely ariven by the oorresponding Lumbubsystems, and every remarranging in L-subsystem neoessitates the corresponding re-arranging in the boson subsystem (see also a disoussion in /1/). This does not depend on any concrete features of the models, being a direot oonsequenoe of the general structure of the Hemiltonian and of the commutation relations for bosons g

Acknowledgements: We wish to express our gratitude to the members of the V.K.Fedyanin seminar for valuable disoussion.

N o t e a d e d Just recently (November, 1979) the communication /31/ has appeared, where the many-boson correlation averages for the conorete case of the Dicke model were oonsidered. The boundedness of the many-boson averages was proved there by a method generalizing that of ref. /7/.

REFERBNCES

1. Bogolubov NoN.,Jr., Plechko V.N. Physica, 1976, 82As p.l63. Preprint IC/75/68, Trieste, 1975.
2. Hepp K., Lieb E. Ann. Phys. (N.Y.), 1973, 76, p. 360 .
3. Hang Y.K., Hloe F. T. Phys.Rev., 1973, A7, p. 831.
4. Vertogen G., De Vries A.S. Phys.Lett., 1974, 48A, p.451.
5. Brankov J.C., Zagrebnov V.A., Tonohev N.S. Teor.Mat.Piz., 1975, 22, p. 20.
6. Bogolubov N.N., J.., Pleohke V.N. Sov.Phys.Doklady, 1976, 228, p. 1061.
7. Bogolubov NoN., Jr., Kurbatov A.M., P1eohko V.N. Communioations JINR, DI7-9737, Dubna, 1976.
8. Pickles J. B., Thompson B. V. Phys.Lett., 1974, 48A, p. 487.
9. Thompson B. V. J.Phys., 1975, A.8, p.126.
10.Pimentel BoM., Zimerman A. H. Nuoro Cim., 1975, B30, p.43.
10. Brankor J.G., Tonohev NoS. Physioa, 1976, 84A, p. 371.
11. Zurbator A.M., Pleohko V.N. Teor.Mat.Fiz., 1976, 26, p.109. 13.G1imore fo, Bowden C.M. Phys.Rev., 1976, 113, p.1898* 14.G1lmore Ro, Bowàn C.M. J.Math.Phys., 1976, 17, p.1617. 15.G11more R., Narduoil L.M. Phys.Rev., 1978, A17, p.1747.
16.Moshchinsky Bo Vo, Fedjanin V.K. Teor.Mat.F1z., 1977, 32, p.96.
12. Buinov M.So, Magtbaror V.R., Solovaror NoK. Doklady of the Byelorussian Aoademy of Sciences, 1977, 21, p. 23.
13. Zudryavtsev I.I., Shumoviky A.S. Sov.Phys.Doklaiy, 1977,232, p.1293.
14. Zablarsky G.M., Kudenko Yu. Ao, spivinaky A.P. Sov.Phys.JETP, 1976, 68, p. 2276.
15. Eimilov A. Ko, Kurbatov A.M. Communioations JIMR, P17-10247, Dubna, 1976.
21.Klemm A., Zagrebnov V. A., Z1esohe P. J.Phys., 1977, 410 , p. 1987.
```
22.Rrazewski K., Wodkiewioz K., Zakow1cz W. Phys.Lett., 1977,
    58A, p.211.
23.Provost J.P., Rocoa F., Vallee G., S1rugue M. Physioa, 1976,
    854, p.347.
```

24. Orszag M. J.Phys., 1977, A 10, p.1995.
25. Plechko V.N. In: TProoeedings of the International Symposium
on Seleoted Problems of Statistical Meohanics ", Dubna,
D17-11490, 1977.
26. Slyusarev V.A., Yankelevioh R.P. Teor.Mat.F1z., 1979, 40,
p. 124 .
27. Bogolubov N. N., Jr. A Method for Studying Model Hamiltow
nians, Pergamon Press, 1972.
28. Bogolubor NoN.,Jr. Teor.Mat.Fiz., 1977, 33, p.67.
29. Bogolubov N.N. J.of Phys. USSR, 1947, 11, p.23.
30. Bogolubov N. N. Preprint JINR P-51l, Dubna, 1961.
See also: Seleoted Papers, volume 3, Kiev, 19.70;
Leotures on quantum Statistics. vol.2. Quesi-Averages, N.Y.,
Gordon and Breach, 1970.
31. A.M.Kurbatov. JINR, P17-12553, Dubna, 1979.

Received by Publishing Department on Deoember 51979.

Вышел в свет очередной номер журнала "Физика элементарных частиц и атомного ядра", том 10 , выпуск 6. Подписка на шурнал проводится в агентствах н отделениях "Союзпечати", в отделениях связи, а также у общественіных распространителей печати.

[^0]: 2) Note that Hamiltonian (5), in contrast to that of (1), does not oontain boson operators and is defined in the space \mathcal{H}_{L}.
 3) The definition of the free energy:

 $$
 f[\hat{J}]=-\frac{\theta}{N} \ln T_{r} e^{-f / \theta}, f\left(\frac{H}{J}\right.
 $$

[^1]: $\overline{4)_{\text {We want }}}$ to note that these "substitution ruies" as well as in general the thermodynamiaal equivalenoe of the Hamiltonians (1) and (5), show that the boson operatora in the models under consideration demonstrate "C-number" features. That resembles, to some extent, the situation in the N. N. Bogolubov model for superfluialty proposed in 1947 /29/.

