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The time asymptotics of the hydrodynamic rorrmal
modes are investigated for the hard-sphere gas. It is
shown that consideration of the effects caused by inte-
raction of the particles with collective excitations in
medium leads: 1) to the appearance of irreguler, with
respect to the wave number, corrections to the hydrody-
namic frequencies; and 2) to the replacement of the purely
exponential time asymptotics of the norzal mode by the
exponential-power one,
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1. INTRODUCTION .

The character of time dependence of the hydro-
dynamic normal mode Xd(O* which may be repre-
sented by the integral of type

i joo 4+ '

X ® i o - ‘ .
ZEL ey 1 ey (1.1)
X'i(O) ~ix+0, !

is wholly defined by the analytical singularities
of the function D]jw,@ on the z-plane. As is
known in the case of Navier-Stokes’ hydrodynamics
at small k the function D}%k.z) has the simple
poles, Djk z) = 2z - z; (k), and the frequencies

z (k) at low density approximation are computed
with the help of the Boltzmann equation and are of
the form:

“ag, 0= 2 ® =-K°Dy, o= 1% 2 )=~k "D ;

(1.2)
z (k)=-iock - LTk2 o~ *1;
o 2
*Here we use the notations adopted in /A7 and
in the references to the formulae from this
work we add figure 1.
3



- -3
Dy = ~aZn Pr= 3Py
16\/r a o0

———DT+ 4 =D, . c=uy5/3 u-yé/m.

Thus, all the modes damp exponentially.

In recent years the character of the autocor-
relation functions damping at t-~ was widely
discussed. Alder's and Wainwright's computer
experiments’gc performed in 1968, showed that
at sufficiently large times the velocity cor-
relation function for hard-sphere system behaved
as t 3% Then some authors 34/ found out that
the change of an exponential asymptotics of the
autocorrelation function into power one could
be obtained on the basis of the kinetic theory
and was caused by the interaction of the particles
with the long-wave collective excitations in a
system described by hydrodynamic equations. In
this connection the question arose, how such
collective excitations affected the hydrodynamic
mode behaviour at t- e

For the first time this problem was examined
by Ernst and Dorfman//, Taking as a basis the
first two equations of hierarchy BBGKY for the
hard spheres 8/ they built the linearized
equatlons of hydrodynamics generalizing Navier-
Stokes’ equations and being true for the low-
density case.The obtained in”’/ expression for
the hydrodynamic normal mode with wave number
k<<k ~A , where Ag 1is a free path, may be
represented by the integral of type (1.1) with
function Dj@,z§ in the form:

D, (k, z):z-zj(k)+k2Uj(k, z). (1.3)

The time asymptotics of xi@) is defined by
behaviour of U;k, 2z at small k and|z|ﬂz%«ck&.
In this region the main contribution in the
function Ujk,z) - a sort of "mass operator" -

gives the interaction with the intermediate
("virtual") hydrodynamic modes. As is shown in
for the calculation of the main terms of functi-
on U (k, 2) asymptotical expansion at k, {z[ -0 it
is suff1c1ent to take into account only some
combinations of the intermediate modes., Namely
(1.3.3.), (1.3.4):

1/

U, &, z)~U( )(k z)+U Dk, z); U ok, 2) = U Dk, 2+ UT)(k, z):

) (1.4)
U_(k, 2) = U "k, z)+U(” ‘& 2+U P, 2.
Here U() [ﬂﬂﬂ' u® represent the sums of the
follow1ng guantities
o > - > > 92
) u? 1A ek -d vl
Uj (k, )———— I 3 - 5 s {1.5)
A <k, (27) z-2, (3 - @ - zg(DK + Q)

over =1,! -indices, which take the following
values accordingly: rnl=7,7n s, l=9,T: =0
f{ =-0. Integrals (1.5) contain the arbitrary para-=
meters 4 b satisfying the condition a+b=1,

lal , |bl ~ 1. However, according to /1 this arbitra-
riness does ?ot affect the asymptotics ff the
function U(“)(kz) The coefficients A" are

j
computed in Appendix B,

The main result of”5 is that consideration
of the influence of the collective effects

. leads to the nonanalytical dependence on k of

the "renormalized" hydrodynamic frequencies

z, k), e.g., of the solutions of the eguations
D.(k, z)=0. The nonanalyticity is of the form
z.(k)-z.(k) ~ Tk 37 and arises as a result of
1rregu£ar1ty of the function Uj&,@ expansion

. at k, |zl »0. Another consequence is the existence

of the cut-lines on the zZ-plane, where D, & m/”/
as well as U; & z) looses its continuity (ref
Appendix A). Thus, as has been noted in 71/,
integral (1.1) breaks down into two terms, the
first of which is of exponential dependence on



time, Ei@)~enﬂujan, and another one,
El(t), 1is the integral from the jump of function
D,%hn along the cut-line. Namely E! o(t) deter-
mines the main asymptotics of the hydrodynamlc
mode xka) at too

In the next sections we’ll give the concrete
calculations for each of the modes and will
make sure of the validity of this statement.

2, THE TIME ASYMPTOTICS OF THE VISCOUS MODE

Consider the function U_(k,z) incoming the
denominator D (k,2) ©f the inverse Laplace trans-
formation (1.1) for the viscous mode y7(t). Ac-
cording to (1.4), (1.5) the contribution of the
intermediate viscous modef)ln U @ z) is repre-
sented by the quantity U 77(k z) which may be
written in the form ’

2 % 1 q%q M(n%kz/q2.f)
(")(k 2= —g [ [ :’t i 5 (2.1)
87 g -1 @ + k"Dy /2 + 2Dygq

where ¢ = cos(k q), and the function M(w(k%hz,f)
is defined in Appendix (B.5). On deriving of
(2.1) we put in formula (1.5) the parameters
a=b=1/2

As is shown in Appendix the integral
(2.1) is the regular function on the Z-plane
with a cut along the real axis,

A A<

= - 2 - 2 2.2
y=0, -2D k2 < x5-D k%2 , (2.2)

crossing which the function's imaginary part
changes by jump. Near the Seal axis the imagina-
ry part of the function UY(k, z) is computer

with the'help of (1.A.7)-type relation and
is of the form

ImU(,;’) (k, % +i0) =

2D, k
- D PV ixen g m g Pk ~D8x-D, k%2,
x+an
(2.3)
where
() 1 ()
My, @) - ! aem, @ &), (2.4)

Here @(x)=1 at x>0 and O(X) =0 at x<0. In the
right- hand side (2.3) the other O-function,
®(x+2an0) is dropped out, because only the
small values of {X] are of interest.
The nature of the asymptotical expansion of
m z) at k, |z - depends on the parameter
k h behaviour, where

R .
z+k¥Dp/2= 2D pre'®, (g <

In the case r>>k® we put q= qwﬁ—in the formula
(2.1), replace the quantity M(?(kg/fqgg) by
M("(Of) and using (B.5) obtain

2 S
0 &2 - U 0.0 = 2@, 7 uP @yl e, (2.5)

where yZ2 is defined as

Vz=\iZ explig/2, |¢| < a. (2.6)

With the help of substitution q=kq’ it is easy
t?)show that in the region r~k2 the gquantity
U (k,z) at k-0 behaves as

) u2k
U k, z)-:U 0,0) ~ ———r .
p & 2 ( ) WD, (2.7)

This estimation is valid also for the real part
of the function ngk z) in the region r <<k?2
Consider now the function U(”&,ZL which

determines the contribution of the "virtual"
sound modes in U w z) and may be represented in
the form:

7



U®, 2 -
" (2.8)
w2 Foo1 M P?/q £aqag
87%n 0 ~1 (z+Tk%/4)+q®+ic(k/2- q-jk/2 + q)
where @)@ . &) is the sum of the coefficient

squares, Thls sum is introduced in the Appendix
(B.5). In derivation (2,8) it is convenient again
to choose in (1.5) a = b=12

According to the reasoning of the Appendix A
the integral (2.8) is the continuous function
of z=i+iy regular outside the region

l"k20_<_x5-l"k2/4. ly| < ck, (2.9)

and non-differentiable inside it™

In order to calculate the asymptotics of
U(skk zy at k,|zj- it is convenient to
perform in the integral (2.8) the substitution
of the variable q= qVL Then this integral yields:

(8) -u® =
Uk, 2~ U0, 0)

(2.10)
2k =1 M Pk /q? 2 y®
=_‘l.2__k [ ] dadgl—o q2 P (1? : K e M 0.0
8z<nl" 0 -1 e ok _ 9| |k
m £e e+ I,(I2k il _J

*Note, that the region (2.2) and (2.9) as well
as the nature of the nonan?%yticity of the
8 ’
functions IJg)&.n and U n&,@ don’t depend
on the choice of the constants ab,a+b=1.

where z +Tk%/4-= Ire i - The integral (2.10) asym-
ptotics depends evidently on the relation of

the parameters r/k and k. For the cases

Uk<k<<k we put under the integral sign r/k=0
and pass ©°n to the limit k- 0.After easy calcula~
tions we get

Uk -0, 0- -2 v-=E (2.11)
!

On condition that Ik>>k or |z+fk2ﬂﬂ>>rk2
under the sign of the integral (2.10) one could
pass on to the limit k-0 at fixed t/k. After that
the integral may be computed with the help of
(B.5) at any (z+TIk /@ The explicit expre551on
for {U(”& O—U(”m )} which we needn’t further
has the above-~- mentloned analytical properties*

So, from the definition of the functions
U Mk, z) (2.1) and Ué”& 7y (2.8) it follows
that the function D,k 2 with Up(k, z)—U(")+U(,7S)
is continuous on the z~plane with the cut (2.2)
along the real axis, crossing which ImUm%k z)
changes by jump. The solution of the equatlon

n& 2=0in the low-density approximation can be
obtained by the iteration method if one takes
into account that the function U (k z) as well
as U (0, 0) (1.3.1) is proport10nal to the small
parameter (nag)z, U77 0,0 -~ Dn(nag)z. We find

P 2 2 2 i

Z, =x77+1y77 =-k DTI_k Un(k,—k D77+10sgny). (2‘.12)
This equality has a sense of an iteration
solution because the imaginary part of the
function Unm,m satisfies the condition

*Note that the functions U(”( z) and U(”& z)
calculated in”/ 1lose their contlnulty on the
lines y= tick, x £ -Tk?2/4. But this fact doesn’t
correspond to the rigorous calculation.



ImUy (k, x + iy) =——sgny|ImU,,(k, x + 1y)|.

Hence with the help of the computed asymptotics
(2.7) and (2.11) we get the expression for the
real coordinate of the pole,

2
g =-k Dyl -Ay)
(2.13)

A . .
K 7717!11)7, 21—8

In (2.13) the quantity U m 0) is dropped out,as
it gives the nonessential correction into the
kinematical viscosity coefficient D,. This result
was obtained in A/, The contribution into the
imaginary coordinate expression is given only

by ULk as mUPE H -0 at ys0. From (2.3)
it follows .

= 2.2 o= ____Bf.*.‘____, (2.14)
Y= 273% Pl ¥ 32nnD £

Thus, the integral (1.1), representing the
function XZUL breaks down into two parts

L -ET(®=E"® +E0®. (2.15)

The first term contains the iontribution from
the poles of the function Dﬂ (k, z) and is of
the form

7’ »
E,®- 2008(—§—ynr) expl-r(1-A I, (2.16)

where the dimensionless time r=k2D t is intro-
duced. The second term is the integral around

the cut (2,2)., Using (2.3) we obtained after some
transformations the expression for En@) as the
function of r,

~7TX

Bl - - f Yo \/x/2M("(2/X),e

P (2.17)
0 T [x-12+A,] +[yn\/x/2M(77)(2/x)]2
The integral (2.17) depends on two parameters:

the dimensionless time r and guantity yn (2.14)
estimated as

k k
Vg =TT ) -~ (nas)z (T(;)‘ (2.18)

We can see that y, is small in the low-density
approximation, na3 <<\, for the wave numbers
k<<k0.For finite - we pass on in the integral
(2.17) and in (2.16) to the limit yn»O and get

En(t)=expi—r(1-An)}. (2.19)

Note that in the exponent index we retain the
guantity A {?.13), as its simple estimation
gives)%/An~ Vk/k,

At r-~ and vy fixed the main asymptotics
of the integrals of the (2.17) type is calcula-
ted, as is known, by the integrand expansion
into the asymptotical series near x=0. According
to (2.4) and (B.5) the function M()@2) at
pzam behaves as

(77) 2 16
n @9 = = 5 (2.20)
3p? :

Hence for the integral (2.17) we obtain

- —/
ET@)~E" (t)= -3 y ¢ R TR (2.21)

\/"z'n" "

1"



i i i i 1 i y- > > > -
In this limit the function E () (2.16) gives where the sum of the coefficient Aqr(7¢/2—q,mQ4—®

i 7 2, 2
the exp;nentially small correction to ET(t). squares is designated as M?%k /q°, &) (B.5) .
dIn o z;se whin_go§h pafameters ?hange, rjm To simplify the investigation of the function
a? yU*O' e contributlon into the integral 1s UmT&,@ it is convenient to choose the parame-
given on the whole by the regions x<1/r and T

ters a and b, corresponding to thg q;guments

xR <y §0 the asymptorics (2.17) depends of the hydrodynamic frequencieszn@k-(n and

on the relation between and y . It is possible - S5 . .
. the form:
to show that for the times K z (bk + g in (1.5), in
D D D, +Dqg
2 3.2 k T ] _ 1 L 2
r=k“D,t > 2In(1/y,) ~ -2hinay)” -1 2.22) g a=-———r , b= ", D= . (3.2)
n /vy (nag)” - K oy o~ 5
the main contribution into (2.17) is given by . T . .
U , Z is written down

the integration over the first of the mentioned Then the functilon T & )

regions, and the power part of the function
ENt) asymptotics begins to play the dominating ' mT) u? 1
role, Up & 2=——5— [
Thus, at sufficiently small (in the lkan .
scale) times the viscous mode damps exponential-
ly (2.19) and taking into account of the influ-
ence of the collective motions in gas leads to
the appearance of the nonanalytical dependence

of the viscosity effective coefficient on the

q2M(¥Tkazk2/q2.§)dqd§
(z + 2abD’k?)+ 2D’q?

, (3.3)

T) 2 . . .
where the quantity Mg b , &) is defined in the

Appendix (B.5).
It is easy to see that the integrals (3.1)

and (3.3) transform into the expressions (2.8)

wave number,D_ =D_+e¢kl”, For large times the and (2.1) respectively, if one performs the
. {tutd .
asymptotics of XQ@) changes and acquires the following substitutions
i - t 2.21).
exponentially-power character ( ) UmTL\U(m Uﬁ)i>U“)
T N 7
3. THE TIME ASYMPTOTICS OF THE HEAT MODE when when
2 (s).2
Let us consider the analytrjl.‘cal properties M("T)(azkz/qz, §)=>M(7;7)(k2/q2,§), MSI‘S)(P ,§)=>Mn)(p NIE
of the function Up(k, 2 =UHu G (1.4). on T 0
deriving U® &, 2 put in (1.5) a=b=12 and , 2
get ! (z+ 2abD’k®) => (z+ D,k /2),
U,(rS)(k- 7 = . D =>D1];'
(3.1) ®
w2 o M P «?/q?, ¢)dqds

1
= I — - ) This symmetry allows us to use the main part of
0 -1 7z4+TkR/4 +Tq2+icllk/2- (ﬂ—]k/2+(ﬂ the previous chapter results directly for the

considered case.

12; 13



So, using (3.4), we can affirm at once that
the function Ug(k, 2 (and so Dg(k, 2) is conti-
nuous on the z-plane with cut along the real
axis,

D
y=0, —2D’k2<x< 2abD’k 2=~ _~_ g2, (3.5)

crossing which the imaginary part of UmTkk“@
changes by jump. (It is easy to show that the
analytlcal properties of the functions T(k z)
and % (k, 2, their nonanalyticity regions,
in particular, don’t depend on the choice of
the parameters a,b).

The imaginary part of the function U (k z)
near the real axis accordingly to (3.4) and (2.3)
is of the form

ImUT Tk x+i0) =
T

(3.6)

ulak X +2abD_;;‘3_| M(UT ’(‘ 2D ‘a?k?
327znD" 2D ‘alk? T X +2abD”’

where the function MwTap2) is computed with
the help of (B.5), T
(T 1 T
M;’ (p2)=fd§M(,¥ 26 (3.7)
-1

As all the estimations of the behaviour of
the functions Uw) and Uy) at small k and |z|
are valid, owing to (3.4), also for Ungkzl

(k,2z), one can immediately get the expression
for the roofs of the equation Dg(k 2)=0 in the
form similar to (2.12). For the real coordinate
of the pole one gets/s/

oy 2
X =K DT(I—AT),
(3.8)

14

§|)®(—x—2abD’k2L

A - l_]2 Ck
T 2lgn D 28

The expression for the pole imaginary coordinate
can be found from (3.6) at x=—k%DT=—2aD k%,

2 u?k )
V =*KDqyp, Vo= ——% -
T T 32,nD? (3.9)

Because of the equivalence of the analytic
properties of the functions D (k,z) and Dq(k,z)
the behaviour of the heat xk(t and v1scous

” () modes at t- = is greatly similar. Really

the function T(O breaks into two parts
T
x . (t)
—k -=ET(t)=E1T(t)+E“2‘(t). (3.10)
X} (©

The first of these parts contalns the contribu-
tion from the integrand D (kz) poles of the
inverse Laplace transformatlon (1.1) and is of
the form )

Erf(t)=2005(yTr)expi—r(1—AT)l. (3.11)

Here we introduce the dimensionless time f=k2DTL
The second term in the right-hand side of (3.10)
represents the integral around the cut (3.5) and
is written down with the help of (3.6) as

T
E, ) =

2y vx M("T)(I/X) (3.12)

=—ae

-7b f“’ dx ~rax

o7 lax-a+A 12 +[—y NES M (1/>1

where the constants a and b are defined in (3.2).

15



As in the case of the viscous mode (2.18), the
quantity yq 1is the small parameter. Therefore at
finite r (and yg -~ 0) the main contribution into
the integral (3.12) gives the region x~1 and the
time dependence of the heat mode is exponential,

ET(t)=exb{-r(1—AT)}. (3.13)

In large time limit 7+~ the expression (3.11)
may be neglected, and the integral (3.12) is
calculated with the help of the function
M%TkLﬁ) expansion at x -0, which according to
(3.7) and (B.5) is of the form

@MT) 2
MT (p 2

—boo)zi——, (3.14)
3p

Put this expression in (3.12) and get

~5/2 —vpr

ETW=E, O~ -—L=y Gr) (3.15)

avnm

This power asymptotics becomes the leading one
at the times estimated by inequality (2. 22) .

4, TIME ASYMPTOTICS OF THE SOUND MODE

After we have considered the shear and heat
modes, the investigation of the sound mode xi (t)
time dependence is not difficult. The function
U, (k,z) included in the denominator

D, (k,2)=z+iock + Tk*/2+k°U_ (k 2)

of the inverse transformation for xa(O is defined
by the relations (1 4) Note that each of the

terms in the sum Ug—U( + U(Q-+U UT) which

are defined by the integrals of (1. 5) pe,
differs from u® (kz), UGk, z) and UUTXK z),
respectively, only by the coefficient AL @.q).

The simple transformation shows that:

16

7 (%urns into
by M (p%.€);
Ug) turns into U§® at the replacement M(Q(pz,f)
by M{P(p2¢); 7

M) .
U U?) at the replacementM @ L)

U(;’T(%,z)=3U3"T)(k,z). (4.1)

Here the gquantities kap ,€) and M(Q(D €) are
the sums of the square coefficients A'g (4.99
calculated in the Appendix B. The last equallty
(4.1) follows from (B.5).

The analytical propertles of the fu ctlons
Ui (k.9 (2.1), Up’ksz)  (2.8) and Dk, 2)
(3.3) are defined by the form of the denomlnators
in the integrands. Therefore from the results
of the previous sections it follows that Ug,(kz2)
and D, (k,z) are continuous functions on the z-
plane with the cut along the real axis y=0,

D,D
k2o A 2
x<—k mm{Dn/Z, —  ~}=-k U/g' (4.2)
Dn+DT

Here we have used the relations between the coef-
ficients in the low-density approximation (1.2},
The equation for the function D;l(kl) poles

is solved by the iteration method,

i, (0=—icck- k2/2~ k28U (k, ~tock) +

( T)
+8 U (k, —1ack)+8U(w(k,—iock)L

where 08U(k,z)=U(k,z)- U(0,0). Here, as in
sections 2 apnd 3 the gquantity U,(0,0) is dropped
out, The expressions for 3U{) (k,—iock) and
3U(UT(k —jock) follow from (2.5) if we use the
conditions (4.1) and (3.4). The quantity

8U() (k,—iock)' is found with the help of (2.10),
where it is necessary to put !=Ck,(¢=-m@, pass
onto the limit k -0 under the integral sign and,
finally, to perform the replacement (4.1). As
a result, we get

17



z (k) =-iock — k2I'/2 +

(4.3)
9 ,— ) m MmT)
L vek I(26—1170/4{ Mo . Mo M((JS)

167 n 3/2 7 ’
@,)”" @+, "? 2

where the constants are computed with the help
of (B.5) and have the following values:

(71) f dfM(n)(O &) =

@) 1 T
M7 =%Jﬂ£m"§&®=%,
1 (4.4)

2 _
- [ aEVE MO ©,6-1) - 2 VE
o 3.5.7.9.11

These results coincide with’%/.

Thus, in this case also the integral of (1.1)
type, representing the function Xy 9(t), splits
into two parts

xz ®)

g g
sz)=E(0=E1®+Eg®, (4.5)

where

Ef(o =exp{20&)ﬂ. (4.6)

The second term on the right-hand side of (4.5)

is the integral around the cut (4.2) and can
be written in the form

18

g
E2 =

_k%)/z 4.7
iy dx k% ImU, (k,xt10)]e ™ (4.7)

[x+iock+Tk¥/2+k®Re U, (kx)]2 +k¥Imu, &x)1%

Here the imaginary part of the function (Jg“.z)
near the real axis can be defined by the formulae
(2.3), (3.6) and by relation (4.1),

imU, (k. x +i0)=

—— (4.8)
x +D 2 m
——-—-—D”k M7

U]

= 3D y_V| __.-'L__|)e (-x-D, k 29 ¢
n"q +D k%2
——
1n- x+2abD ‘k @T) _2D’a®k®
_Llpry ay X200k | uOTy_2D'a’k” )@ (-x-2atD kD,
+3o T 2D ‘a 2k 2 Mo x+2a8bD" k* | K

where the constants a,b,D’ are given in (3.2),
and the quantitiesyn (2.14) andynq (3.9) are
proportional to the small parameter of the
problem.

In contradistinction to (2.17) or (3.12) in
the integrand denominator (4.7) stands the
complex quantity. Therefore, at the finite
dimentionless time r~k2D t and Y ,%r*o the
integral (4.7) disappears and time dependence
of the sound mode becomes of the exponential
character (4.6). In the limit r» = the integral
(4.7) asymptotics is computed by the expansion
of the fraction under the integral sign around

x=—k2D./2 In the vicinity of this real axis
point, due to (4.2), only the first terms on the
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right-hand side of (4 8) differ from zero. Ac-
cording to (B.5) at p »0 the function Mm)u))
behaves as

@) (W)
f aEM, 0% ,6) -4 + 001/p2). (4.9)

Use this expression., Conserve in the denominator
(4.7) only the most "powerfull" at k-0 terms, and
get

E (t);s——( )(2 k®D t) exp?—Dr] k%t/2 ). (4.10)

One can show that this asymptotics plays the
main part and E%sEg if

2
(T-Dy)k"t > —21n (k3 #/nc?). (4.11)

Here the times are much larger than in the case of
the viscous or heat modes (2.22) as the parameter

u2k3
nc?

2

- 312,k 8 k
(nag) (ko) y,,(k )

Mention the essential distinction of the asym-
ptotics (4.10) from the corresponding results
for the viscous and heat modes: at t-o~ the
functlon E (0 is proportional to t~3? but not
to t TV The index t in the asymptotics 1is
deflned by the function MW) (p?) behaviour which
at p?see doesn't disappear (4 9) in contradiction
to M(" ®> (2720) or M(” (p?) (3.14). This
c1rcumstance is connected with the kind of
"forbiddance rules" due to which the viscous
mode with the wave vector K cannot split into
two :virtual" modes with the wave vectors k/2
and k/2 and the coefficient ATa '1T8 & %k)=0 (B.3).
As to sound mode, such a split is permitted and
ATa "B (k k)40

20

6. CONCLUDING REMARKS

Thus, we have shown that each of the hydro-
dynamic normal modes time dependence at sufficient-
ly large times changes and turns from purely
exponential into exponential-power one, This
effect 1s conditioned by existence of the cuts
(jumps) in the kinetic equation collision integ-
ral, considered as a function of the complex
variable z. In turn the cuts appear as a result
of the integration over the wave vectors of the
functions, which have the poles in the z -plane
and represent (in the guantum theory language)
the "free" hydrodynamic modes propagators. So
the change of the time asymptotics behaviour at
large t,as well as the nonregularity of the
corrections in wave number k: to the hydrodynamic

frequencies(--k5 2L is connected directly with
the consideration of the collective motions in
the gas.,

The leading principle, which helped us to
obtained the main results of the work, was to
pick out only the main terms of real and imagina-
ry parts of the functions Djﬁ,z) expansion in
the region of small k and |z| with the coef-
ficients, computed in the low-density limit. In
this connection it should be noted that the
specifying of the approximation, in the frame of
which from the generalized kinetic equation
(1.1.5)the expressions for the hydrodynamic modes
(1.3), (1.4), (1.5) were obtained apparently,
will not affect the location of the cut-line of
Dj(k,z) but will give only density corrections
to the value of Dj(Lz) jump on the cut., So
there is a hope that the effect of the change of
the damping character of hydrodynamic modes at
large times conserves also for moderately dense
gas.

In conclusion the authors thank Academician
N.N.Bogolubov for permanent interest to the
work and very useful discussions.
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APPENDIX B

The coefficient functions A?g(a;aﬁ defined
in (1.2.13), represent the integrals of the form

r,?
§

¢
T

—-3/2
where ¢ (V)= (27u?) expf—v®/2u?%}
distribution, and «

> >, -1 - i > > >
A (q.97)=(ku) fdvqs(V)afﬁG/’)aj(V)a , N kv-ka, |, (B.1)
q
is the Maxwell
j takes the values

Om=w =w =0, w =0¢C.
T m Mo 4

The gquantities a%(V) are the eigenfunctions of
the linearized Boltzmann egquation, computed in
the low-wave-number approximation, k-0,

77 i d -> ->
a.(_l,a (V=g@Dv/u, a=1,2;

T (> 1 2, 2
a- (V) == (vYu“-5);
¢ =7 ¢ ) (B.2)
> 2 —
A, (V)= 03D/ uyT, o= 1.
u?y 30

Here we introduce the unit orthonormalized reper,
connected with the wave number q,
q=¢ q; = gFl)g(l)=5-f I g(.’)gf?) =8
i=14 ¢ ! =11 i b4

The lower indices number the vector projections
onto the coordinate system {X,,X,5,x4l

5(3) We introduce another orthoreper F(D,f(m

f connected similar to (B.2) with the wave

2, 2, 2 .

vector §°, q° =1® q’, and will suppose everywhere
that the vector K is parallel to the axis Xg,
k=kg. Then all the integrals (B.1) can be easily
computed. We give here the expressions for some
of them:
22

8-y > o, B, » ®B), .
Ag T@an=g 77+ g

0'0" > > 1

’ N g le B (B), (3)(8),.
A’7a (0.97)=5-00"{g 13"+ g5 1}
00" 52,y 1 (3) . (3) .
AT (qrq) VIB-_-{Uga + O r3 !v

.

Na T > 3, —_— ) N -
NG CR SRRV PLIAE ¥ ol A

3 ' (B.3)
PR .. (3 ,”
Ao,a (6,6’): o g(3)+o' fé?o) 00,—0”
7 32 32
(3)¢(3)_3(®726), .
x {3g 1 -8
Nq:T > >, 1 Ma 'T_, >
. (4.4 )=——AT (4.97)

With the help of these relations and the condi-
tion of orthonormality of the vectors g and
f) it is easy to get the expressions for the
sums of square coefficients A“e(a,q’) which
appear at Salculation of asymptotics. Denote

= cos(K,q), P=klg (B.4)
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and get

M2°18 > > o 2.2
M(?)(p2'§)= s |A;1 B(k/z—q,k/2+Q)! ,

a,B=1,2
M o2 £ (1-¢90%/4x 1+ 269 -2 MP %0,
M’I @~ &)= (p2/4+1)2-p2§2 a=1,2 a

M® o2 )= -L p4/2+ (6 - 1069p2 + 45 - 12¢% 9£
o P 18 ©2/4+ 2-p2e?

MO @2 6= 2|A’;l'"1(§/2-ﬁ. K2+ 9,

£1-¢9 s M<s>(p o),

M(S)(pz’ é—'):
] (p2/4+ 1) 2=p2¢? a=12 Ma

2/4 12-1)262
VTR

2 { (P 2 /a+ &% ¥ ar 1)-D2§2

M (o2, &) -
r e (2/4+ 12 -p2¢ ®

M (0, ) - -+ /37,
MS’T)(azpz,fhz z |a CRCSA I A
=1,2

2

Ty 2 2 2(1-¢ ")
_ ) - .
M, @ ¢ a?p? + 1 - 2ap¢
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