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Critical-Point Singularities
1. Critical=-Point Condition and Susceptibility

The equilibrium many-body systems in the critical regi-

on are discussed. Order parameter is introduced as the guasif
-average defined by the Bogolubov's (Jr.)} method. A generalil

zed critical-point condition is formulated and its special
cases are examined. Some rigorous formulas for susceptibili-
ty in disordered phase are obtained,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. Introduction

It is known that under the second-order phasgse transitions
the thermodynamical quantities, characterizing the response of a
system on the variation of external parameters, such as specific
heat, magnetic susceptibility, compressibility and others, rapid-
ly increase in the critical region and become infinite at the
critical point. Such critical singularities appear usually to
be of a power or logarithmic type1 . For instance, the magnetic
susceptibility for a temperature near its critical value O~ 9::
and for zero fileld ’ﬁ = (0 diverges usually as follows:

X~ E T, €= |6-6/0cd, M
where the value of the critical index Y~ lies usually between
1 and 2,

Power laws are also typical for the critical behavicur of
the "order parameters". So, for spontaneous magnetization by
9-)8‘;" Pla O the following dependence is typical:

M~ €75 €= (6e-68)0.K4,@
where for three-dimensional system, as & rule, f’v.ﬂ./.?. Though
the order parameters at the critical point become zero, not infi-_
nite, their behaviour is in fact singula.r2 .

—_—
One can regard the logarithmic singulexrity to,be the
limiting cese of the power cne, Bince [/ Efus (E"’&-i/oc’-sd_,g. It
should be mlsc noted, that the logarithmic (and even more complex)
corrections to pure power laws are possible.

2} e dependence (2) ie non-anelytical as €0 . In par-
ticular,dM/dE ~EF T—3 00 as 20 , l,e. ydM/dE de~
monatrates already the "truly singular™ behaviour.



Yower laws and related asympiotics seem to be the most pro-
found manifestation of the critical state of a aystem,

It should be noted that during last decadeé, due to inten-
give experimental and theoretical investigations, we have well
succeeded in underatanding the critical phenomena, In particular,
the leading role of fluctuations in the critical-point behaviour
has been clarified, the phenomenologicel concept of Acaling has
been formulated, some combinatorial methods for approximate cal-
culation of the critical characteristics of simple systems (such
as e.g. Jeing-typ® lattices) have been developed, 2 set of prob-
lems has bveen analysed by means of the quantum-field-theory
methods, and, finally, in the framework of the quasi-phenomenc-
logical approach K.Wilson has proposed the & -expangion method
for approximate caleculation of the critical exponent33 {for
details see,e.g.,refs./1-4 Je

However,a successive microscopic theory of the e¢ritical be-
haviour based on the "firat principles” does not exist yet. That
is why of a considerable interest for the theory of critical
phenomena is the development of approaches and concepts inde-—
pendent of concrete models as well as of phenomenological hypow
thesis, based on general and rigorously established grounds.

In further papers we shall rigorously discuss some aspects
of the critical behaviour concentrating on the analysis
of the power  and related asymptotics and on the interre—
lations in the critical behaviour of different quantities, In
the present paper we consider the definition of order parameter,
end also formulate the generalized critical-point condition and
derive some rigorous formulas for susceptibility in disordered
phase, which express the susceptibility through parameters of
the auxi;iary constructiona introduced in Hamiltonian (see below
{31), (38),(43) and others). In our studies we shall uge quite
general properties of the Gibbs canonical distridution, estab-

3J We want aleo to emphasize {he important role of the exact
golution for the two-dimensional Ising lattice due to L. Cnsager
(1944 ). The role of this outztanding theoretical result for prOg~
ress in studying of critical phenomens in many aspects resembles
the role of an important experimental result (though, of cause,
this feature of the Onsager's solution-does not exhaust itas
significance),



lished by N.N.Bogolubov, Jr, when studying the superconducting
model systems (see refs../G-s/ and Appendix 4),

2. The Phase Transition

We ghall consider the second-order phase transitions with
the #singular behaviour of the one-component real order parameter,
For the sake of simplicity let us speak on the ferromagnetic pha-

ge transition, ¢alling the order paraneter "magnetization" and
its derivative with respect to the external field "susceptibi-
lity", Naturally, all the formal results derived below permit
any other physical interpretation,

Let H be the Hamiltonian of guch a "ferromagnetic™ gystem
at zero field 2.=0C. For ‘#L‘?O the Hamiltonian will be;

Hp= H-4NS, S=S8*, % >0, (3)
where S is the operator of magnetieation along the field (per
particle), A/ 1s the number of particles (megnetic moments) in
the system, proportional to its volume V . By © we shall deno-
te the temperature in energy units, 8= kT. Let M(G, I?.) and
%(Q,k)be "magnetization™ and "susceptibility" for our system:

M8k )= LSy, 0= — dF(6K)/44, )
% (6, ) = dM(o,h) = - d2/o, A)felfl )

where o2+, ie the equilibrium Gibbs everage and £(6,5)1s
the free energy of a 3ystem4).

At the critieal peint &=g. , ‘g:—o the second-order
phase traneition occurs: The spontanecus magnetization M.(Q;Bmo)
goes continuously to zero as & -> &, by 6 £ 8, and remains zero
for all 8 Z 6. , while the susceptibility tecomes — oo at the
eritical point (irrespective of the "trajectory" on the &—
plane, along which the system approaches the critical point).

48 an exmmple of such a system, one may consider the Ising-
type ferromagnetic model with the Hamiltonian: :

9] . :
The definition: for an arbitrary system with Hamiltonian
I" and temperature &

Flhel--26 T 6% &= Tl €)Y/ T e

where “T"ia the trace over the whole space of states of a system,
/Vis the number of particles proportional to the volume of a

system \ /.



H=— 2271685 -4 5 &t , S=N*>"<

e ij =5 2 T
1€isj 4y & iEN 1€ i an

where é.;::}:i, 'JL-J- 70 for the nearest neighbours (or some "stra~

ta" of the nearest neighbours) and£7af=c>for distant neighbours,

Forodl =2 anded =3 (d s ¢imention} in such gystems the phase

transition of the type described above takes place. .

3. Order Parameter and Quasi-Averages

We want to note, following the olassiocal paper by N.N.Bo-
golubov » that the order parameter should be always defined with
taking into account gymmetry-breaking effecfs, For instance, the
gpontaneous magnetization for model (6) should be defined as the
quasi-average{g % » rather than the usual Gibbs average <§>by

=0 in the limit & Sope. Accepting the canonical definition of the
quasi~averages/5/, we have:
S iayo = din e <S%yy 5

>0 AVMD>o0 5}
where N ~Po0 means thermodynamical 1limit”?; the gequence of limits

is here essential, The physical meaning of the definition (7) is
obvious: the spontanecus magretization should be calculated by the
infinitesimal external magnetic field being switched on, the field
fixes the direction of spontenecus magnetization. However, in gpi-
te of the clear physical meaning, such a definition may appear

to be not effective enough in the general case, when the Hamilto-
nian and the gtate of a system sre not defined in detail,

Few effective methods in the theory of quasi-averages have
been developed by N.HN.Bogolubov, Jr, when studying superconducting
models/T'B . These methods are based on the fundamental theorem |,
on the functional of the free enargy’G (the mathematical formu-
lation of the Theorem see in Appendix A)., Here we shall discuss
it shortly from the point of view appropriate for our further
needs,

et T be an arbitrary Hamiltonian, Introduce elso the Ha-

miltonian: ]’} (C) = [ + f/\/{g - CJZ, f}o,(g)

wkere C is a variational parameter,S=S+is gome operator construc—
tion, whiech should satisfy the only conditionsg: .

LSl & Kyg [ST=-TS| ¢ Kz, o
where (l+.- || means the norm of the operator, Kk and K, are cons-

5 THermodynamical limit: A/-doo , V-3co » MV = constant, where
A is the number of particles, v is the volume of g system,



tantsG). lLet us calculate the free enmergy for the system with the
Hamiltonian (8) ir the limit #~>ov (for some fixed temperature
g , which we shall not indicate )and then minimize it with respect
to C . Denote the minimizing value of < as C ,
8 [(@)] = ads min (Gm_ £,[7(C)]) . co
Then the Bogolubov, Jris theorem yields that in the thermody-
pamical limit {N-220) the free energy for the basic system (T, 5)
coincides with that of (10) for every f»>0 and every fixed §2¢ :

I'FN[F_]"WCOO[E_(E-)JI NSeo 0. (1)

Furthermore, psrameter C in (10) does not depend on f>0 , and,

consequently, one can regard T to be the quasi-—average{syr,a,

-C = 48 ?r— - (12}
If equation (10) provides more than one value for ¢ ,one should
fix one of them to be the quasi-average (here we have the same
gituation, ae in the choice of the direction of spontaneous mag-
netization).

Making use of the minimum condition (10), one can easily ob-
tain that the quasi-average (12) satisfies the "self-copsistence
egggtion" 7) —

C=%S?r;o(a)9ca4§?r, fro. (13)
which im just the result we only need below (see also Appendix 4},

It should be emphaeized that the results described above are
independent of any detalls of the concrete structure of the ope-
ratora T and S ; So, the Bogolubov, Jr,'a Theorem demonstrates
some universal "mathematical™ properties of the Gibbs canonical
ensemblea). One can apply these general properties when coneider-

5] ¢

ne can, if necemsary, weaken the conditions (9), requar-
ing the operators in (2) to be bounded not in norm, but only "in
average", for details see Appendix 4, (A11).

7) Let us note, in order to illustrate the physical meaning
of egquation (13), that of the same nature are the molecular-
field equations in the theory of magnetizu, the gap equation in
the theory of superconductivity, etc.

8) Here we have one more manifestation of a well-known deep
physical principle '"of minimum of energy".



ing different problems in the equilibrium many-body thaoryg). Ag
regards the present baper, we shall use equality (13) as a start-
ing point to prove some special formulas for sugceptibllity in
syetems with the second-order phase transitions. It is of parti-
cular importance for our aim that hereby the problem of the effec-
tive definition of the quasi-averages appears to be molved auto-
matically,

Isking the problem in general, we want to note that becauge
of the clome connection between rhase-transitions ang symmetry-
breaking effects, essential restrictions exigt for the methods of
general analysis of the critical behaviour, when the system consi~
dered is not concretized in sll details. Namely, for all such
méthods the order parameter should be congidered in the sense of
quasi-averages. From our point of view, the most convenient (if
not the only possible) to this end is the definition of the quagi-
averages 1n accordance with the described procedure (ses (12)),
That is why the relationg (12),(13), taken ap a starting point for
our studies, are inevitable in many aspects,.

4. New Notation
Let us denote by F)Q? an arbitrary system with Hamiltonisn
[ and temperature & s and use this notation as a funetionalargu-
ment. In perticular, we ghall denote the quasi—average¢<8>r_ by
SU’/G]and the corresponding eusceptibility by%[r/e_'] . 70
In this notation one can represent the equality (13) as

follows: SE_/BJ = S[j‘-ff/\/s%- {/V.gjg' =Qf3rr/a].(14)

Throughout what follows when wmaking use of quasi-averages
and equality (14), we consider (without special remarks) all the
necessary conditions, in particular conditions (9) or their gene~
ralizations, to be satisfied. We shall also congider (for the sa-
ke of convenience) the guasi-averages S[jjﬂ}]to be usually non-
negative quantities. One can always get this end, changing, if
necessary, the sign of the initial operator S—}-—S +« It should be
also noted, that iff;[FUﬁi]is really the spontaneous magnetiza-
tion, there is the symmetry between popitive and negative choice

EN One can consider, as an example, the methods of the asymp-
totically exact solution for some classes of model Hamiltonians

/6-9/. Just when atudying that range of problems the bagic Theorem
(11) has been proved 76/,



of the quasiaverage S[T/67]; so we shall slways choose the posi-
tive value for the spontaneous magnetization.

5. The Critical-Peoint Condition

Here we shall consider the definition of the critical point
for the case of the second-crder phase transitions. Let us return
to the "magnetic" therminology of section 2 and congider the sys-
tem with Hemiltonien (3). Let 1 be the zero-field Hemiltorian;

,S,the order parsmeier opersator, Qc,the critiesl tetperature,
IfH/GQ ig the critical system, we have:
S[H/Bc ] = 0, (15a)
X [H/BT]= + O0- ' (15b)
Thepe equalities should be valid whatever the defimition for the
critical point is accepted,

As a formal generalized definition of the critical point
{critical-point condition) we propose the following:

Definition 1. We say that the system H/Gcis at the critical
point with respect to the operator & , if there existe such a va=
riation of the Hamiltonien H-> H+YH, that the following condi-

tions are setisfied: # O, S H =#O;
S[H@H/Bc]—‘- {—)o, SH>o0, (16a)

S[H'+SH+J°U$2/8°]/S[H+SH/9‘] TEYY f7o70,(16b)
where (160} has to be valid for every {(arbitrary small) fixed
FP>0 .

The quasi-averages are here supposed to be defined by (12),
the equality (14) being valid (the operstors H, SH,Sshould sa-
tisfy all necessary conditions, see (9)). It should be noted that
from the phyeical point of view the basic conditions (9} imply
only the "quagl-additive" character of the order parameter and
always hold true for concrete systems (see also footnote 6).

' Two notes to Def. 1.

1) If the condition {16b) is valid for some fixed f=fo>0,
it ig valid also for allf?fé « That is due to the fact that
the modulus of the numerator of (16b)} never increases se /< g.'mcwsu-:»‘m)9

10) Irrespective of aymtem [/© and of operator A the inequ-~
alityd 2f [T+ xwA/6]/dxZ< 0 or L A{r+XWA/6]/dxr <0 holds true

(the concavity of ,the free energy)., In particular, always

d 2-[F+f/\/§£/6f/df£:0. Taking algo into account that S2(e.]=

= {Sf..7)2(Appendix A (A10)), we find that the modulus of the
mumerator in (16b) decreases monotonously with growing f .




2) Making use of the concept of variational der%*,tives, one
can rewrite (16b) (if (16a) is valid) into the form 1

SS[H+PNS2 /. T/SH =0, P»op. aD

S S[H/Bc J/5H ? 47O

Rote that the critical~point conditions (16) ensure the pro-
perties (15} to hold true. In particular, {15b) is valid owing to
{31) (mee below). |

It should be also noted that the critical condition (16) ig
broader than the generally accepted quasi-phenomenological con-
cept of the second-order phape transition critical point. In par-
ticular, the condition (16)mey hold true also in some special sin-
gular points, which are not usually regarded to be the phase tran-
sitlon peints. The points where a pystem loses ite themmal stabi-~
lity seem to be.the possible candidates on this role.

Consider now some concrete physical examples for the choice
of the variation Al in the critical conditions (16) 127,

A, Choosing in (16) I'-f-F-ct'r“"/EE‘C in the form H——ﬁ_NS/Q, one
can rewrite the critical-point conditions as

>0 O
S[H—gNS/Bcj= -—),093 &—)0,, (i18a)
2 . — =00 Zo 18b
Kol[H+prS /9(:]—{_;,00,;—907. (18v)
To confimm (18) let us note that due to (14) ‘the following rule
is always valia:
2 —

Slrie]— S[r+pnvs¥eJ=c0, P>o, (s
where the arrow means that the left-hand equality with necessity
leads to the right-hend one. So, if the copditions (18) hold tirue,
then S{H/B. J= S+ PVSE%/8.]=0, and making use of the defi-
nition (5) we get:

Lo SH-Aws +fAJ.§2/9cj_Z[HffNS%‘]=O
40 S[H-fws/ec] ~ X[H/ec]

) it should be noted that such a repregeéntation im rather
formal, since the ratio (17) may appear t¢ be of the type to/c0 or
©/0 . However, we shall not discuss here this question in moyre
detail , since below we deal dipectly with {16 ). Note, on the
other hand, that the condition (17) ie of a certain phygical ob-
Viousness: here.one can easely see, that the critiecal syetem isg
anomalous sensitive with res ECt to the variation of the Hamilto-
nian § H, while the temf/\/§ remeoves this asnomalous sengitivenessg.

12) On the otherhand, the éaee when & H has ne any appro=-
briate physical meaning is also possible.



30 both conditione (16) are satisfied. ‘

B, One can also chooseH-t'- SH/QC to be the initial system
by 64 0c , i.e.,8=0c(1-€) » €7D . Then the criticel condi-
tions {16) get the form: SDy €70

Q[H/6 (1-€)]=1=0s >0, (20a)

S [+gmS¥oe (1-5)] /S [H /o (1-€)] T35, 7 55 7 0zo0)

I particular, the condition (20b)} ie satiefied, if the "demagne-
tization™ temm _f’NSq' in the Hamiltonian makes the critical tem-—
perature lower by a finite quentity, 8¢ > Gc(f’)<8c. Then for suf-
ficiently ewall €7, such that GC(F)<GC(’I"E){B , the nume-
rator in {20b) becomes zero and (20b) is valid. c

C.If one chooses H+3H/Bc in the form H-wn$t/6., Z20,
the critical-point condition (16a) takes the form: .

= — 2 — >0 zo
M(z)= S[H-&NS /BCJ‘“ {__?07’225_)0,. (21)
Here the "ferromsgnetic"™ term—75 N,S?'is introduced in the Hamil-
tonian, which favours the ordering. The condition {21) then meana
that such a term mekes the critical temperature higher by a fini-
te quantity. The condition corresponding to (16b) is the follow-
ing: ﬁ. S[H'ﬂ'(f—zj)l\}sz'/ec.% =0 f?O
r3e S[H—-GwN3%/8] ? ’

This condition holds true automatically, since for all C&L&f
the denominator here is identically zero (due to {19)).

&_ Cne can alsc verify that the critical-point conditions
{16) are valid if the magnetizmstion for nonzero magnetic field
satisfies the standard power law (witk posaible logarithmic

correction): A 1P
S[H-fNS/ecj“-‘- (é)g/ﬂlf'/ (’*0/@: A Z Oy (22)
olh)—F=c7 ©>
where 53 Py D,D'7 are real parameters, D70 , »f 7o, SZJ_ 3
the parameter P is arbitrary (—oo & PL-H» ) for Y > 4. s, and
P70 for v=4. ‘
In virtue of (14) the quapi-average _[\/1_(5«':)(21) patisfies

M ?283102 [(%)1}/ A %—’[ *(1+0( ﬁ))_]ﬁ - 25 M

whence we find for & > 4 and =4

M (z) =/1[3)(140z), 0= ~5=5570,

where




>

— RS =i x| L2
Miz)=(55)° (42)° o 2 |77,
Y51, P is arbitrary, D= Ddfsbr =

M(G) = "2125, exp ‘{_ ('é:% )%572219 P>p(240)

S0, the condition (21) is satisfied and hence the generalized
critical cordition {16) holds true.

6. The Basic Formula for Susceptibility

Let H/®c be the critical gystem in the sense of Definition
1 and let Hi—?H/Oc be the auxiliary system herein. Introduce also
the auxiliary Hamiltonian 2 ﬁ ' ﬁ
Hs (5 {)_.2 H+SH+ VNS> NS, Pro, 70505
and denote through M%“(f,g) and %g{f,h) magnetization end suscep-
tibility for the syatem HS‘(J’, (%. Averaging the equality

Us (HA) = A Ms(BE)/db (26)

over& frem © ti11 2¥0 , we get

C;hzfoiir{-gﬁ’hfre) N f; [MS- {f) gi) B M S (f’ 0)-]’ 05[,‘,7[542;;11.
ho= 2P S[H+SH/BJ+0, SH# O, @8

and taking inte account that owing to the universal "gelf-con-
sistence® equality (14)

Ms (F, hy = 29 S[H+SH/b, ]) = S[H+VH/8.] (29)

one obtains from (27): )
%[;f-r?Hf-fA/Sz-—- ﬁg; /\/S/&c]:z—i— = S[HSH NS T (30)
3 I\ STuesn/e] /o
0 < [ﬁs,fl & Qfl S[H#-S'H/ecjl-

Passing here tc the limit gH-—)o and taking into account the
critical conditions (16), we finally get our basic formulas for

susceptibility: ﬁ_,_ﬁ,usz 1
X ]-‘ 7 > Pro. on

Bec

Here the parameter is &n arbitrary (not necessary small) po-
sitive quaniity. Note also, that for f-—>o we have %[Hlé‘c]=
“t oo s just in agreement with (15b).

S0, we have proved the following statement:

LIEOREM 1, Let systenH /S, be at the critical point with res-
pect to the operator § (in the mense of Definition 1)}, It is suf-
ficient to agpume, in particular, that any of gpecial critical

i2



conditions (18), (20), (21) or (22) is valid. Then for the sus-
ceptibility corresponding to the operator § formula {(37) holds
true.

Te Generalized Pormulag for Sugceptibility

In & special case of the power-like asymptotics (22) one

can easily generalize the basic formula (31) to the case of non-
zero weak magnetic field,

We congider first even more general case whern the critical
condition is taken in the form (21) for the quasiaverageM(é).
As regards S'(g.) we shall assume only that

S(B)= Sfu-hmsfe]= {7272, oo

Note that due to the self-consistancy equation {14).M (%)
gatisfies the equality:

M(zg)= S[H+PNS2- 2 (Prg)MIBINS foc [, Z7 0,03
FPzZos

in particular, for £= we have: .
M(E)= S(h=22M(E), 52 Z0. O
o, (32) is a conseguence of the critical condition {21) (the
inverse conclusion is wrong).

We shall suppoze below the functions M (% ) and S‘(ﬁ.) to be
continously differentiable for all %70, #1770 in some nelghbour-
hood of the singular point Z=0 , f?z_-..—.o {wherein only these

Tfunctions to be congid ered ),
Let us mlzo iniroduce new functions:

S(h) = _S//i)/_%,s.f.’é’) , >0, 35)
2%5) = S5 = 2zMI(B)) s & FO. o)

ﬁiff?rentiating vhe '_i.dent."?i;' {343 we zet in ihis notation:
m(z) /Al%) 7o _
G ,__.,_[__.. = j_/,\g \&)—1 2 L 70, 4
On the other hand, differentiating (332) and melking use of {37},
alter some transformabions we obtain the formula generallzing (31):

U [HE NS hyS/oc T8 2PFE)MI5) = s
= d../(gf"f' 2% S*(Zs))a Oy 70,

Note that parameterz 5 Fp end [~ 70 hereby are arbitrary {oot
necessary small). Inastead of f° and % one c¢en also choose f

and 2 f?O * Jg,zo , to be independent parameters. Then one
should calculate ¢ from ithe squatien:



%.': Q(F*E)M(@):f7oaﬁ3 O. (38a)
SﬁnceM(%J ig a monotonously increasing function 13 s the equa=-
tion (38a)} provides the one-to-one correspondence el?é {ﬁ.?/o,
G ZF0).

Formula (38) permits a simplification in the case when the
power-like asympiotics (22 )ﬁholds true. Then for M#{Z)we have the
relations (214), and for g'( )(35) we get: ‘ﬁ_ AOAK

1 4
= e + A el ey
S 5 N/ Tt om0
where 3 i the critical index in(22). Asymptotics for & *(2)
then followe from (36) ard (39), Assuming the correction O(‘FL) in
(22) to be a sufficiently “amooth"™ function, such that in (39}

[ dYdh | — 55570, o

we finally getg(ﬁ.)")s, s*((;;)—) Y es 'g.—>o s om>0 - Hemce,
formula (38) yields:

% [H+ pNSE ANS [oc f o atproimiz) uos
= 4./(20+ 255 (1+05)), 57057 05 05 7520,

where B Z 4 is the critieal index in (22), fﬁ(i;) is represented by
(24), M{T)>pas >0 .

So, the following statement holds true:

THEOREM 1A, Let system H/ec be at the critical point with
respect to the oparators in the mense of the special critical
condition (21), and let the functions M{Z)(21) and S(#) (32)
be continuously differentiatle in some neighbourhood of the polnt
=0 ‘ﬂ:o for 70 , 1?'.70 + Then in this neighbourhoed for
the susceptibility corresponding to the operater S formula (38)
ig valid, In the cese of the stronger version of the critical con-
dition, when the conditions (22) and (392) are valid, the asympto-
tical formula (40) holds true.

8. Some Other Vermions of the Basic Formulas

The aystemH/Bc in the formulas derived above should sstisfy
only the critical condition, being free in other aspecta, Hence,
choosing the critical systemH/@cin one or snother concrete form,
one can obtain different modifications of the basic formulas,

Consider the situation when through the variation of the Ha-

miltonian H?H+Wine eritical systemH/6c passess to mon-critical
virtue o e convexity o e ree energy
dmfdz z0, see footnote 10,
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one H+W/9c . Let the variation be of the "dimordering™type and
can be compensated by the Mordering” term =ANShy a finite positive
value of the parameter A=A{W) >0 , so that the resulting syg-
tein becomes the critical one sgaint

H"’W—AW)NS‘Z the critical system

: O = in the sense of Def.l (41)
(W) = Oy WH# O, (41a)
—> 0, W-=>o0.

Note that the condition (41) holds %rue if {see (21)):

S[H+W— (sw)ez)ns 2 /6. ]1={357002)

One cén easily verify that the system H+W/9c is reslly
in the disordered phase: starting with S[H +W“A(W)A/S9-/8¢]=O
and taking into account (19%), one obtains

S[H+W/ec] =0, W # 0.

One can rewrite the bagic formulas {(31) and (if the corres-—
ponding conditions are valid) (38),(40) for the case (41),(42},
the term - AfW)AM S 2 being then compensating (completely or in
part} by the term _fA/SQ . In particular, on the basis of {31)

and (41) we get: %[H-{-W — 1 7 (43)
“B. 25wy

where the perameter & (W) ip definite in (41). Note also that
in view of (31) and (41} the following relation holds true:

U [H+W/ee ] =X [H+ £ X 4 [u+w/o. NS 2/6e ] a3a)

Let (42) be valid, then msking use of (33)—(36),(33),(43)
one can eagily derive the relation:

- . -4 :
X wy b )=X "L 0)+ Yik(o,4 4= f—ﬂ’(ma)g{méym)
where o k) = % [H+w-huS/oc T, ?
S (wyh)= S [H+W-hNS/Bc T
Kowr [Ozhi) = %[HW"ﬁi/US/&c Ts
Hw = H+W-A{W)N527 Huwr/Bc = the critical system(41)
Note that for any fixed Wsk 0 and Pa,—‘;o in (44) f,,i,v fLQ;

ﬁi - £2{_ %M—J/Z%{mg)}hzo+0“7(£%); (442)
OW(ég) wﬁ-g as ﬁf.e»o,Wqﬁ-o,




The analogous considerations are valid also in the case when
some varistion of the Hamiltonian H-—» H -+, being of the "or-
dering" type, can be compensated by the introduction of the pogi-
tive term -i-A(V)NS A(V) D0 for Vo

THEQREM 1B, If for the variation of the Hamiltonian H-> H+TW
there exists & finite value of the parameter A= A(W)P( such that
the condition (41) is valid (in particular, it ism sufficient to
guppose that the condition (42) is velid), then formulas (43),(43a)
and {(44) hold true (the last ome in the case (42) only).

Note thet for a large c¢lsss of Hamiltonians the conditions of
Theorem 1B are satisfied, if fer H+W/9c one chooges the initial
syetem for © > 8B, , i.e.,the system H/G¢ (»14-8), T >0.

9. Remarks on the Critical-Pecint Conditions

Let us consider the relations between different representati-
ons of the critical-peint condition (16) (with respect to the
concrete choice of 8 M ),

Note first of 8ll, that the basic condition in (16) is {16b),
while (16a} is the suxiliary one. On the other hand, if one knows
from the very beginrning that the system H/Gc is critical, then
one can ¢onclude that every (or "almost every") variation which
satisfies (16a), satiafies also (16%) 4), Indeed, let some fixed
varistion &Ho esatisfy (16a) and (16b) and, hence, the basic for-
mute (31) be valid. Coneider a eet of different variationg
SH= SHf; SHQ s e, every one patisfing the condition (16a),
Suppose, on the other hand, that the susceptibility
X [H+fwS2/6: T = 4/%2f (31) is "stable" with respect to the
varistions S H4, SHQ s +++ 8nd simultanecus variation (engag-
ing) of the externsl field —{NS, i.e.,suppose that the follow-
ing relation helds true

+PNSESH —ANSh = X """‘f”f 1
E” X [H+pus ]=

>0 f(45)
— O

o & {ﬁt I -é ff[S[H‘I‘SH,/ﬁc]/’ f: 1'222 g)'_. (45e)

14)‘”9 congider in thie section the conditions {16) ag regt-
rictions on {the possible choice of the variation SH



independently of the "trajectory on the Sﬂ; — % -plane” when
SH >0 , ﬂ =0 (the parameter £ varying in the re=-
glon {45a)), Then one can insist that every veriation S’Hz
which satisfies (16a) and (45) should satisfy also the basic con-
dition (16b). To get thls end, one should congider simultanecus-
1y the relation (45) and equality (30) (for JIH = FHy , SH,
FH_g sess )y wWhich is valid owing to (16a) only. Then, ag
a regult one gets (cf. (16b)):

Liwn S[H+EH; +fNSZ/¢9¢ J

Shivo S[HTHI/6c ] =09 124,2,... (46)

Consider now & gpecial case when the variations sre of the
form

SH-;";_'?.,: /\/Ai s i=i3293"" ’ (47)

where Af are fixed operators, 5'{ are small parameters,
?{ >0 . Then by analogy of the form (17} to (16b}, one
can rewrite (46) as 15),

Xsay [wtpvstfe:
%Sﬁi [”/9&_7

where the "combined" susceptibility (){SA for arbitrary system
/e is definite as |

Xsp (/8 ] = {dS[r-FnAfo] [d% }g—m,
Xsa[r/e] = Xas [r/e] . (48a)

15) In thig connection see also footnote 11,



50, we have obtained the following result:

Lemm=a 1.

Let eystem H,Q9C be in the critical point with res-—
pect to the operator S in the sense of Def.1 (mee (16)),
end let a set of variations SH = qu . EH;_ s ses g8~
tisfy the conditions {16a) and (45), Then all these variations
satiefy also (16b) (see (46)). If +tHe variations mentioned are
of the form (47), the condition (46) can be represented in the
form (48).

The Lemma formulated makes it possible to elucidate the
interrelation between different forme of the criticel conditi-
on A - D (Seection 5, {18), (20)-(22)). From the phyeical point
of view the asgumption (45) for the variations cceuring in the
conditions A-D geems to be naturegl. With this assumption, one
can insist that if the condition (21) (all the more (22)) is
gatigfied, then ({18b) follows from (18a) and (19b) follows from
(19a). And if the conditions (18a) and (19a) are both valid, then
if any of the two conditions {18b) and {19b) is satisfied, the
seoond one i3 also valid.

APPENDIX A

Let us reproduce the fundemental thecrem on the free ener-
gies due to N.N,Bogolubov, Jr. proved in ref./6/ {see also/T’S/).
We choose here the form, which is convenient for our needs.

THEOREM (N.N.Bogolubov, Jr., 1966}:

Congider an equilibrium system of A/ interacting partic-
les with Hamiltonian | and temperature @ ( A/ is proportional
to the volume of the mystem V ). Let E;,L { o¢ =1,2,...,0) be
some operator constructions (not necessarily hermitien), which
should sﬁtisfy the restrictions:

(a1a) || Sw ” < Kd.s
(iv) [ SuT ~TS= | € K2,

M S Sp-SpSwl) € ks /W5 ISkSp ~ SFSulla ey,
1929 ..0 5,

oty £

i~

I



where || o- || means the norm of the operator, Kr oo Ko » KS
are constants.
Introduce the Hamiltonian: x
p(C)= r+~2‘3§>x(3“—c¢)(s -C¥), (r2)
where ﬂx. are positive para.m.eters, f >0 1 Coare complex
variational parameters, varying in the region {C. [ & K,,.,. éi ,
where €1 is an arbitrary small positive fixed number, 24 2 0.

Intrcduce also the Hamlltonlan with small "eource" terms:
h=1T- NZ’.(&S’*+D¢S«) (A3)

where 0 £ [I?o(‘ £ 62, &*192 3ys0e9 L o gg_ 70 1s
arbitrary small positive fixed number,

Systems with the Hamiltonians [p and Ig (C) are suppo:aed to
be thermodynamically stable for given fixed temperature ez 0
so that the corresponding free energies and canonical averages of
the operators S, exist both for finite A/ and in the limit
NSod ).

Then in the limit A 2ou the following bounds hold true:

& abs min-p.u[r (C)]"'pu[rjé‘g”’ QUNN—%ﬁ,

CONSEQUENGE! If one calculates firat

foul Hp(0)] = i £w[H ()], (%)
and then detem1nes parameters Co from

the condition of the absoiute minimum of the expression thus ob-
teined: Co = Cw , where :

£oo [T}(C )] = als min -Fm[zj;(c)_], (46)
then the following bounds are valid ['7 8]

Z fac (S“-_'CA’-)(SM C:)Z. () 5- (A7)
< -Foo (C)] fw [l‘] Envt Ju 2 fn 205, D0 dS/v-;,o
QN = W:-:M ['FIV [[}(C)] ""'1(:4 [I}’(C)]I . (A7a)

16)

and is not indicated explicitly.
17)

Here and below the temperatﬁre is supposed to be fixed

By A —>oowe mean the thermodynamical limit, see footnotes,



On the basis of {(A6) and (47) one can easily find that pa-
rameters C o are independent of _ﬁx >0 + On the other hand,
in view of (A7) we have the relations:

[ = s 75 (%) |7 < (54/*2»)/%: (A8a)
HCocl‘?‘ <So¢S >r. () l (Qzu-f’?,u (o5 (4BD)

k= A28 eaay 72,

Therefore
,‘é;’:; <Sc< >r (E) 2 C“ = ;é;t:q<sj‘%>(5),msc)

2_ T ‘gw. 4 >
f“. '7 O s o = i) 2’ .
where ﬂ( 7€ eare arbitrary fixed values. Ta.klng here the li-
mit fx ~> C , we find that persmeters Co« appear to be the
quasi-averages st }-I,. . Here [} (C) plays the role analo-
gous to that of Hﬁ in (73},

In cur notation (section 4) a met of equations (ABc) can be
rewritten in the form:

Cu [1"/9] Su[T+ A/Z f.xSan -

__./\/Z (121 ST+ 02 Sd)]ﬂ _,qu g*[r/yj ,(A9)

Note also that owing to (A8d) A=1y25es%.

S<SL{T/6T= SIS.[/]= 1Sa[TAI]% ax 1,2, 2470

REMARK

One can eagily see, analysing the proof of the Theorem in
/6,8 that the conditions (A1) can be chosen in a weakened
form, when | Y I in (A1) means not generally accepted (in the
mathematical sense) norm of the operator Y » but the "average

refs.

norm" :

20



' . 1/ |
1Y 1= (5<YY-Yen Y2 e
where the averaging is taken ovey the Hamiltonian Tb (a4) .

So, the Tueorem and its consequences are valid also-for
unpourded {in the mathematical sense)} operators. Cune has only
to verify, making use of one or anctner zdditional congidera-
tion, that conditions {A1) with the"norm" of (A11) Lold frue,
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