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napm1HbCKH K. El7 - 12416 
H3MeHeHHe ynpyrHx nocTOBHH~x np1-1 CTPYKTYPHOM 
¢a3oaoM nepexoAe. I .06~1-1~ cny4a~ 

B paMKax ¢eHoMeHonorH4eCKO~ TeopHH paccMoTpeH TeH30p 
ynpyrHX nOCTOBHH~X B OKpeCTHOCTI-1 CTpyKTYPHOrO ¢a3oaoro 
nepexoAa. B~BeAeHo o6~ee a~paMeHHe AnB ynpyrHx nocTOAHH~x. 

Pa6oTa a~nonHeHa a fla6opaTOPHH TeopeTH4ecKo~ ¢H3HKH, 
OH~H. 

Coo6weHHe 06beDHHeHHOrO HHCTHTyTa RDepHhlX HCCneaOBSHHR, ily6Ha 1979 

Pari inski K. E17 · 12416 
Changes of Elastic Constants in Structural Phase 
Transitions. I. General Case 

The tensor of elastic constants in a vicinity of the 
structural phase transition is considered in the frame
work of the phenomenological theory. The general expression 
for the elastic constants is derived. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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INTRODUCTION 

The behaviour of the elastic constants of a crystal in 
a vicinity of a structural phase transition point can suc
cessfully be described in the framework of the phenomeno
logical theory of Landau and Lifshitz/1,21. The main idea 
of a reduction of the symmetry of a crystal by an active 
mode of definite wave vector and relevant irreducible re
presentation involves also specific changes of the elastic 
constants. The kind of these changes depends upon the sym
metry of the high and low symmetry phase and on the active 
wave vector and irreducible representation. In this res
pect, the phase transition can be divided into two groups, 
the equi-transitional phase transitions with an active mode 
in the centre of the Brilluoin zone and phase transitions 
accompanied by an enlargement of the unit cell with the 
wave vectors out of the center of the Brilluoin zone. The 
equi-transitional phase transitions can be again divided 
into non-elastic and elastic ones. In a non-elastic phase 
transition, if it is continuous, the eigenvalue conjugated 
to the active mode vanishes at the critical point. In the 
elastic phase transition critical expression of elastic 
constants vanishes at the critical point. This occurs 
either as a result of vanishing of the relevant expression 
of the elastic constants themselves or as a result of ap
proaching to zero the eigenvalue conjugated to the normal 
mode of the same symmetry as the relevant elastic constant 
expression. In both cases a temperature behaviour of elas
tic constants is different. It is possible to classify 
the elastic constan~s tensor with respect to the kind of 
the structural phase 'transition without going into details 
of a particular behaviour of the order parameter. In/3/ 
examples of phase transitions have been elaborated in this 

way. 
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All elastic phase transitions have been listed by 
Aubry and Pick/4/ who have shown also that the soft modes 
which induce the elastic phase transitions are always Ra
man active in the high and low symmetry phases. If the 
soft mode in the high symmetry phase is not Raman active 
then the phase transition is non-elastic. 

The tensor of the elastic constants changes also for 
the phase transitions associated wi~h an enlargement of 
the unit cell, however then the variety of possible be
haviours is reduced, namely the elastic constants are 
either not affected by the phase transition or exhibit 
only a jump. An example of such a behaviour is the R-cor
ner structural phase transition in perovskites/5/ . 

We start with writing the general free-energy expansion 
in terms of the order parameters or the active normal mode 
amplitudes and the deformation of the lattice. We obtain 
also a set of equations for the equilibrium values of the 
amplitudes of active normal mode and deformation. In the 
second part/6/ we derive the approximate form which des
cribes the behaviour of the e~astic constants in a vicinity 
of equi-translational phase transition induced by one-di
mensional irreducible representation of the high symmetry 
group. The results are collected in two tables separately 
for non-elastic and elastic phase transitions. In addition 
we give a list of all elastic phase transitions, induced 
by one-, two- and three-dimensional irreducible represen
tations, together with that combination of conventional 
elastic constants which tends to zero at the elastic phase 
transition point. In the second part we shortly discuss 
the elastic constants behaviour for the phase transitions 
with an active wave vector out of the center of the Bril
luoin zone. In this case the elastic phase transition can
not occur. 

DEPENDENT VARIABLES 

The free energy of the thermodynamical state of acrystal 

F=F(T,!V. I, !X(m)l) is a function of the temperature 
1 11 

T and Vi ( i =1, 2, ••• 6) the components of the symmetric 
deformation tensor. To study the stability of the system, 
it is convenient to introduce, apart of the independent 

variables T and Vi , a set of dependent variables I X ( m )t. 
11 

Index m stays for the unit cell of the crystal and 11 
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stays both for a kind of atoms in the unit cell and for 
the type of variables. We specify below three types of 
such variables. 

1. The deformation of the crystal can be divided into 
a homogeneous deformation of the Bravais lattice and addi-

m 
tional displacement s i ( 8) of an atom 8 in m-th unit 

cell. If r~ ( ~ ) will denote the equilibrium position of 

atom 8 inside the underformed m-th unit cell and r i ( ~) 

the position of the same atom in the same deformed unit 
cell, then the additional displacement to the homogeneous 
strain of the Bravais lattice can be written as the follow
ing dependent variable 

s.(m)=r-(m)- r?(m). 
1 8 1 8 1 8 

In molecular crystals when a group of atoms can be treated 
m 

as a rigid molecule the s i ( 
8 

) represents the displa-

cement of the center of mass of a given group. 

2. Consider a molecular crystal. If the orientational 
potential acting on a given molecular group (m K) is 
strong enough then this group has a definite equilibrium 

orientation a 0 
( ~ ) in the underformed configuration. 

m 
A deformation may twist the molecular group to a . ( ) 

I K 

orientation. For the dependent variable we can choose 
the difference 

el ( ~ ) ~ a i ( ~ ) - a~ ( ~ ). 

3. It might happen that equivalent or even non-equiva
lent sites of an ideal crystal are not actually occupie9 
by atoms. This situation might occur when the number of 
sites in the lattice for atoms of a given kind is in ex
cess over the number of atoms. This concerns also the case 
of different static orientations occurring in molecular 
crystals. Another possibility is that equivalent sites 
in different unit cells can be occupied by different atoms. 
In both the cases the crystal can be specified by a proba
bility of finding a specific atom or molecular group at a 
definite location or orientation with respect to the ideal 
lattice. We recognize this class of crystals as having the 
straightforward relation to an order-disorder phenomenon. 
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Leta ( m ) and a 0 (m) be the probabilities of occupa-
p p 

tion of a site (mp) by a desired kind of atom or the 
probability of a given orientation of the molecular group 
in the deformed and underfo~ed state, respectively. Then 
the relevant dependent variables can be choosen as 

~(m) =a( m )-ao( m ). 
p p p 

Generally, the set of the dependent variables consists 
of the following components 

m m m 
lX(P. )l=(lsi( 0 )1.1®1 ( K )1. lM m ) I)' p 

where p.=(i,o,K •P ) • We agree that these variables are 
chosen in such a way that in the underformed state their 
equilibrium values are equal to zero. 

THE FREE-ENERGY EXPANSION 

The equilibrium configuration of the system is achieved 
once the free energy reaches a minimum. Therefore at an 

. . . m 
equilibrium state the values of IX( p.)l are adjusted so 

that the following set of equations is fulfilled 

-~1 = pi' 
aVi lvio ,Xo(;)l 

aF ---1 =0, 
a X ( ~ ) l Vj' , X 0 

( : ) I (l) 

where pi are the components of the stress tensor and the 

m 
symbol l V .0 

, X o ( ) I 
I /l 

denotes the equilibrium values of the 

variables. 
To assure that the system remains stable against any 

displacements v1 =Vi -Vi0 , x( m )=X( m )-X 0 ( m) the quad-
P. p. p. 

ratic form 

6 

., 

2 ~~ m 
2 1 ~ a F v . v + I. vixc II)+ o F = -- '"' ----- 1 k . m ,... 

2 i k av1 avk lffill av . axe ) 

+J.-
2 

I p. 

I. - ~~ ~e ax~;-;xc n )x c: )x(:) ~ . o 
p. v 

has to be positive definite 171 • Adding the condition T/ Cv, 

where Cv is a heat capacity at a constant volume, we get 

the complete requirement that the system is stable against 
m 

any displacement of the entropy, deformation, and X(P.). 

Let us e xpand the free energy around the point Vi =0 

and X (:) = 0 which corresponds to an under formed state. 

Then 

F = F (T, l 0 I. l 0 I) + ~ p . V . + 1_ I. c. k V. V k + 
1 I I 2 ik I I 

~ m m 1 mn m n 
+ .., U. ( p. ) V. X( p.) + - I. D ( p. v ) X ( p. ) X ( v ) + 

im11 1 1 2 mn ,... p. v 

+ ..1 I. 
2 ik 

m m 1 I. K ~ II ) v. v k X ( II ) + -- I. mp. I ,... I ,... 2 I 

mn m n 
I. Li( p.v)ViX(p.)X( v )+ 
mn 
p.v 

1 
+24 

m 
I. B ( 1 

mlm2mam4 1'-t 
p. 1~'- 2 p. a p. 4 

m2 rna m4 )X (ml)X ( m2)X( ma)X(m4)+ .. 
~'-2 !La ~'-4 ~'-1 ~'-2 P.a ~'-4 

(2) 

where the expansion coefficients are the second, third, and 
fort~ derivatives of the free energy, taken at V1 = 0 and 

X ( P. ) = 0 . The symmetry of these coefficients being a 
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result of the order of differentiation has been already 
taken into account. In particular, cik are the bare i so
thermal elastic constants. The higher order terms have 
been neglected. 

Let the system be at a static deformed state IV t , X0
( : ) l 

and suppose this state is not very far from the unde r fo r me d 

stateiV ~ l=O and {X 0(~)l = 0. Inserting into (2) Vi = 

= v.o + vi 
I 

m m m . 
and X( 

11 
) = X 0

( 
11 

)+X( 
11

) and rearrang~ng the 

terms we get the expansion over accidental displacements 

vi and x( m ) around the point IV'? , X 0 ( m ) 1. The 
J.L I J.L 

expansion up to quadratic terms takes the form 

F = F ( T .I V r l , I X 0 ( ; ) l) + ~ Pi vi + 

+ ..!.. ~ [ c . k + ~ K . ( m ) X 0 ( m ) ] v. v k + 
2 ik I ffiJ.L lk J1 J1 I . 

+ . ~ [ U. ( ~ ) + ~ K i k (; ) V ~ + ~ L i ( ~ ~ ) X 0 ( ~)] v i x ( ~ ) + 
lffiJ.L 1 k n v 

1 mn "' m n 0 + -2 . ~ [ D (II v) + -:- L . (II v) V. + 
mn r I I r I 

J.LV 

+.L 
2 

mnm m m m m n 
~ B( s 4) x o c s)xoc 4)]x( )x( )+ ... 

m 3m 4 f.L v J.L 3 J.L 4 J.L 3 J.L 4 }J. v 

11sl14 

(3) 

The equilibrium values of Vj and X 0 (~) can be obtained 

from the equilibrium equations (1) written now as 

8 

~ c ikV~ + m~ [U i (~) + ~ Kik ( ~)Vk ]X o(~) + 

+ .L ~ L . ( m n ) X o( m ) X a( n) = _ p . 
2 mn 1 J.L v J.L v 1 

!or i =1,2, ... 6 

J.LV 

~[U. (m) + .!_ ~ K.k(m)Vko ]v.o + ~ [D ( mn) + ~ L i(mn)v .o + 
i I J.L 2 k I J.L I nv J.LV j J.LV I 

1 
+ --

6 
~ 8 ( 

m3m4 
J.L3J.L4 

m m n m n m3 m 4 )X o ( s)x oc 4)]X 0 ( v ) = 0 
J.L v J.L 3 J.L 4 J.Ls !14 

No tice, that V0 = 0 
i 

of the above set. 

for all ( m , J.L). ( 4) 

and X 0 ( m )=0 is a trivial solution 
J.L 

Consider the underformed configuration. At the instabi
lity point the system becomes unstable with respect to one 
normal mode. To treat this situation in detail, it is ne
cessary to consider the following eigenvalue problem of 
the second derivatives of the free energy 

mn ..... Tt ~ -+ • ,..... • 
~ D ( )exp[-ik(tt(m)-R(n))] ev(k,J)"" Ak,j e

11
,(k,J). (S) 

nv J.LV 

The eigenvalues and eigenvectors can be classified by the 

wave vectors k from the first Brillouin zone and the 
branches j of normal modes, since the crystal possesses 
a periodic lattice. The eigenvectors are, in general, 
complex and orthonormal. Any nonhomogeneity of the system, 

static X 0 ( m ) or dynamic x ( m) can be expressed in 
J.L J.L 

terms of the introduced eigenvectors. Thus 
m -+ --t -+ 

X 0 ( ) ~ ~ e ( k, j ) e xp [ i k R ( m ) ] Q k . 
J.L k ,j J.L • J 

(6) 
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and 

x(m) = ~ e (k,j) exp[i kR(m)]q (7) 
11 k, j 11 k,j 

In a peculiar case the eigenvectors e
11

(k,j) are the pola

rization vectors of phonons. In another simple case they 
characterize a contribution of one concentration plane wave 

(k,j ) into modulation of either a homogeneous distribu
ti.on of atoms in the lattice or a homogeneous orientation 
of molecular groups. Generally, they are a mixture of all 
existing steps of freedom. We have also 

e (-k,j)=e * (k,j) 
11 11 

and 

Q -> = Q ~ 
- k,j k. j 

The matrix of bare elastic constants can be also diago
nalized. The relevant eigenvalue problem is 

~ c .k ak(a) :C ai (a) 
k 1 a 

for a~1,2, ... 6. (8) 

The reducible representation of the six-component defor
mation vector can be written as a direct sum of the irre-

ducible representations Ia e f' {3 e ••• . The six-component 

eigenvector ; (a) transforms according to one of the 
irreducible representation Ia • The eigenvectors ai(a) 

are real and orthonormal. Again any V j static or vi 

dynamic deformations can be expressed in terms of eigen
vectors and corresponding normal amplitudes of the defor
mation, namely 

V 0 ~ ~ a . (a)S , 
i a I a 

v 
i 

~ a . (a) s 
a 1 a 

(9) 

As a rule, the system becomes unstable with respect to 
a particular critical mode. In the homogeneous crystals 
the critical mode corresponds to a particular star of the 

10 

wave vectors I kc I and irreducible representation of the 

l i ttle group of Ike I which components are numbered by the 

index o f the branches ljc I of normal modes. For one-dimen
sio nal irreducible representation jc "" 1 , for two and 

three-dimensional one jc = 1,2 and 1,2,3, respectively. The 
-> Ak . for all k c and jc are equal. The magnitudes 

c • J c 
of the displacements X 0 

( m ) are given by the amplitude 
11 

Qk . of the active normal mode 
c • J c 

m -+ ,..... ,.... 

X 0
( ) =_, ~ e (k ,j )exp [ik R(m)]Q _, . 

11 k . 11 c c c k ,J 
c •lc c c 

Now, on the basis of the expansions (6,7) and (9), the free 
energy (3) can be reformulated and expressed in terms of 
the amplitudes of normal modes and deformations. It can 
also be confined to the wave vectors from the critical star 

Ike I and branches ljc I from the relevant irreducible 

representation. With the aim of the familiar procedure of 
completing the square we rearrange the e,xpansion of the 
free energy and get eventually 

F "" F ( T, I S I. I Q ... I) + ~ p s + 
a kc , ic a a a 

1 -> 
+ -- ~ [ c a {:). + ~ K r:l < k • j ) Q k... . 

2 a{3 a at-' j c at-' c c c , J c 

~ ~ 

k-> -+ , 

N a (kc , j ) M ( c kc c j . , 
c lc 

)N{:).(k',j')]s Sf').+ 
1-' c c a 1-' k . k, . , 

cdc cdc 

k k, 
+ _1_ ~ ~ R ( c c ) t k . t it, . , + •.• 

2 it • k' ·' j j' cole c.Jc 
c de cdc c c 

(10) 
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where 

and 

and 

12 

N (k, j) = U (k, j ) + l K {3( k, j ) Sf3 -'- l L ( k, j ,j') Q .... , 
a a f3 a j , a k ,j 

(11) 

k k' 
R ( . . , ) ~ >.7 . 87 k .... , 8. ·' + 8 .... k k_,,l L (I{, j, i ') S + 

J J K ,J K , J ,J , a a a 

-t , "'k .... 
-l j_ 

2 

k 
_, l_, B( . 
k 1 'k2 J 
j 1 ,j2 

K 1 k2 _, _, _, _, 
., . . )o(k+k' + k

1
, k

2 
)Q"k . Q .... . (12) 

J J 1 J 2 1 ,J 1 k2 ,J 2 

p = L a . (a) Pi a I 

_, m _. 
Ua(k,j) ~o. lUi ( 

11
) e

11
(k,j)ai (a) 

k. 0 111 

-4 m - ~ 

K ,~(k,j) ~ 8 _, l K "k ( ) e (k,j)a. (a)ok(f3) 
al-' k,O ikfl I 11 fl I 

La ( k, j. j ' ) 2 l l a. (a) e (k, j) l L . ( m n ) x 
i flll I 11 n I fl I' 

x exp[ik (R(m)+R(n))]ev (k,j ') (13) 

k c ,jc 
q_, . 

k c de 

+ l l M ( kc k~ 
a k' ·' j j' c ,Jc c c 

)N (k',j')s 
a c c a 

and 

,lM(kk' 
k 'j , J j , 

-·. k., 0 
) R ( k ) =< 0 -> ->N . J• U 

j j" k,k J, (14) 

The equilibrium value of the amplitudes Sa and Qk J. 
c' c 

can be found from the equilibrium equations (4) which now 
take the form 

P -'- c Sa + l U (k ,j )Q _, . 
a a _, . a c c kc ole 

kc d e 

+ z. z. K f3(k .i )Q.. sf3 ~ f3 j c a c c kc ,j c 

1 l L (k . . ' )Q 
+ -2 _, a c' 1 c·lc k · 

k · ·' cdc c ·J cdc 
= 0 (15) Q_,, . ' 

k c ,j c 

for a=1,2, ... 6. 

_, 1 _, 
l Ua(kc.ic)Sa +-2 L K f3(kc,jc)SaSf3 + 
a af3 a 

+ l [~ >._, 0 ......... 0 • 
k' J·' 3 k ,jc kc ,kc jc ,jc 

c' c c 

+ 

k k' 28 ""'T ( .... k."')S 1R(c c + -3- .... .... ""' -' a ,J ,) a + 3- · · ' 
k k' a c c c J J 

C I C C c 
)] Q .... , . ' 

k c de 
=0. 

(16) 

To find the effective elastic constants c we take 
i k 

the second derivative of the free energy with respect to 
the deformation. So 

-
c ik = l a. (a)c f3ak(f3), 

af3 1 a 
(17) 

where 

c f3 = c o f3 + l K f3(k , j ) Q ... . 
a a a . a c c k c de 

Jc 
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~ ~ 
k .j k' ,j' 

c c c c 

... k k' ... 
N ( k ,j ) M ( c c ) N ( k' ,j' )o 

a c c · ., f3 c c 
J c J c 

(18) 

Consider a crystal in an underformed state and call it 
a high symmetry phase. In this state the static normal ampli
tudes of deformation and the normal mode amplitudes vanish, 
i.e., Sa 3 0 ( a =1,2, ... 6) and all Q k . = 0 . Under such 

c de 

circumstances the expansion of the free energy becomes much 
simpler, namely 

F = F ( T, l 0 l , I 0 l) + ~ Pas a + 
a 

+ _!_ ~ [ ca - o ... 
2 a kc.o 

1 ~ +- ,\... . 
2 k c . Jc k ,j c 

c 

2 
~ [U (O,j )) . a c 
Jc 

A_. 
k c ,jc 

] (sa )2 + 

( t ... f ~ 000 0 

k c ,j c 
(19) 

It might happen that the change of external conditions leads 
to an instability point where either A k . vanishes for 

... c . j c 
a particular mode ( k c , jc ) or the effective elastic cons
tant coefficient vanishes. Then generally speaking, the sys
tem deforms to a new phase of lower symmetry. The point of 
reconstruction of the crystal is called the phase transi
tion point. It might occur that the instability point of the 
low symmetry phase coincides with the instability point of 
the high symmetry phase, then the phase transition is con
tinuous. The expansion of the free energy (10) corresponds 
to that case. A majority of phase transitions is of the dis
continuous type (first order), however, usually the depar
ture from the continuity is not severe. Anyway, the reduc
tion of the symmetry from the high symmetry phase to the 
low one is properly taken into account by a freezing of 
an active normal mode. This allows us to classify the 
change of elastic constants across the phase transition. 
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