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Collective Effects Influence on the Ti~e 
Asymptotics of the Hydrodyna~i~ Moees 
in the Neutral Gases. II. The Behaviour 
of the Hydrodynamic Modes at Large Times 

The time asymptotics of the hydrodynamic nor~al 

modes are investigated for the hard-sphere gas. It is 
shown that consideration of the effects caused by i~te
raction of the particles with collective excitations in 
medium leads: 1) to the appearance of irregular, with 
respect to the wave number, corrections to the hydrody
namic frequencies; and 2) to the replacement of the purely 
exponential time asymptotics of the nor~al mode by the 
exponential-power one. 

The investigation has been performed at the 
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I. INTRODUCTION 

The character of ti~e dependence of the hydro-
dynamic normal mode x~(0* which may be repre-
sented by the integral of type 

j (t) . 
X k _ E J (t) = ------- ~ 

ioo+a 
0 

r 
X~ (0) -i·Xl+Oo 

_<!~-eztDjl (k, z) 
277i 

( l. 1) 

is wholly defined by the analytical singularities 
of the function D-/ (k, z) on the z-plane. As is 
Known in the case of Navier-Stokes' hydrodynamics 
at small k the function Dj1(k, z) has the simple 
poles, Di(k, z) ~ z- zi(k), and the frequencies 
z (k) at low density approximation are computed 
with the help of the Boltzmann equation and are of 

the form: 

2 2 
zTfa (k)= ~(~)=-k DTJ' a= 1,2; z .fk) = -k D T 

( 1. 2} 

z (k)=-iack __ l_rk 2, a~ ±1; 
a 2 

*Here we use the notations adopted in n;, and 
in the references to the formulae from this 
work we add figure 1. 
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4 

D 
TJ 

= -----~'!_ ____ _ 

16y';-a~n 
DT= ~DTJ, 

2 4 ----- -----r =-aD T + aDTJ , c = uy'5/3, u = y'O/m. 

Thus, all the modes damp exponentially. 
In recent years the character of the autocor

relation functions damping at t--~ was widely 
discussed. Alder's and Wainwright's computer 
experiments 121, performed in 1968, showed that 
at sufficiently large times the velocity cor
relation function for hard-sphere system behaved 
as t-312 • Then some authors 13, 4 / found out that 
the change of an exponential asymptotics of the 
autocorrelation function into power one could 
be obtained on the basis of the kinetic theory 
and was caused by the interaction of the particles 
with the long-wave collective excitations in a 
system described by hydrodynamic equations. In 
this connection the question arose, how such 
collective excitations affected the hydrodynamic 
mode behaviour at t--.~. 

For the first time this problem was examined 
by Ernst and Dorfman~/. Taking as a basis the 
first two equations of hierarchy BBGKY for the 
hard spheres ~.61, they built the linearized 
equations of hydrodynamics generalizing Navier
Stokes' equations and being true for the low
density case.The obtained in~/ expression for 
the hydrodynamic normal mode with wave number 

-1 
k«k 0 "'A 0 , where .\ 0 is a free path, may be 
represented by the integraJ of type (1.1) with 
function Di(k, z) in the form: 

2 D. (k, z) = z - z . (k) + k U . (k, z). ( 1. 3) 
j J J 

The time asymptotics of X~(t) is defined by 
behaviour of Ui(k, z) at small k and lzl (izl «ck

0
). 

In this region the main contribution in the 
function Ui(k, z) - a sort of "mass operator" 

gives the interaction with the intermediate 
("virtual") hydrodynamic modes. As is shown inn; 
for the calculation of the main terms of functi
on Uj (k, z) asymptotical expansion at k,jzl->0 it 
is sufficient to take into account only some 
combinations of the intermediate modes. Namely 
(1.3.3.), (1.3.4) 

(TJ) (s) (TJT) (s) 
UTJ(k, z) = U TJ (k, z) + U TJ (k, z); U T(k, z) = U T (k, z) + U T (k, z); 

() (1.4) 
Ua(k, z) = U: (k, z) + U~T)(k, z) + U ;s)(k, z). 

Here U(:'/), u(TJT), U (s) 
J J J 

represent the sums of the 
following quantities 

. (r e) -> -> --> -> 2 

2 dq e ) u r -----3-cr. (k,Z)=--- . 2rr) 
U j 2n q<k

0 
( 

lA l (ak -q, bk + Q)i 
{ 1. 5) 

z- zr(ak- Ci>- ze(bk + 7v 

over r,f -indices, which take the following 
values accordingly: r,f=TJa•Tif3; r,f=TJa•T; r =a 
f=-a. Integrals (1.5) contain the arbitrary para
meters a, b satisfying the condition a+ b = 1 , 
lal, lbl- 1. However, according to /1/ this arbitra
riness does pot affect the asymptotics ff the 
function u(~, )(k,z). The coefficients Ar, are 

J J 
computed in Appendix B. 

The main result of~/ is that consideration 
of the influence of the collective effects 
leads to the nonanalytical dependence on k ~f 
the "renormalized" hydrodynamic frequencies 
z .(k), e.g., of the so 1 utions of the equations 
d.(k, z)=O. The nonanalyticity is of the form 
z!(k)- z.(k) _. k 512 and arises as a result of 
i~reguiarity of th~ function Ui(k.~ expansion 
at k, lzl-> 0. Another consequence is the existence 
of the cut-lines on the z-plane, where Dj(~ ~ 
as well as Ui(k, z) looses its continuity (ref./

1
( 

Appendix A}. Thus, as has been noted in /1/, 
integral (1.1} breaks down into two terms, the 
first of which is of exponential dependence on 
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j -
time, E 1 (t)~eJpltzj(k)l, and .another one, 
E~t), is the integral from the jump of .function 
D /(k!z) along the cut-line. Namely E ~(t) deter-

mines the main asymptotics of the hydrodynamic 
mode X i<t) at t ... oo. 

In the next sections we'll give the concrete 
calculations for each of the modes and will 
make sure of the validity of this statement. 

2. THE TIME ASYMPTOTICS OF THE VISCOUS MODE 

Consider the function U (k,z) incoming the 
denominator D

71
(k, z) bf the I!nverse Laplace trans

formation (1. 1) for the viscous mode x ~ (t). Ac
cording to (1.4), (1.5) the contribution of the 
intermediate viscous mode~) in U17 (k, z) is repre
sented by the quantity U ~· (k, z) which may be 
written in the form 

(1'/) u 2 k0 1 q2dqd( M(~'~\k2 /q 2• ~) u (k, z) = --y:- f r ____________ rz__ __________ 2 ' 
11 817 n o -1 (z + k 2 0 11 /2) + 2D 17q 

( 2. 1) 

... ... . (,) 2 2 
where ~ = cos(k, q), and the function M (k /q , ~) 
is defined in Appendix (B.5). On deriJing of 
(2.1) we put in formula (1.5) the parameters 
a= b= 1/2. 

As is shown in Appendix A n~ the integral 
(2.1) is the regular function on the z-plane 
with a cut along the real axis, 

Y= 0, -2D k
0
2 < x< -D k 2/2 

71 - ~ TJ 
( 2. 2) 

crossing which the function's imaginary part 
changes by jump. Near the 5eal axis the imagina-
ry part ~f the function U~(~ ~ is computer 
with the help of (1.A.7)-type relation and 
is of the form 

' 

ImU~) (k, x ± iO) = 

- u2 -3!2 -----2------ (77) 2D
11 

k2 
2 =+-(2D7J) viX+k D /21M (1------------1)6(-x-D k /2), 

1617n 1J 1J x + D k 2/2 1J 
1} 

( 2. 3) 
where 

('1) 2 1 (77) 2 
M 1J (p ) = ( d~ M 7J (p , ~ ). 

-1 
( 2. 4) 

Here 0(x)= 1 at x>O and 0(x) =0 at x<O. In the 
right-hand side (2.3) the other 0-function, 
0(X+2D11 k~). is dropped out, because only the 
small values of lxl are of interest. 

The nature of the asymptotical expansion of 
uW> (k. z) at k.lzl ~o depends on the parameter 
k2/r behaviour, where 

2 i¢ z + k D 71/2 = 2D 11re , 

In the case r»k2 

( 2. 1) , replace the 
M(~)(O.~). and using 

1¢1 < 17• 

we put q = q'y'r in the formula 
quantity M(~)(k 2 /rq 2,~) by 
(B.5) obtain 

U~) (k,z)- U ~77 )(0,0) =- -~=--(2D11 )3/2 M ~) (O)y~+k2D/2, ( 2. 5) 
16rrn 

where vz is defined as 

\Fz-= vTz\expli¢/2!, 1¢1 < 17. 

With the help of substitution q=kq' 
t~ )show that in the reg ion r - k 2 the 
u 11

11 (k,z) at k-+0 behaves as 

(7J) (ry) u2 k 
U (k, z)- U (0, O)- ------. 

1J 1J nD 71 

( 2. 6) 

it is easy 
quantity 

(2.7) 

This estimation is valid also for the real part 
of the function U~)(k, z) in the reg ion r << k 2• 

Consider now the function U~8)(k, z), which 
determines the contribution of the "virtual" 
sound modes in U 11(k, z) and may be represented in 
the form: 
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u<s) (k, z) = ., 
u2 ko 1 q2M(I)(k2/q2,0dqd~ 

( 2. 8) 

= ----- f f --------------"1--------::;-----::;--:;-----..;-- ' 
81r2n 0 -1 (z + I'Jt 2/4) + r q 2 + ic(lk/2- ql-lk/2 + qi) 

where M~) (p 2, ~) is the __ sum of the coefficient 
squares. This sum is introduced in the Appendix 
(B.S). In derivation (2.8) it is convenient again 
to choose in ( 1. 5) a = b= 1;2. 

According to the reasoning of the Appendix An; 
the integral (2.8) is the continuous function 
of z = x + iy regular outside the reg ion 

rk~~x~-rk 2/4, IYI~ck, ( 2. 9) 

and non-differentiable inside it\ 
In order to calculate the asymptotics of 

U ~)(k, z) at k,lzl-+0 it is convenient to 
perform in the integral (2.8) the substitution 
of the variable q= q'yk. Then this integral yields: 

u <;>(k, z) - u ~>(o. 0) = 

( 2. 10) 

u
2 yk 

oo 1 ___ 1_~-~~i~j~~-!~---=-----~- M ~> (0, ~)I, 
J f dq ~ 1 -r--i¢ 2 _ ic q _tt_ - _g__ l -llt- +-.~1) 
o -1 ke + q + r 2k Jk 2k y'k 

81r2 nr 

*Note, that the region (2.2) and (2.9) as well 
as the nature of the nonanalyticity of the 
functions u w> (k. z) and u (~)(k, z) don't depend 
on the choice of the constants a,b, a+ b= 1. 

a 

where z +rk
2
/4=rreicf>. The integral (2.10) asym

ptotics depends evidently on the relation of 
the parameters r/k and k. For the cases 

r/k "S_k « k 0 we put under the integral sign r/k = 0 
and pass on to the limit k~ O.After easy calcula
tions we get 

u 2 ck 
( ) (s) ) - v----- . u ; (k, z) - u 11 (0. 0 = - -.:;.:;;n- 2['3 (2.11) 

On condition that r/k » k or I z + rk 2/41 » rk 2 

under the sign of the integral (2 .10) one could 
pass on to the limit k~O at fixed r/k. After that 
the integral may be computed with the help of 
(B.S) at any (z+rk 2/4). The explicit expression 
for {U ~)(k, r)- U ~)(0, 0)1 which we needn't further 
has the above-mentioned analytical properties\ 

So, from the definition of the functions 
u<11>(k,z) (2.1) and u< 8\k.z) (2.8) it follows 
th~t the function D 11(k.~) with U11 (k, z)=U<{j>+u~> 
is continuous on the z-plane with the cut (2.2) 
along the real axis, crossing which ImuW>(k, z) 
changes by jump. The solution of the equation 
D 11 (k, z)=O in the low-density approximation can be 
obtained by the iteration method if one takes 
into account that the function u 11 ~.~ as well 
as U11 (0, 0) ( 1. 3. 1) is proportional to the small 
parameter (na

0
3) 2 , U (0, 0) - D (na3) 2. We find 

11 11 0 

z11 =X11 +iy11 =-k 2D
11
-k2 U

11
(k,-k 2D

11
+i0sgny). (2.12) 

This equality has a sense of an iteration 
solution because the imaginary part of the 
function U (k, z) satisfies the condition 

11 

*Note that the 
calculated in /7/ 

linesy=±ick, x~ 

functions U <;> (, z) and 
lose their continuity 
-rk 2 /~ But this fact 

correspond to the rigorous calculation. 

U <;>(k. z) 
on the 
doesn't 
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1m u 71 (k, x + iy) ~ sgn y lim u 71 (k, x + iy)\. 

Hence with the help of the computed asymptotics 
(2.7) and (2.11) we get the expression for the 
real coordinate of the pole, 

- 2 x 71 = -k D71 (1- ~71 ), 

u2 ~k---

~71 = -77-;;;;-o-~- y ~ . 

(2.13) 

In (2.13) the quantity U11 (0,0) is dropped out,as 
it gives the nonessential correction into the 
kinematical viscosity coefficient 0 71 . This result 
was obtained in 161. The contribution into the 
imaginary coordinate expression is given only 
by u<::>(k,z), as lmU~)(k,z)-+ 0 at y-+0. From (2.3) 
it follows 

y" 
u2 k ____ • 2 2 - ------2 ± -Sk D'l r 71 • Y 'I- 321Tn D 

71 

(2.14) 

Thus, the integral (1.1), representing the 
function X ~(t), breaks down into two parts 

x: (t) 
x-~(0)- = E 'I (t) = Ei(t) + E ~(t). (2.15) 

The first term contains the contribution from 
the poles of the function D~ 1 (k.~ and is of 
the form 

71 2 E 1(t) = 2cos(3-y71
r) expl-r(1- ~ 71)1, (2.16) 

10 

where the dimensionless time r = k 2D t is intro
duced. The second term is the inte~ral around 
the cut (2.2). Using (2.3) we obtained after some 
transformations the expression for E1(t) as the 
function of r, 

-iX/2M (71}2/.x) e -rx 
E~(t)=-e-r/2 j~~-

0 1T 

Y
11

v 71 ~ , 
-------------------------------( 2 1 7 ) 
[x- 1/2+ ~ 11 1 2+ [y 

11 
-Jx72-M ~l(2/x)] 2 • 

The integral (2.17) depends on two parameters: 
the dimensionless timer and quantity y (2.14) 
estimated as 1J 

u2ko k 
y = -----------(---) 

Tf 32TT n D 2 ko 
- (na 3)2 

0 

k 
(---). 
ko 

( 2. 1 8) 
Tf 

We can see that y71 is small in the low-density 
approximation, nag <<1, for the wave numbers 
k<<k0 . For finite r we pass on in the integral 
(2.17) andin (2.16) to the limit y

71
-.o and get 

E 
11 

(t) = exp I -r(l- ~1/ )!. ( 2. 1 9) 

Note that in the exponent index we retain the 
quantity ~ 71 (_~, as its simple estimation 
gives y11 !~ 11 - yk/k 0 . 

At r->oo and y 71 fixed the main asymptotics 
of the integrals of the (2.17) type is calcula
ted, as is known, by the integrand expansion 
into the asymptotical series near X=O. According 
to (2.4) and (B.S) the function M(7J)(p 2 ) at 

2 1/ p -.oo behaves as 

M (1/) (p 2) 
1J 

-~l& __ 
ap2 . 

Hence for the integral (2. 17) we obtain 

E7J (t) = E 1/ (t) = --~-=--=--Y1/ r -5t2e -r/~ 
..,j2TT 

( 2. 20) 

(2.21) 
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In this limit the function Ei(t) (2.16) gives 
the exponentially small correction to El1(t). 

In the case when both parameters change, r~oo 
and y ... 0. the contribution into the integral is 
given

71
on the whole by the regions x<1/r and 

jx- 1121 'S_ y . So the asymptotics ( 2. 1 7> depends 
on the re1ation between r andy . It is possible 
to show that for the times 11 

2 3 2 k 
r= k 0

71
t » 2ln(1/y

71
) - -2lnl(na 0) -I 

ko 
( 2. 2 2) 

the main contribution into (2 .17) is given by 
the integration over the first of the mentioned 
regions, and the power part of the function 
E~~ asymptotics begins to play the dominating 
role. 

Thus, at sufficiently small (in the 1~20 71 
scale) times the viscous mode damps exponential
ly (2.19) and taking into account of the influ
ence of the collective motions in gas leads to 
the appearance of the nonanalytical dependence 
of the viscosity effective coefficient on the 

wave number,D·
71 

=0
71 

+ak112. For large times the 
asymptotics of x:oo changes and acquires the 
exponentially-power character (2.21). 

3. THE TIME ASYMPTOTICS OF THE HEAT MODE 

Let us consider the analytical properties 
of the function UT(k, z) = U~8\ uq,T> ( 1. 4). On 
deriving u<;> (k, z) put in (1.5) a=b= 112 and 
get 

u~> (k. z) = 

2 ko 1 u 
·-II 

8rr 2n 0 ·1 

-------~-~~~)~~~!~~~5)d~~~-------------
( 3. 1) 

z+rk2/4+rq 2+icllkl2- cl1-lk/2+ql 

12c 

a,-a --+ --+--+ """'* 
where the sum of the coefficient AT (k/2- q, k/2+ q) 

squares is designated as M~)(k 2/q 2 , .;) (B.5). 

To simplify the investigation of the function 
U~T~.~ it is convenient to choose the parame-
ters a and b, corresponding to th~ a ... rguments 
of the hydrodynamic frequencies z71 (ak- q) and 
z (bk + {i) in ( 1 • 5) , in the form: 

T 

OT b 
a= -2D-;- ' -~~-- 0'= -~11 + OT __ 2 ____ _ ( 3. 2) 

20' 

~~ 
Then the function UT ~.~ is written down 

(77T) u2 ko 1 q2 M <t>ca2 k2 I q 2 . .;)dq ci.; 
U T (k, Z) = ----- [ [ ------------------------------, 

8rr2n o ·1 (z + 2ab0'k2) + 20'q2 
( 3. 3) 

is defined in the where the quantity M~77T~p2 ,.;) 
Appendix (B.5). 

It is easy to see that the integrals (3.1) 
and (3.3) transform into the expressions (2.8) 
and (2.1) respectively, if one performs the 
following substitutions: 

u<,iT)=> U ~) 
U (S) => U (S) 

T 11 

when when 

M(~T(a2k2 /q 2• .;) => M ~) (k2 /q 2,.;), M ~\p 2,.;) =>M ~stP2 ,.;) . 

(3.4) 

(z+ 2abO'k2)=> (z+ 0 71 k 2/2), 

0' -> 0 ;. - 11 

This symmetry allows us to use the main part of 
the previous chapter results directly for the 
considered case. 
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So, using 
the function 
nuous on the 
axis, 

(3,4), we can affirm at once that 

U T(k, z) (and so DT(k, z)) is conti-
z-plane with cut along the real 

Y=O, -2D'k2 <x<-2abD'k 2 = 
0 - -

D 17~-~-k 2 
D~~DT 

( 3. 5) 

crossing which the imaginary part of U~T)~i~ 
changes by jump. (It is easy to show that the 
analytical properties of the functions u~)(k, z) 
and u<~T)(k, z), their nonanalyticity regions, 

in particular, don't depend on the choice of 
the parameters a, b). 

The imaginary part of the function U(TJT)(k,z) 
near the real axis accordingly to ( 3. 4 )T and ( 2. 3) 

is of the form 

JmU (T? T)(k ,x ± iO) = 
T 

( 3. 6) 
------ 2 2 

_ u2a_k_VI x +2abD'k2 l M(TJT(I 2D'~-1)8(-x-2abD'k2), 
-::r: 32rrnD' 2D'a2k2 T X+2abD' k 2 

where the function M(TJT~p2) is computed with 
the help of (B.5), T 

M(TJT)(p 2) = f de; M(TJTtP 2, c;). 
T -1 T 

( 3. 7) 

As all the estimations of the behaviour of 
the functions uW> and u~s> at small k and I zl 
are valid, owing to (3,4), also for u~TJT)(k,z), 
U~) (k ,z), one can immediately get the expression 

for the roofs of the equation DT(k, z)=O in the 
form similar to {2.12). For the real coordinate 

of the pole one gets 151 

x = - k2D (1- !\ ) T T T ' 
( 3. 8) 

14 

'l 

) 

J 
J 

--
!\T --~- v .-.£!__. 

21rr n D T 2 r 3 

The expression for the pole imaginary coordinate 
can be found from (3,6) at x=-k

2
DT=-2aD'k 2 , 

y = ± k2 DTyT, 
T 

u 2 k y =-- 2 
T 32rr n D' 

( 3. 9) 

Because of the equivalence of the analytic 
properties of the functions D~(k,z) and DT(k,z) 
the behaviour of the heat xJ~J and viscous 
x~ (t) modes at t-."" is greatly similar. Really 
the function x T (t) breaks into two parts 

k 

X~ (t) T T T 
----=E (t)=E (t)+E (t). 

T (0) 1 2 
( 3. 10) 

xk 

The first of these parts contains the contribu

tion from the integrand o;1 (k,z) poles of the 
inverse Laplace transformation (1.1) and is of 

the form 

T 
E (t)=2cos(yr)exp!-r(1-!\ )1. 

1 T T 
( 3. 11) 

Here we introduce the dimensionless time r=k
2

DTt. 
The second term in the right-hand side of (3.10) 
represents the integral around the cut (3.5) and 
is written down with the help of {3,6) as 

T 
E 

2 
(t) = 

.!. Y ,_;7 M (TJ T)(ll ) 
2 T T X 

(3.12) 

-Tb foo dx -r ax 
=-ae --e , 

0 1T 2 1 - (TJT) 2 
[ax-a+!\ ] + [-y vx M (1/x)] 

T 2 T T 

where the constants a and b are defined in {3,2). 
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As in the case of the viscous mode (2. 18), the 
quantity yT is the small parameter. Therefore at 
finite r (and yT-. 0) the main contribution into 
the integral (3.12) gives the region x-1 and the 
time dependence of the heat mode is exponential, 

T E (t) "" exp I -r (1- !'! ) }. 
T 

( 3. 1 3) 

In large time limit r-."" the expression (3 .11) 
may be neglected, and the integral ( 3. 12) is 
calculated with the help of the function 
M(~T)(llx) expansion at x -+0, which according to 
(3.7) and (B,5) is of the form 

8 (77 T)( p 2 -. "" ) "' 32 ' 
MT p 

( 3. 14) 

Put this expression in (3.12) and get 

T T 1 -5/2 -br 
E (t),E (t),. ---y (ar) e 

2 a y"'ii' T 
( 3. 15) 

This power asymptotics becomes the leading one 
at the times estimated by inequality (2.22) •· 

4, TIME ASYMPTOTICS OF THE SOUND MODE 

After we have considered the shear and heat 
modes, the investigation of the sound mode X~ ~) 
time dependence is not difficult. The function 
Ua(k,z) included in the denominator 

D a (k , z ) = z + i a c k + r k 
2 

/2 + k 
2 

U (k, z ) a 

of the inverse transformation for x~OO is defined 
by the relations (1.4)( Note that each of the 
terms in the sum Ua =Ua77 ) + U~) + U~77T), which 
are defined by the integrals of (1.5) t(npe, 
differs from u<77) (k,z), U(s)(k,z) and UiT)(k,z), 
respectively, ohly by th~ coefficient Ar.'f (q ... ,ci' ). 
The simple transformation shows that: J 

16 

U 
<77) . 
71 turns ~nto 

by M~)(p 2 ,,;); 
u<s) turns in to 
b~ M~S)(p2,.;); 

u<77 > a 

u~s) 

U(77 T(1t_ Z)=3U (lJTtk,z). 
T a 

00 2 at the replacementM ~ ,,;) 
71 

at the replacement M(~(p2,.;) 
71 

( 4. 1) 

Here the quantities M~77)(p 2 ,,;) and M~8)(p;.o are 
the sums of the square coefficients A~ ((i,q') 
calculated in the Appendix B. The last equality 
(4.1) follows from (B,5). 

The analytical properties of the fuPrctions 
U177)(k,z) (2,1), U~8)(k,z) (2,8) and UiT)(k,z) 

(3,3) are defined by the form of the denominators 
in the integrands. Therefore from the results 
of the previous sections it follows that Ua(k,z) 
and Da (k,z) are continuous functions on the z
plane with the cut along the real axis y=O, 

x :;; - k 2 min I D 11 12; D71 D T l =-k2o
77 

/2. 
D +DT 

( 4. 2) 

71 

Here we have used the relations between the coef
ficients in the low-density approximation (1.2). 

The equation for the function o;l (k.~ poles 
is solved by the iteration method, 

za(k)=-iack- k 2 f'/2- k 2 !BU~)(k,-iack)+ 

(77 T) . ( s) . 
+BUa (k,-wck)+BUa (k,-wck)l. 

where BU(k,z) = U(k, z)- U(O,O). Here, as in 
sections 2 aod 3 the quantity Ua~~) is dropped 
out. The expressions for BU~77) (k,-iack) and 
Bu~77T)(k,-iack) follow from (2.5) if we use the 
conditions (4.1) and (3,4), The quantity 
BU~s) (k,-iack)' is found with the help of (2,10), 
where it is necessary to put r=ck,¢=-rr/2, 

onto the limit k -.0 
finally, to perform 
a result, we get 

pass 
under the integral sign and, 
the replacement (4. 1) • As 

17 



z (k) = - i a c k - k 2 r /2 + a 

2 - (TJ) (TJ T) (s) 
u y'ck k2 -iJW/4! Ma Ma Ma l 

+ e + +-' 
16 TT n (20.,.,)3/2 co.,., +DT)3/2 r 3/2 

( 4. 3) 

where the constants are computed with the help 
of (B.S) and have the following values: 

M~) = / d~ M~TJ) (0 .~) = !_·1!_, 
-1 45 

M(TJT) = 13 j d~ M(~T)(O.~)= ~' 
a -1 (4. 4) 

(s) 2 - 11y'-
M a = f d~ y'~ M~) (0.~-1) = -2__2_. 

0 3.5.7.9.11 

These results coincide with 151. 

Thus, in this case a 1 so the integral of ( 1. 1) 
type, representing the function x:(t), splits 
into two parts 

a () a a 
X k t = E a (t) = E 1 (t) +E 2 (t), 
X a (0) 

k 

where 

E ~ (t) = exp I z a (k) t !. 

(4. 5) 

(4. 6) 

The second term on the right-hand side of (4.5) 
is the integral around the cut (4.2) and can 
be written in the form 

11 

E a (t) = 
2 

-k ~ /2 2 lit ( 4 • 7) 
= _ f "1 ..!!!. k I Im U u (k,x± i 0) I e • 

-- rr . (X+iUCk+rk 2/2+kil&eUu {k,x)]2 +(k2JmUu{k,x)] n 

Here the imaginary part of the function U u(k. z) 
near the real axis can be defined by the formulae 
(2.3), (3.6) and by relation UL1), 

JmUu (k, x ± iO) = 

( 4. 8) 

D ' x +Dq ;721 M ~TJ)(I 2D7J k: I )8 (-x-o..,., k 2/2)~ 
= + 'IYTJ \II 20 k2 X+D k /2 

..,., ..,., 

-LD' av'llt+2ali>'klr IM('TJT~I 2D'a2k2 !)8(-x-2ati>'k~. 
+ 3 YT 20'a2k2 u X+2abD'k 2 

where the constants a,b ,D' are given in (3.2), 
and the quantities r..,., (2.14) andyT (3.9) are 
proportional to the small parameter of the 
problem. 

In contradistinction to ( 2. 17) or ( 3. 12) in 
the integrand denominator (4.7) stands the 
complex quantity. Therefore, at the finite 
dimentionles~ time r- k 2D"1t and YTJ ,yT-+ 0 the 
integral (4.7) disappears and time dependence 
of the sound mode becomes of the exponential 
character (4.6). In the limit r ... ~ the integral 
(4.7) asymptotics is computed by the expansion 
of the fraction under the integral sign around 
x--k2 o..,.,;·L In the vicinity of this real axis 
point, due to (4.2), only the first terms on the 

1t 



right-hand side of (4.8) differ from zero. Ac
cording to (B.S) at p 2 ->oo the function M(Z)(p 2) 
behaves as 

M(1l)(p2 ) = / d~M~) (p2 .~) = _t, + D(llp 2 ). 
a -1 ::r ( 4. 9) 

Use this expression. Conserve in the denominator 
(4.7) only the most ''powerful!" at k->0 terms, and 
get 

a 1 k3 2 2 -3/2 2 E 2(t),.-( __ u_)(21Tk Dnt) expl-D k t/2!. 
n c~ ~ 11 ( 4. 10) 

One can show that this asymptotics plays the 
main part and Ea,.E~ if 

( r- D 1l ) k2 t » - 2 ln ( k 3u 2 I n c 2 ) . ( 4 • 11) 

Here the times are much larger than in the case of 
the viscous or heat modes (2.22) as the parameter 

u
2

k 
3 

3 2 k 3 k 2 
-- (na 0 ) (-) - x (-) 
nc2 ko 11 ko 

Mention the essential distinction of the asym
ptotics (4.10) from the corresponding results 
for the viscous and heat modes: at t->oo the 
function E~(t) is proportional to t -3/2, but not 
to t - 512

. The index t in the asymptotic s is 
defined by the function M~) ~2) behaviour which 
at p 2 ... .,. doesn't disappear (4.9) in contradiction 
to M~11)(p 2) (2;2o) or M(~T)(p2) (3.14). This 
circumstance is connected with the kind of 
"forbiddance rules" due to which the viscous 
mode with the wave vector ~ cannot split into 
two "virtual" modes with the wave vectors t/2 
and k/2 and the coefficient A~a ·11{3 (I{ ,k)=O (B.3). 
As to sound mode, such a split is permitted and 
A~a ·11{3 (k ,k )tO. 

20 

6. CONCLUDING REMARKS 

Thus, we have shown that each of the hydro
dynamic normal modes time dependence at sufficient
ly large times changes and turns from purely 
exponential into exponential-power one. This 
effect is conditioned by existence of the cuts 
(jumps) in the kinetic equation collision integ
ral, considered as a function of the complex 
variable z. In turn the cuts appear as a result 
of the integration over the wave vectors of the 
functions 1 which have the poles in the z -plane 
and represent (in the quantum theory language) 
the "free" hydrodynamic modes propagators. So 
the change of the time asymptotics behaviour at 
large t, as well as the nonregularity of the 
corrections in wave number k to the hydrodynamic 
frequencies (-k 

512 
), is connected directly with 

the consideration of the collective motions in 
the gas. 

The leading principle, which helped us to 
obtained the main results of the work, was to 
pick out only the main terms of real and imagina
ry parts of the functions D j(k, z) expansion in 
the region of small k and lzl with the coef
ficients, computed in the low-density limit. In 
this connection it should be noted that the 
specifying of the approximation, in the frame of 
which from the generalized kinetic equation 
(1.1.5)the expressions for the hydrodynamic modes 
(1.3), (1.4) 1 (1.5) were obtained apparently, 
will not affect the location of the cut-line of 
Dj (k,z) but will give only density corrections 
to the value of Dj (k,z) jump on the cut. So 
there is a hope that the effect of the change of 
the damping character of hydrodynamic modes at 
large times conserves also for moderately dense 
gas. 

In conclusion the authors thank Academician 
N.N.Bogolubov for permanent interest to the 
work and very useful discussions. 
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APPENDIX B 

in 
The coefficient functions Ar/ CiLq') defined 
(1.2.13), represent the integrals of the form 

r,l' -+-+ -1 ... j r.t r -+ f -+-+ 
AJ. (q,q')=(ku) Jdv¢(v)a.,.\v)a_.(v)a"', (\f)lkv-kw.l. (B.1) 

k q 4 J 

2 -3/2 2 2 
w her e ¢ ( v) = ( 2 rr u ) exp I - v I 2u I i s the Max we 11 
distribution, and w1 takes the values 

wT=w =w =0, 
"11 "12 

W =aC a 

The quantities a~(~ are the eigenfunctions of 
the linearized Boltzmann equation, computed in 
the low-wave-number approximation, k-.0, 

"'a ... ... (a)-+ 
a ... (v)=g v/u, a=1,2; 

q 

T -+ 1 2 2 a (v)=--=-(vlu -5); 
q y10 

a ... v 2 -+(3)... -a_.(v)=--=-+ ag v/uy2, a= ±1. 
q u 2 v' 30 

(B.2) 

Here we introduce the unit orthonormalized reper, 
connected with the wave number q, 

... (3) 
q = ·g q; 

3 
(i) (i)_ o.o ~ g i g r - JL 

i=1 
~ g<_D g(f) = 0. 

i=1 I I Jf 

The lower indices number the vector projections 
onto the coordinate system lx 1 ,x 2 ,x 3 1. 
-+(

3
) We introduce another orthoreper (Ol ,((2) 

f connected similar to (B.2) with the wave 
-;... ;. .. -+( ) ' vector q , q = f 3 q, 

that the vector k 
k=k 3 . Then all the 
computed. We give 
of them: 
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and will suppose everywhere 
is parallel to the axis x 3 , 

integrals (B.1) can be easily 
here the expressions for some 

A"'~·'ly(q,q')= g(~)f(y) + g$)f(y); 
'Ia a 3 3 a 

A a, a' 

"'a 
Aa,a' 

T 

... ... 1 
(q, q ')=-au' I g (3)r (3\ g<3lr(3) I. 

2 a 3 3 a • 

(q,q') = - 1-lug<3>+ a~r<3>1. 
y'fJ 3 3 • 

"'a • T ( __. __. ') _ (a) 
AT q,q -g3 

A Tf a. 71 ~( q, q') = a y'21 g (a) r $>_ .!_ g ... <a > f $ > I · 
a 3 3 3 ' 

a',a ,, 
Aa (q,q')= a'g';>+a"r(3) 3 

3{2 + 
o o'o" 

3y2 

x l3g<3~r<3>_ g<3l((3) I 
3 3 

Tfa• T 1 Tfa ,T 
A ( ... -+,)- A ( ... __.,) q,q -- q,q . 

a y'a T 

X 

(B. 3) 

With the help of these relations and the condi
tion of orthonormality of the vectors i<O and 
((i) it is easy to get the expressions for the 
sums of square coefficients Arj,f (q, q') which 
appear at ~alculation of asymptotics. Denote 

~ = cos ( k, q ) , p = k lq (B. 4) 
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and get 

( ) TJa 'TJ f3 .... .... .... .... 2 
M TJ (p 2, ~) = I \A . (kl2- q, kl2+ q)\ , 

j a,f3=1,2 J 

M~) (p2, ~) = ~~-~t:l~~:!~-~-~-~-~5_~--- I M(TJ) 2 (p~l4+ 1)2-p2 ~ 2 -a=1,2 TJa (p '.;), 

1 
M(TJ) (P 2• ~) = lS-a 

p 4 12 + (6- 10~2)p 2 + 4(5- 12.; 2+ 9~ 4) 
---------<~2 I 4-:-n-2~-~2~2----------- · 

(B) 2 +1 -1-> -> -> -> 2 
M . (p • .; ) = 2\ A . • (kl 2 - q, kl 2 + q) I ' 

J J 

M (B)(p 2 • .;l = __ _§_~<!_:::_{~--- = I M (B)(P 2 • ~). 
TJ (p214+ 1) 2_p2~2 a=1,2 TJa 

M(;) (p 2 , .;-) = {-l-(p!_dil"_~(p_:Y_'!:':J.2:e~e_ 2 
-· ___ p_~d_-:_5_=----l, 

(P 2 I 4 + 1)2 - P2 ~ 2 v (~2/4-:;_-il-=-~-2~-2-

(B) 2 2 
M a (0, ~) = (~- a) (~ + al3) , 

t(. T 
M (TJT) (a2 p 2 ,~) = 2 I \A a' (ak- q, bk+ <i)j 

2 

T a= 1,2 

2 
(TJT) 2 2 2(1- ~ ) 

= 3M a (a p , .;l = ----------------
a2p2 + 1- 2ap.; 
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