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NaccHep T.A. E17 - 12657

HenpepuBHOCTL DyHMKUWK cocToasuA Bose-raza
B paGoTe Nokasane, uTO HEKOTOPHE QYHKUWH COCTOAHMA Bode~rasa,
B 0CODEHHOCTM 3HTPOMMA, 3aBUCAT HENPEPHBHO OT YPOBHElH JHepPruM  coo-
GOQHOMQ TAaMANBTOHUAHS K OT BOBMYWEHMA C30BOAHOrO FaMUNbLTOMMAKA One-

patopam nopagka 0. Hcronb3oBaHHWii 3aech METOR COCTOMT B TOM, UTOGM
8BECTY NOAXCAAUYI TONOAOIMK Ha MaTpMUax.

PaGoTa swnonreda B JlaGopaTopuM TEOpeTHUUECKON Puauku QHAK.
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Lassner G.A.
Continuity of State Functions of the Bose Gas

In this paper we show that some state functions of the Bose gas,
especially the entropy, depend continuously on the energy levels for
the free Hamiltonian and on perturbations of the free Hamiltonian by
operators of degree 0. The method used here is to introduce an appro-
priate topology on the density matrices and on the perturbations of

the free Hamiltonian.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR,
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1. Intreduetion

The aim of this paper is to show that the entropy and the
energy of a Bose gas in equilibrium depend continuously on the
Hamiltonian,respectively on perturbations of the Hamiltonian under
appropriate assumptions, Especially for the entropy the problem
of continuity is very nontrivial /2/. We reatrict ourselves to
the cagse where the states can be described by density operators
(finite box), bu% topological methods used for our considerations
can be applied aléo to more general physical systems,In this pa=-
per we show,that in the case under consideration the density
operators depend continuously on the Hamiltonian with respect to
an appropriate topology. The contimiity of special fhermodynami—

cal state functions is then a simple consequence of this fact,

The algebra of obmervables O of the Bose gas is geners-
ted by the creetion and snnihilation operators 8,%,8; satisfy-

ing the canonical commutstion relstions

+
(1.1} [ai, ay J = fai", ay J =0 , ["1’ af’]-&u’



where i,3=1,2,...,f.For a real gas it is £ infinits,but in this
paper we shall first regard the case £ finite. We suppose o
to be generated by ai+, ay only algebraically,i.s.,any obser-
vable A €0l ia a finite élgebraic expression in the creztion
and annihilation operatoras.

The operators are in a2 natural way defined on the Fock spacse
3 with the complete orthonormal base of states ¢(n‘)-=n1’n2""
characterized by the occupation numbers ny o, which for a Bose
gas run over ﬁis Cy1,25000 » .

The an_nihilation and creation operators act on the 4’ {n)
in the following way

ai+ Joosstysened - !ni-n I...,ni-ﬂ,...?

1.2}
a8 i...,ni.u.7 = [l’li ]...,ni-‘l,...) .

= ]0,0,... 7 .
ith

The vacnum state is 4’0

The number operator of the particle 1is Hi - ai"'ai and

the total number operator is

S P A
Let us remark that the number operator and alsc Hamiltonlians of
the form

(1.4 B = % iia;' ay

which we regard below are not elements of the observable algebra
0l .Further, the operators of (L are first only defined on the

algebraicly linear hull D _ of the basic vectors ‘t’(n). The

o
choice of larger domain d of definition for the unbounded
operators of 3 is ~losely related %o the physical system under
corisideration. Por our aim of topological considerations we shall

-y
choose domains ) = on R (%) » where T 13 an appropriate self-



adjoint operator. In section 3, where we consider the Boga gas
of finite degree of freedom,T is simply a polynom of thg number
operator N, For infinite degree of freedom we must choose T
already in a more complicated way, related jo the physical pro-
blem we have in wmind, Purther, also in dependence of the closed
operator T,we get appropriate 'physical’ topologies on the den
slty operators for a Base system. This problem we regard in the

next section.
2. FPhysicel topology on density operators

Let T 21 be a self-adjoint operator, which allows the

following eatimstion of the number operator,]\';o
{2.1) ] lx‘b l € ¢ [ Tn‘ﬂi with 2 certain ny

on 30, vwhere ¢ is a certain constant. Then the domain gD (X)
of the closure X of any operator A € QL containg the domain
= lc:ﬁo L) (7)., Therefore all operators A € @  have a natu-
ral extension to +Purther, &, XD c +This means that
Ol becomes an Op° -algebra on @ in the gsense of /1/, i.e. A
is an # -subalgebra of X*¢ ), which ie the algebra of all
(unbounded) operators A defined on 4} so that A D e & and
A*D c D, at- A%1lp ie the restriction of A% to & .

By IH’“E = |, ¢€5),there ig defined 2 norm on P for
every real s, We denote by ZQB the completion of ') with res-
pect to the Hilbert nmorm Y-« “s + Then {IBS is & scale of
Hilbert spaces with

(2.2) d-2. =0 % and X, = X .

Row let us introduce /3/



(2.3) 5%6 D= {gcf( ® ); A ¢ B nuclear for all A,B € 24D,

Every positive and normed oi:erator € » 0, tr 3\' = ¥ is called
density operator. If the density operator § is contained in
E'T( D), then Q) =tr g A is 2 state on 2¥¢ D) and
therefore also on O . .

Now we introduce the strong tonology {5* on E.‘( Q) ,which
we call the physical topolegy /2/.

The physical topélogy {)* is given by the following system of
semineorms

e gl = S hsl =,
where T runs over all weakly bounded sets in '€ @ ) with
respect to the dual pair ( (), L0 7).

For the applications we have in mind, the case where !'1
is & nuclear operator,is of importance. Then we have /2/

Theorem 2.1 The physical topology »ﬁ* ig given by the syg-

tem _of seminorms

Ishe= 1™ » x=onz.. .

where W -{l 4is the usual operator norm. A bounded operator ¢ is

in 51(3) if and only if =211 norms ﬂg“kCM .

Theorem 2,2 The entropy S€ ¢ } = - tr ¢lng is finite
on the nouitive part E+ = { 22 0, gcfe..‘(& ) } of
E 1( D) sond continuous with respect tc the topology 'P*'

Further, let us recall the following definition /4/

Definition 2.3 An operator Be £*( D ) 1is said to be of

degree r, and we write B € OPr( &) ir

i, £ g Nl o4



for all real s , where c, i a certain constant for

every 8§ .

In this paver we need only some.proverties of operators of degree
0. Since for r = 0 (2.5} 13 equivalent to f[T° B T“S‘Pﬂécsﬂ¢“
for all s , the operators of order O are characterized by the

proverty that

(2.6) ™ B ™% 45 bounded in X for every real s .
Note that OP  is an Op“-algebra.

In section 4 we need the following lemma

Lemma 2.4
i} If B 1is en operator of degree O then also eB ia of
degree O

11) plsiq lrf g = x < = |

Proofr i) Every operator of degree O 1is bounded, Therefore

eBzz_;ll_!En

from which we get
B - ) -
bree” 272l g :?:li I} T B 7-8|",

i1) 18 a consequence of the fact that T% B "% i35 a continuous

function of s .

Definition 2,5 We define on the Oﬁ‘—algebra OPO of all
operatoras of degree Q0 the locally convex topology 11 by

the following svstem of seminorme



(2.7¥ M = P, (B} =_gup . T e | . k=0,1,2,... .

In faet, the tovology 7 is slready defined by the {(semi-Jnorms

W B2l = o (BY, seR',

Now we want to avply these general tovological considerationa
te the Bose gas. If we have finite degree of freedom (f=finite),
then the onerator T = (1-;-N)f"b1 has the desired properties.

It is a atraightforward conseguence of the structure of the
number operator N (1.3) that T satisfies the conditions (2.1).
The main property of T which we need in the following is the

nuclearity of 1,

Lemma 2.6 For finite degree of freedom, f=finite, the

operator T = (148} T i nuelear.

Proof: To prove the nuclearity of '1""'1 we firgst remark that

N Inyyeeeyne> = (1 4+ Eni)}f"'1 In.,....,nf) + Therefore the
eigenvalues of T are tc y= (1 4 E_ni)f+1, where (n) =
(ny,+..ynp) runs over all mn-tupels of nonnegative integers. We
have to show the convergence of the series

(2.8) Z_ _(.m}jf” & oo
Maymy Mg

i1

To do this we apoly the following integral criterion, which we

need alse in the following section

Criterion 2,7 Let P¥(x} be a function in ¢ variables,

vhich 1s positive, depending only on r= | x| and monoto-
rically decreasing for ¢ <r — =, The series 3. F(n)
)

as
convergen if and only if J- F(r) dx < os
rrQ

The members of the series {2.7) con be estimated in the form

t+ + X ni)_f_1 € Fn) with F(x) = » 7', Since



jt F(x) dx = J r? ir dw = —% , where .ﬂ.f is the area

T TrC
of f-dimensional unit saphere, from the eriterion we get the

convergence of the geries (2,8},

3..’1‘he Gibba' states of the Bose gas

We ghall Iconsider the Gibbs states of the Bose gas for finite
number of energy levels, more precisely for £ = finite.

For T we take the operator (am)T+ Tkan, as outlined in
the for&going section, the observable migebra Ol iz defined om

m = n,:]o D (™ .

The Hamiltonian
(3.1) Hy = T 85 24"y
is an element of £,*(J ), since the sum on the right-hand side
of (3.7} is finite. We suppose £, 3 0. let AU < O be the
chemical petential, then the operator e~ P (Hy= uN) 4 nuclear,

Its trace is the partition function 2,

(3.2) 7= tr e PUHpT) :ﬁ; [1-6 Pleg-prg-1
The Gibbs state on Ol is given by the density onerator

(3.3} $o = _%_ e F;('Ho-)uN)

The fact that tr & P is well-defined and finite for all A e

is a consegquence of the following lemma, which describes the

structure of ©q more precisely.

Lemma 3,1 The Gibbs density operator @o = ‘%‘ e~ PUH - pN)
belongs to 51(5)) .

Proof: It is sufficient to show that Tkg Tk iz nuclear for

every integer k (see also /2/). The elgenvalues of this operator

are e—z'p“'i _}L)ni {1+ Eni){2f+2)k. Since (E.i —-,u) > 0



by assumption, the infinite sum of all these eigenvalues is finite.
This is already the complete proof,. [~

Now we can prove

Theorem 3.2 The Gibbe density operator ¢ e.E‘.I(c'D yC 15*]
depends continuously on ( Eqreces af) » M snd {5 with

*
reapect to the tovology p -

Proof: Since the partition function 2 = Z{ €4 Mo "3 ) depends
continuously on the parameters ti >0, MO, »{5 > 0 we
have only to estimate the exnonential operator e"A s where

A -_-{3(1—10 - m¥) . Let A' be the corresponding nperator for
the parameters gi', },‘,', 1!.'. Since A and A' commute, we can

apply the operator ineouality

3.2y Pet e o™ < B —a i et 5 AN L

-4 A ¥
To prove e ——= g with respect to the topology {3 , wWe

— ! -
have to estimate lle™*' . o~A Hk ( see Theorem 2.1} , Applying
(3.4) we get

e - et , s N ety of | <

(3.5) ¢ N ' (o —anh ll 2P+t o2 )

The second factor in (3.5} is bounded for A'——» A s and for

the first factor we get the estimation
(3.6)  Nr7'a Al s SUT™ agagll Jees- prp- pei-pl
Thie completea the proof. I

Let s remerk that all estimations in this prroof have such a
simple fom‘, since 21l operators in the formulae of the proot
commite. In the case, where the perturbation of the Hamiltonian

does not commute with it, the egtimationms are much more compli~



cated, That case will be handled in the next gection.Nevertheless,
the simple nerturbation Theorem 3.2 is of own interest, First,
it gives a clear imoression on the tonologicnl auestions which
mist be solved. Secondly, nas a consequence of it we get the conti-
nuous dependence of 21l expectation valuea in the Gibbs eoulli-

brium in the gense of the following corollary.

Corollary 3.3 Every expectation value @, = tr ¢, A,
. A
A€ (d) , depends continuously on &, , M oand 'fj = -

Tis follows immediately from Theorem 3.2 , since the trace of
(SG"“ depends continmuously on ¢ with respect teo the topolo-
gy . ’

Since H e ;f,+(<D) , we have also proved the continuous de-
pendence of-the total energy E = g G(HO) on the physical
parametery E‘i s ).L y {5 .

Finally, by combining Theorem 3,2 with Theorem 2.2 we get
yet the following result

Corollary 3.4 The entropy § = - tr g,In €. is a conti-
nuous function of the physical parameters § it /A. and {5 .

Eapecially in the case of entropy the desired result is by
no means trivial, since the entropy will be mostly infinity and
ig only finite on 2 set of "density matrices of category I as

investigated by Wehrl /6/.

4, Perturbations of the Hamiltonian

In this section we investigate the continuous dependence of

the Gibbs states on some perturbationa h of the Hamiltonian Ho

which in general 4o not commute with Ho‘



First we prove the following lemma

Lemma 4.1 Let be AzHo-}LN,ﬂ.cO, then

)
I o o~tA || ¢ (15(—?-1)} o(FHtu o v 50

Proof: Since Ho ig positive and commutes with N we have
ek e ® [l ¢ 2% AT o || (am) (1) tuX i .

Therefore

ek e 4| ¢ xs:g_ ¢ 1ex YR+ tux £

(1_(_%11_)) k(f+1)  -k(f+1) - tu
Lemma 4.2 Let H~o, N, & ,)u, satisfying the same assump-
tions as in the foregoing section. If h is a self-edjoint
operator of degree zerc (see (2.6) ) then e"Pqu"'h'f"N} €
eh (D).
Proof: We put A = H - u K. Then e"'f'ke‘ﬁ'.,(a) (Lemma 3.1},
Now we apply the Trotter formulae (/5/,Thecrem VIII,31)

(@.1)  5THE (~RA -fhyn | -PCAm)

Every operator @&, = ( et e'gh) B 43 contained in 51€®)
since e_ﬁAEE.I(é)) and e_%h ie of degree zero (Lemma 2.4,
Now we estimate the porm H a, I Psq of 8, &% an operator of
‘}(p inte I;Lq. Bgaential is only the case P <gq . We decompose
this interval in n parts PP Py Leee & Bp=q Pp= P 4-1-1:- {g-p).
Then '

n
- N
w2y lloy lhy o & T fle™be LY

Further we get for every i

(4.3) Ne~RA a'gh I py_pepry = I TP o~ & pop Pi o~ Rebgemi



£ “Ts%r_ e“ﬁ‘Au “’_'E'f“-' e'g‘;h T"ﬁ-uu.

Let us estimate the norms on the right-hand side. For the first

norm we get by Lemma 4,7
- \ 4
@y o R ¢ ((m%,(zﬂ)-)%‘f*” el fet

where the number { is independent of n and 1 .

For the second norm we get e

(4.5) |2 T e B P [ g > %)HT?E" E S
€ e,

where « iz the constant of Lemma 2.4 ii).

Combining the estimationa (4.2) - (4.5} we get
. ‘_ #“ = .
{4.6) Ve, “p,q ¢ 1o c
The important point is that the constant ¢ on the right-hand

plde of (4.6} 1is independent of =n .

How we are going to prove

(4.7} \le'ﬁ("“h} “p,q & & & =a

- .

Condition (4,6) is equivalent to || T9 s, A | P
Fow for P & R we get
s P4 = 79 e-ﬂﬁ e 'Pah); n P G
o -~
= (e_g}\ e L '}"qu))rI 1P b —— e P.(A+thT q)'rq“f’.

Pherefore nm-lim ( T s, P ) o 7l G-’F(A'}h) ity and

congequently [ 1 e p(A+h) 7P | e f (A+h) “ ¢ o
P,g9 =

Especially we have for the norms | - |l , (2.4},
le™ fla+n) ﬂk - “ e—'P(Ai»h)n_k,k & ©0 Therefore

e” Pla+h) € 5’1 ()} and the Lemma is completely proved. -1



Lemma 4,3 Let h,h' € 0P, and pk(-h),pk(h') &£ o (gee

(2.7) ). For 8, (h) = ( e'&A_ e"ﬁ"h P and <k£p ,q & Kk
we get

; o :
@8) | epfm) - I, < TP pn-ny,

where f apd o are the constants of (4,6) which are inde-

pendent of n

Proof: 1t is

(4.9) o(n) - s(n') = 3 (e'e”e‘é"“')mfc'ﬁn(fa'”- fg'"'}](ié“c‘ﬁ‘)fu

ix1
Quite analoguos as in the foregoing proof we get
m -1 . _ - - !
{4.10) ls(h) - s(n*)lje 2. 4= ee"‘“"’ "ce““(cﬂ“_ c’“)ﬂ

. Lk
A cg.cm-a

-

Further
N L LTI E ST Rr L Ll JC T
ey PTh

{4.11) < f%‘ e#"‘a’%‘ﬂ‘(i“:)‘.

Substituting (4.11) into (4.10) vields (4.8) o

Now we prove the main theorem of this paper,

Theorem 4,4 Let h = e 0P0 be a perturbation of the

Hamiltonian H_ end
(4.12) g(h) = o PUHqah-pl) ;o - P(H +h-pl) |

the corresponding Gibbe state. Then h ——s g(h) is a

continuous mapping of O {4l (see (2.7)) into &, (D)If7.
Proof: B(n) = o~ PHP M) ygun £ (D) ( Lemme 4.2).

It remaine to prove that B(h) € £ ,(D) [$#"] continuously de- ,
pends on h with respect to the topology ‘rL . Let h,h' g OP,

4



end p (h) ,p (h") & o .Purther, let t be an arbitrary element
of & with BFI £1, Let s, (h), sn(h') be the same operators as

in the foregoing Lemma, then

(4.13) 125 ( B) - 8tm) ) A€l ™M Bm) - o (NI 4

 EANCIC RGO R 1 B S ONCOIEN L o 3
Now by applying (4.8} and taking n -—w co we get
(4.14) I} T (B(h) - B(n')) TEAI éfé‘f’“ p, (A -h") .
Since 1€ D, N¥U= 1, was arbitrary taken, we get
(4.15) B - 3@ Il = fir*¥@m -~ B 750 £
‘-‘E ’f'eJ'Pd' p{h = h') .

This completes the proof of the theorem. 1

With that it was shown 1f the Gibbs state of the Bose gas
ie perturbed by an operator of degree ¢ than this perturbed Gibbs
state belongs yet to the set X§1( §) and ie continuous with

respect to the perturbation h. By combining of Theorem 4.4 and
Theorem 2.2 we yet get

Corollary 4.5 The entropy S = -ir §1lng s a continuous
function of the perturbation h with respect to the topoloqu_

Note that aleo the free energy E = ¢ € H +h) continuously
depends on the perturbation h , '

Pinallylet us remark that for all foregoing considersations
it was esgentially that il is a nuclear operator, what fol-

lows from the property of the number operator im the case of

finite degree of freedom.
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