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Eapa6aHeHKOB IO.H., OapHH B • .n., Wenecr A.B. E17 · 12300 

BnHSIHHe KonneKTHBHbiX acjlfjleKroe Ha epeMeHfiYJO aCHMnTOTBKY 

rHllPOllHHSMH'IeCKBX MOll B HeliTpallbHbiX raaax. I. Asan&TH'IeCKBe 

oco6eHHOCTH rBllp0llHH8MB'IeCKBX MOll npH MSnbiX k B lzl 
PaccMaTpHeaeTCSI noeelleHae Ha 6onbWBX npocrpaHCTBeHHo-epeMeHHbiX 

BHTepeanax HOpMSnbHblX MOll rBllp0llHH8MHKB, UOCTpOeHHOJI H8 OCHOBe KBHe­

TB'IeCKOrO ypaBHeHHSI llnSI raaa TBepllblX ccjlep, KOTOpOe Y'IHTbiB8eT 3cjlfjleKTbl, 

o6ycnoeneHHble B38HMOlleJICTBHeM '18CTBU C KOnneKTHBHblMB B036ylKlleHHSIMB 

B Cpelleo J1ccnell0B8Hbl 8H8nHTH'IeCKHe OC06eHHOCTB HOpManbHbiX MOll B 06-

naCTH ManbiX k H lzl (z - nepeMeHHSSI nannaca). 

Pa60T8 BbmonHeHa B na6opaTOpHH TeopeTH'IeCKOli cjlH3HKH 011fll1. 

Coo6meHBe 06bellBHeHHOrO BHCTHTyTa llll8pHbiX HCCnellOB8HBA, .lly6Ha 1979 

Barabanenkov Yu.N., Ozrin V.D., Shelest A.V. 
E17 · 12300 

Collective Effects Influence on the Time 
Asymptotics of the Hydrodynamic Modes in 
the Neutral Gases. I. Analytical Singularities 
of the Hydrodynamic Modes at Small k and lzJ 

The behaviour· of the hydrodynamics normal modes in 
large time-space intervals is considered. The hydrodyna­
mics is constructed on the basis of the kinetic equation 
for the hard-sphere gas, which takes into account the ef­
fects, caused by interaction of the particles with col­
lective excitations in medium, The analytical singulari­
ties of the normal modes are investigated in the region 
of small k and I~ (z is the Laplace variable). 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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In 1968 B.I.Alder and T.E.Wainwright 111 

made the numerical calculations of the velo­
city autocorrelation function in the systems 
of hard disks and hard spheres using the 
molecular dynamics method. They found out 
that the damping· of this function was obvi­
ously nonexponential. After the animated 
discussion /2,S/ of these results it turned 
out that the interaction between the particles 
and collective motions should necessarily be 
taken into account for the more precise 
definition of the kinetic equations. These 
collective motions are caused by the viscosi­
ty, heat conductivity and sound wave. Such 
a corrected system of the kinetic equations 
was formulated by M.H.Ernst, I.R.Dorfman~/ 
and N.N.Bogolubov 151 (the EDB equations). 
It should be noted that this system is simi­
lar in character to the system of equations 
for plasma, from which the Lennard-Balescu 
kinetic equation /6,7/ is derived. 

We use th~ EDB system of equations for 
the investigation of the behaviour of the 
hydrodynamic normal modes at the time inter­
vals large compared to the mean free path 
time and with small wave number in the units 
of inverse free path. In other words, in 
the Laplace z -representation in time and 
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the Fourier k -representation in coordinates 
the case k~ O,lzl ... 0 is considered. 

In section 1 the EDB equations for the 
low density system are linearized near the 
equilibrium solution. The linearized nonlo­
cal hydrodynamic equations generalizing the 
Navier-Stokes equations are written down. 
The solutions of these equations (in the 
limit of small k and lzl ) , which are hydro­
dynamic normal modes xJz = x J (0)/D j (k, z), are 
given in section 2. Section 3 is devoted to 
the general investigation of the character 
of the asymptotical expansion of the denomi­
nators Dj(k, z) at lzl, k ... 0. Here it is shown 
that the main terms of the expansion are 
irregular in z and k. As a consequence there 
exists not only the nonanalytical dependence 

-1 of the poles D j (k, z) on the wave number k, 
demonstrated in ~1, but also appear the cut­
lines in z-plane, where Dj(k, z) loses its 
continuity. The existence of such cuts 
leads finally to not purely exponential 
dependence of the normal modes x j(t) at suf-
ficiently large t. k 

1. KINETIC EQUATION WITH REGARD FOR THE 
COLLECTIVE MOTIONS AND NONLOCAL 
HYDRODYNAMICS 

The kinetic equation for the one-particle 
distribution function ~(ij is obtained from 
hierarchy of equations~/ for the s-particle 
distribution functions Ft (1, 2, ... , s) or cor­
relation functions Gs(l, .•. , s). According 
to /4,5,9/ the first two equations of the 
hierarchy for the hard-sphere system are of 
the form 

4 

a I--- A
1

1 F t(1) = n Jd2T(1,2)1F t(1)F t(2)+Gt (1,2)1,. (1.1) 
at 

I jj_- A
1
-A 

2
1G t(1,2) = T(1,2)1Ft (1)Ft (2) + Gt(1,2)1. + 

at 

+ n( 1 + P 
12

) ( d3 'I(1,3) IF t (1)Gt (2,3) + 

+ Ft (3)G t(1,2) + G t(1,2,3)1, 
( 1. 2) 

where n is the numbe~ density, the operator 
.... a 

As=-V --_,..-and operator P12 permutes the 
s ar s 

particle indices. T(1.2) 
lision operator for hard 

is the retarded col­
spheres, defined 

as 

2 ~-+ -4. -+ 4 -+ .... i" 
'1'(1,2)= a

0 
fda(v

12
a)e(v

12
a)l8(r 12 - a0 a)B 12 (aJ-

( 1 • 3) 
--> --> 

- 8(r
12 

+ a
0

a)l, 

--> 
where ao is sphere diameter, a is unit vector, 
-+-+ !+ -+ .......... 
v

12
=v

1
-v

2 
and. r

12
=r1-r 2 are relative velocity 

and distance, an_c; t:_he operator B 12(a) changes 
the velocities v 1, v2 in to the velocities 
"before the collision", 
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B 12 f(v 1 • v2) = f(V"i' V"'2);' v~ =; 1- ;(v~2;), 

_,. --+ -+ --+ --+ 

v ~ = v 2 + a (v 12 a). 

Let us write down the one-particle fun­
ction Ft (1) and the two-particle correlation 
function Gt (1,2) in the form 

Ft (1) = c/>(1)11+ Xt(1)1, 

at c1.2) = ¢(1)c/>(2) tg(fr 1 -t2 1> + x t (1.2)1, 
( 1. 4) 

where c/>(~ i~ the normalized Maxwellian 

cp(1) = cp (V 
1

) = (277U 2f 3/l?exp {-V ;; 2U 2 1, U = y 0/il~ 
-+ 

and g([r 12 1) is the equilibrium binary cor-
relation function. We insert (1.4) into 
the first equations of the hierarchy (1.1), 
(1.2), and, assuming that the system weakly 
deviates from the equilibrium state and has 
sufficiently small density, neglect the 
nonlinear terms of the type x·x as well 
as the tr ippl e correlations G t (1.2,3). As a 
result we obtain the linear system of equa­
tions for Xt (1) and x t(1.2), which is used 
for the investigation of the hard-sphere gas 
state evolution. Suppose that at the initial 
moment t=O the system is already in a local 
equilibrium state and put Xt=J1.2)=0. Then pas­
sing on to the Laplace time representation 
and the Fourier space representation, 
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-+-+ 
-+ -ikr -+ 

f-+= fdre f(r) 
k . 

"" -zt 
f = r dte f(t), 

z 
0 

and solving the equation for Xt (1,2) we get 
the following equation for the function 
X (1)/4/: 

t 

--+-+ -+ -+ .... -+ 
I z + ikv- nL ... (v)- nR-. (v) lx ... (v) = x ... (v, 0). 

k kz kz k 
( 1 • 5) 

Here* x k(v, O) is the space Four ier-tra!lsform 
of the function x t=o(1). The operator Lk (v) is 
the Fourier-transform of the operator L(~ 

and has the form: 

-+ -+ -+ -+ -+ --+ -+ 
L k(v1) = fdv2 cp(v2)1T

0
(v 1 , v2) + Tk(v1 , v 2)P 12 I, ( 1. 6) 

-+ ... 
where Tk (v 1• v 2 ) 
with respect to 
( 1. 3) 

is the Fourier-transform 
r12of the collision operator 

_,.-+ 
_,. ... _, -ikr12 

Tk (v 1. v 2) = fdr 12e T(1,2). ( 1 • 7) 

*Note that in deriving (1.5) the terms, 
including the equilibrium correlations 
g(fr12 f), were neglected as in 141 • The conside­
ration of these terms will lead apparently 
to the appearance of density corrections 
to the coll.i:sion operator T(1,2). Point out 
also that in the expression for Rz(1) (1.8) 
it is convenient, as it has been shown 
in /4/, to conserve the opera tor T(1,2) in 
braces. This term is absent in the system 
of equations~/ but in the considered ap-

' proximation it is not essential. · 
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Finally R~M is the Fourier-transform of 
the operator 

Ril) = fd2¢(2)T(1,2)Iz- A 1 - A 2 - T(1,2)-

-1 
- nL(1)- nL(2)l T(l,2) (1 + P 12 ) 

( 1 • 8) 

The explicit form of the Fourier represen­
tation for Rz(n will be obtained later on. 

On the basis of the kinetic equation 
(1.5) we shall build the linearized hydro­
dynamic equations, i.e., the system of 
equations for deviations of the average 
values of the functions 1,; and v 2 from the 
corresponding equilibrium values. It is 
convenient to consider the linear combinations 

of 1.~ v 2 which are eigenfunctions of the 
44 

linearized Boltzmann operator(nL~~~ calculated 
in the lowest ink ~o approximation, 

2 4 
a ~ V ~ (3) v 

a 4 (v) = ------- + a g ------ , a = ± 1; 
k --- 2 --

y30u uy2 

T 4 1 v 2 
a 4(v) = ---=--===- (----- 5); 

k v 10 u 2 

"'a a4 
k 

4 4 (a) 4 

(v) = g vI u , a = 1,2, 

where g(l), g(2), g4
(3) are unit vectors, 

4 (3) ~ 
g k = k • g (i>i<i> =a ij 
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( 1 • 9) 

j ~ 
The functions ak(~ are orthonormalized, 

<a~, a~> 
k k a rs ' 

with respect to the scalar product 

< r 
1 

• r 
2 

> = .r dv cf> (v) r 1 (v) r2 (v). (1.10) 

The deviations from the equilibrium averages 
we are interested in are defined by 

X r = <a-! , X 4 > ; r = a, T, ., , "' . 
kz k kz 1 2 

(1.11) 

The hydrodynamics equations can be obtained 
from (1.5) by using the projection-operator 
method of Zwanzig /10/ and re-presented in the 
form/4/, 

2- . 
~ l(z+ikwi )5ij +k uij (k, z)lx~z 

j=a,T,.,1,.,2 

= X i (0) - ik I i 
k kz' 

where 

W =W =0 W =aC 
T "'a ' a ' 

5 C=Uya-' 

c is the low-den~ity sound velocity. 
rna tr ix e l em en ts U.. (k,z) are of the form 

lJ 

U (k,z) 
rs 

(1.12) 

(1.13) 

The 

(1.14) 

r 4 ~ -1 s 
=<a-+, (v - w )I z + iP.l (k v)- nL - nR .+ l (v -w )"a,..>, 

k 3 r 0 kz 3 s k 
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where P~ is the projection-operator of the 
velocity functions onto the subspace ortho­
normal to the hydrodynamic b~sis (1.9). Here 
for the sake of definiteness k is taken to ........ 
be parallel to the z axis, kv=kv

3
• Both 

functions in the right-hand side of (1.12) 
r+ 

depend on the initial condition xk ~v, 0). The 
first of them is the projection xk(v.~)onto 
the .corresponding basis function, X ~(0) = 
=<a~, x k (0)>. The second one can be obtained 
if in the right-hand side ·( 1. 14) under the 
sign of the scalar product, one replaces 
(v 3 -w 8 )a1 by P.J.Xk(O). When deriving (1.12) 
and (1.14) we, as in/4/, have replaced in 
(1.5) the operator L~~ by the linearized 
Boltzmann opera tor L 

0
(v). He_re we. suppose 

that the rna trix e 1 em en t s <a.;, L .... , a!>, as well 
i j . . k \{ k, 

as <ak, R .... a .... >, g1.ve d1.sappear1.ng 1.n the 
low den~it; limit corrections to the coef­
ficients of the regular part of expansion 
in k for the functions in the braces (1.12), 
to the sound velocity, for instance. 

2. HYDRODYNAMIC NORMAL MODES 

Finally we shall be interested in the 
character of the decrease of the hydro­
dynamical- perturbations at t->oo 

X j (t) = 
k 

ioo+a
0 

J 
-ioo+a

0 

dz zt j 
----e X ' 
2rri k,z 

( 2 • 1 ) 

slowly changing at the distances of the order 
of free path length A.

0
, calculated in the 

lowest order in the density (k«k
0

-A. 01 ). 

Therefore, it is sufficient to consider 
equation (1.12) at smallk and lzi(JzJ::;ck). 

10 

I[ t~e nondiaaonal elements (of the order 
ofk~of the coefficient matrix are neglected 
in (1.12), the system of equations "splits" 
and its solutions, which are the normal 
hydrody~amic modes at small k, can be writ­
ten as 

xk ry D j (k,z) 

o-
D.(k,Z)=Z+ikw.+k"'U.,(k,z). (2.2) 

J J .JJ 
'"' 

The consideratio~ of the nondiagonal elements 
U .. fk z\ and t. he I Jk z-· quanti t i e s f rom the lJ ' ~ 'l ' 
right-hand side of (1.12) gives the correc-
tions of O(k 3) to the fu~ction D j(k; z) and 
t~e corrections of O(k)x ~ (0) to the function 
X~(m. (Note, that if the linearization of 
the system of equations (1.1), (1.2) is 
performed correctly, the initial value 
Xjk(0)->0 at k->0). Within the same approxima­
tion we may also neglect the explicit depen-· 
dence on k and z in formulae ( 1. 14) and use 
for U jj (k, z) the following expression: 

~ . 
U j/k, z) = U /k, z) 

( 2 • 3) 
1 j )I I -1 . ) j = - --·-<a , (v - w. L + R .... (v - w . a .... >. 
n k 3 J 0 k,z 3 J k 

Here U j(k,z) ( 2. 3) depends on k and z only 
through the k and z dependence of the 
operator Rk z' The last can be justified 
by the fact'that ~he asy~ptotical expansion 
of the functions [Uj (k,z)- Uj (0,0)] beg ins from the 
nonregular terms· decreasing at k, lzl ->0 slower 
than z or k. 
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From this point of view consider the 
-+ 

operator R k, /V). Let us expand the braces 
in (1.8) in the series with respect to the 
collision operator T(l, 2) and perform the 
Fourier transformation. We get 

-+ oo (n) -+ 
R... (v) = I R... (v), ( 2 • 4) 

k,z n= 1 k,z 

where 

(n) (-+ ) 
R-+ v 1 k,z 

-+ -+ 
dq 1... dq n -+ -+ -+ 

( ---------- dv ¢ (v ) T-+ (v , v ) x 
· ( 21r) 3n 2 2 q 1 1 2 

-+ ...... -+-+-+ -+-+ -+ 4 -+-+ 4 

x G(k-q 1 , v1 ; q 1 , v 2 1z)T-+_-+(v1 ,v2 )G(k-q2 ,v 1 ;q2 , v 2 jz) ••• 
q2 q1 

(2.5) 
~-... 4-+-+4-+ 

••• T -+- -+ (v 1. v 2) a (k - qn. v 1; q n • v 2 I z) X 
qn q n-1 

-+-+ -+-+ 

x [T -qn (v 1' v 2) + T k.- q n (v 1' v2 )P 12 ]. 

We have introduced here the operator G(k
1

,V'
1

; 
-+ -+ 0 • 

k ,v iz) d1.rectly connected w1.th the Green 
f 2 2 . 1 . d unct1.on for the inear1.ze Enskog-Boltzmann 
equation, 

-+ ............ -+-+ 

G(k - q, v 1 ; q, v 2 1 z) = 

-+4-+ 4-+ -+ -+ -1 
=[z +iq(v2 -v 1)+ikv 1 -nLk:-q(v1)-nL-q(v

2 )] = 

= I 
11 a!! _,(~ )a~ c; )»«a~<; )a!! ... cv ... )II 

k -q 1 q 2 q 2 k- q 1 
( 2 • 6) 

a,f3 --+-+ -
z- za (k - q) - z{J( q) 

12 

The last equality corresponds (in Dirac 
notations and with the scalar product (1.10) 
to the e ;.; p a n s i o n o f t h e k e r n e 1 o f t h e opera -

---)> •• .,. -> ---). 
tor G(f, v 1 ; q, v 2 \ t\) in the s y s ·t: em of the exact 

-a -+ 
eigenfuncti.ons a~ (v) of the opera·tor 
~tL;.,..ik\1), corresponding to the eigenvalues 
za(k). ~ve shall omit here the detailed inves­
tigation of the expressions (2.5), (2.6), 
performed in~~ Note, however, that any 
analytical singularities of the integrals 
(2.5) a'c k-•O,z->0 can be connected only with 
the integration over the region !Cij\-0. Here­
over, the contribution to these singularities 
is given only by the terms of the sum (2.6) 
which correspond to the intermediate 
("virtual") hydrodynamic modes with the 
frequencies za(q)-+0 at q-.0. Therefore, in 
order to guarantee the accuracy only of 
the first terms of the asymptotic expansion 
R k z ( ~) at k. ! zl -• 0 we 1 i mit our s e 1 v e s in ( 2 . 6 ) 
only to the contributions from the "virtual" 

-+ -> 
hydrodynamic modes to all operators 0(£, v 1 ; 

q, v21 :z) in ( 2 . 5 ) . cut 0 f f a 11 integra 1 s 
R ~ -+ -> -1 

over '!1 , '!2 •••• , qn at lqi.:S k0 , where k 0 is of 
the order of free path A0 . Furthermore, due to 

a0<<A 0 we can neglect also the dependence 
-> -+ 

of the collision opera tor T ... (v 1 , v2 ) on the 
wave n.umber, as this dependJlnce is essential 
at q-a01 according to (1.7). Besides, for 
the values a~(Vj and za(k) in (2.6) we use 
the eigenfun~tions al(V) (1.9) of the perturbed 
linearized ~oltzmann koperator ~L 0 -~Vj. 
These eigenfunctions are calculated to the 
zero approximation in k,and the corresponding 
eigenfrequences are calculated in k 2 -appro­
ximation, 
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z (k) = -iack _1_rk 2 
a 2 a = ± 1; 

• 

2 z (k) = -k D T T 

2 z (k)= z (k)= z (k) =-k D 
771 772 77 77 

( 2. 7) 

1 1 2 --r= --D + --D . 
2 3 T 3 77 

Her e D = 77/ nrn i s the k in em at i c vi s co s it y , 
DT=2K/~ is the thermodiffusion coefficient, 
r is the sound-wave damping constant. Coef­
ficients of the shear viscosity 77 and the 
heat conductivity K are given by their low­
density values, 

rn -1 
77=----<v v L v v > 

u2 X y' 0 X y 
5urn 

--i6-ji;~' 

1 v 2 - 1 v 2 15 
K = - -- <(--- - 5)v , L ( --- - 5)v > "' -- !L . 

4 u 2 x o u2 x 4 rn 

( 2. 8) 

Due to these approximations the series 
(2.4), (2.5) can be summed. The insertion 
of the result of summation into (2.3) gives 
after using the definition of the scalar 
product and hydrodynamic frequencies: (1.13), 
(2.7), (2.8), t_he following expression for 
the functions uj (k, z): 

2- 0 2 
k Uj (k, z) =- Z/k)- lkwj + k Uj {k, z). ( 2 • 9) 
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) 

·J ,, 

Thus the denominators in the expressions 
(2.2) for the hydrodynamic normal modes can 
be written down now as 

2 
Dj (k, z) = z - zj (k) + k U j (k, z). 

For the functions Uo (k, z) we get 
J 

(r,e) 
U 0 (k, z) = ~ U 0 (k, z) , 

J r .~ J 

u2 f (r,f) (k, z) = ---

U j 2n q.:5 k
0 

--> 

_«!_q_ 
(&)3 

r,~ --. -+ -+ 2 
!·A j (k - q, q) I 
------~---_:;-----=t ' 
z- zr (k- q)- ze (4) 

(2.10) 

(2.11) 

(2.12) 

where j, r, f are the "hydrodynamic"~ indices, 
0 o h f f 0 • Ar' ( --> -+ ') J, r, L = a, T , 77 1 , 77 2 • T e c o e 1 c 1 e n t s . q, q 
depend only on the unit vectors qyq, ci'/q. 
and represent the following integrals: 

r,f -+ -+, 
A 0 (q, q ) . = 

J 

-1 -+ j 3. r -+ ~ -+ 
=U fdv¢(v)a.=.(vJa .... (v)a .... ,(v)lv 3 -w Jol. (2.13) 

k q q 

r,f -+-+ 
Note t h a t some of the co e f f i c i en t s A j ( q, q ') 
turn into zero due to integrand (2.13) being 
odd relative to the vector v components. 
Namely: 

77~,T 
t-' -+ .... a, T --> -+ T T -+ -+ 

A 77 a ( q, q ') = A 77 a ( q, q ') = A 77 : ( q, q ') = O ; 

. T,T -->--> 11a•11f3 -+ -+, T,T-+ --., (2.14) 
A T (q, q) = A T {q, q ) = 0 A a (q, q ) = 0. 
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Therefore, the corresponding terms ;_; (t' j drop 
o u t o f t h e s u m s ( 2 • 1 1 ) • B e s :L d e s , u s : ,-, g t. n e 

i n v a r i an c e of the f u n c t ions , ': ~ (v) ( J • 9 ) and 
the frequencies z.(k) (2.7) relative t·.) the 

. J -? -) 

rotations of ·the vectors k and v. it. mav --'>' . .;. 

be shown t h a t the f u n c: t i o n s U i (k, z ) i e p e n ::1 
only on \ki' and the equal it v P:,1 ~ U1, c.· U711 is true, 

- .• 1 1 I 2 

3. THE BEHAVIOUR OF THE FUNCTIONS 
U. (k, z) AT SMALL k, jz\ 

J 

The relations (2.10) and (2.11), obtained 
as a result of the above-mentioned approxima­
tions, permit us to guarantee only the main 
terms of the asymptotical expansion of the 
functions Dj(k, z) an<;l Uj (k, z) with coefficients, 
defined in the low density limit. Show that 
in this approximation we should neglect 
some terms in sums ( 2. 11) • Just from the 
form of integrals (2.12) it is easy to see 
that any analytical singularities of the 

functions Uj (k, z) at k, \z! ->0 can be connected 
only with integration over the region q~O 
(say 0_5-q'S_q

0
<k

0
,q

0 
is arbitraty), where all 

the hydrodynamic frequencies zj (q) turn into 
zero. For example, all the derivatives from 
Uj(k, z) with respect to z, beginning from 
the second one, diverge at k,\z\->0, namely, 
near the lowest 1 imi t q = 0. At the same _time 
the integrals of the type (2.12) over the 
region q

0
-s_q-s_k

0 
are the regular functions 

z; at sufficiently small k and \z\. Thus, if 
one expresses the first terms of the asym-
ptotical expansion U.~. ~ as a sum (in the 
region of the smallJ k and \z\ ) of the 
regular and nonanalytic functions, 
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(reg) (sing) 
U.(k,z)=U.(O,O)+U. (k,Z)+U. (k,z), 

J J J J 

U (_reg),.k z\ = c z + c k + •• • , J ,,,, 1 2 

then for the existence of u~sing) (k, z) only 

the integral (2.12) over the vicinity of 
q=O is responsible, while the contribution 
to the regular part IUj (0, 0) + ujregtk, z) I is 
given mainly by the region of large q~k 0.The 
coefficients Uj (0, 0), c 1 , c 2 depend, surely, 
on the parameter k 0 • If the expansion of the 
function IU.~.~- ~~.~1 begins from the 
regular par~, and u<~ing)(k, z) decreases more 

quickly at k, I zl -+ 0, ihen, in the framework 
of the accepted approximation, one must 
neglect not only u ~sing), but also u~reg) (as 
it was done in the course of the derivation 
of (2.3)). Then the consideration of Uj(k,z) 

in ~~.~ (2.10) will lead to the appearance 
of the small addition (in the low - density 
limit) to the corresponding• kinetic coef­
ficient of the form 

2 dq 
-- ~ _!!__ r ----­u. (0,0)- o at <k (2TT'P 

J t ,r q o 

fr -+-+ 2 2k 

I A; ___ {_:-~~~---~--~ _ (na ~} 2D j • 

-;~ ( q) + z r ( q) nD j ( 3 • 1 ) 

where D j i s on~ of the co e f f i c i en t s : D71 , D Tor r. 

Thus, we are interested only in the case, 
when the main term in the expansion of the 
difference I Uj (k, z)- Uj (0, 0) I is u<Jingtk. z). 
It is easy to see that we deal with just 
this situation. To this end it is sufficient 
to show that in the sum (2.11) there exist 
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-r the terms Lj ( k. z) Yr i t 1:'1 e ~,en 
to z d:lvsrgent 

(2.12) yield: 

fj _-,=·.- derivati.vE:S 
at k, I zi __. 0. Rea 1-with respect 

ly, equations 

.... ·r !I \ 
d "l' (- ··- ''k. ~\' -;._--· j ~ ~ .. ~£...): 

uz J k--->0 
? -~ 0 

v 
( - __, l r ~ t_ f -> ~\I 2 

~~- q<~)~~)3 h~~~~1-~i~~-e~~=;J2 i k .. o 
2: _, 0 

d ~-> (3.2) 
The quantities A' (-q,q) are t.he functions 

J -"I of the unit vector q,q, and so convergence 
of the integral depends only on the behaviour 
of the integral denominator at q ... o. From 
the formulae {2.7) for hydrodynamic frequen­
cies it follows that when 

r,e=.,., ,.,.,{3; r,f =ry ,T; r=e=T;r=a, f~c-a, (3.3) a a 

the sum of frequencies [zr (q) + ze(Q)] .. q 2 at 
q....O:and integral (3.2) diverges at q=O if k, 
\z\--->0. For the rest couples of indices r, ~ 

integral (3.2) converges* at k=O,z=O.It is 
possible al~o to show that the first deriva­
tive of u~· >~.~ with respect to k for 
the indiceJs r, e in ( 3. 3) even if diverges 
at k,\z\--0 then not faster _that{ integral 
(3.2). In the rest cases au<r·1ak exist~. 
It means that the series expansion of U~ ,r)(k,z) 
for the indices ~r out of set (3.3) begins 
either from the regular terms of the type 
c 1 z + c2 k or from the nonregular terms decrea­
sing at k, \z\ .... 0 faster than c1 z + c2k. In both 

*For some couples of indices r,f the fun­
ctions uqJ> ~. ~ are nondifferentiable near 
Z=O for finite k. In this case the reasoning 

made above needs the correction which, 
however, doesn't change the obtained conclu­
sions. 
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the cases one must neglect these terms with 
respect t~ the main asymptotics of the fun­
ctions U <. ,r)(k, z) with the indices f, r from 
the set (j,3), which only must be retained 
in the sum (2.11). 

Thus, taking into account (2.14) we get 
the following expression for the main terms 
of asymptotical expansion of the functions 

(S) (Tf) (s) (71T) 
U77 (k,z)=U11 +U 71 ; UT(k,z)=UT+UT 

U (k, z) = U (s) + U(l7) U (71T) 
a a a + a 

u (71) 
j ~ 

a,(3= 1,2 
U ~1la •17 (3) ; U <;> = 

u<_l7T) = ~ lu<:a·T~ u<T•l7a) I 
J a= 1,2 J j • 

.~· u<~',-a·f3.4) 
a = ±1 J ; 

From the rest terms of sum (2.11) the con­
stants U (~,f) (0, 0) retained in ( 3. 4), which 
are of theJ same order of magnitude as 
U71 (0,0), Ua(O,O), UT(O, 0). Finally, however, 
we shall neglect the quantities UJ~·~ giving, 
according to estimation (3.1), nonessential 
corrections to the kinetic coefficients and 
don't affecting the character of the time 
asymptotics_of the hydrodynamic mfdes. For 
the same reason the functions U~·>~.~ 
in (3.4) may be defined by relations (2.12), 

.... .... ---+ 
where the arguments (k- o) and q in the integ-

31 ... ---+ :t 
rand are replaced by (ak -q) and (bk +IV with 
sufficiently arbitrary constants a, b satis­
fying the condition a + b = 1, la\-1, \bl -1. In 
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fact, substitution of the variable q= q'+ bk 
into (2.12) shifts the whole integration .... 1..... .... region of the vector bk, q + bkj S. k 0 • If 
bk-k<<k 0 we can consider, however, that as 
before jq'j.::; k

0
, neglecting at the same time 

the contribution in (2.12), which results 
from the integration over the region, adjoin­
ing to the boundary, q'-k0 . As is shown ·above, 
this circumstance doesn't affect a~alytic 
singularities of the functions u<_r, )(k, z) from 

J 
(3.4) at small k and lzl and counts only 
on the constants U~~f) ~.m depending on 
the cutting parameter. 

In conclusion we make some general remarks 
concerning the character of time dependence 
of the hydrodynamic modes represented by 
integral (2 .1). The function Xjkz (2. 2) has 
the poles on z-plane at the points where 
the denominator Dj(k, z) (2 .10) turns into 
zero. As according to ( 3. 1) U j(k, z) is p;ro­
portional to the small parameter of the prob­
lem, the solution of the equation Dj(k, z) = 0 
in the low density approximation is of the 
form 

- 2 
z . (k) == z. (k) - k u. (k, z. (k)). 

J J J J 
(3.5) 

For the reason of nonregularity of the main 
terms of the functions U-~.~(3.4) expansion 
ink and z it is clear that the "renormali­
zed" hydrodynamicfrequencies ~(~ should 
depend nonanalytically on the ~ave number 
k 141. 

Besides, for each of the functions Uj (k, z) 
as well as for Dj(~ ~ there is the line on 
the z-plane crossing which the function 
changes by jump. As is shown in Appendix A, 
just the functions u)7J), U~7JT) from (~.4), 
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containing the contributions from the interme­
diate viscous modes or viscous and heat 
ones, possess these singularities. (Remark 
that, according t~ Appendix A results, all 
the functions u<~· ) (k, z) not included in 
(3.4) are continuous in~· 

Thus, the integral (2.1) breaks down into 
two parts 

X j (t) / x j (0) = E j (t) = E j(t) + E j (t), 
k k 1 2 

( 3 • 6) 

where the first term contains the contribu­
tion from the poles Djl(k, ~ and is of the 
form 

Ej
1
(t)- expltzj(k)l. ( 3 • 7) 

The second term represents the integral over 
the cut-line and is written down as 

j x2 dx xt -1 
E (t)= ( ---e ImiD. (k, x)!, (3 .8) 

2 Xt T7 J 

where the position of the cut-line and the 
value of the jump of the function Dj1 (k, z) 
on it, ImiD-/ (k, z)!, are determined with the 
help of (A.8) 1 (A. 7) - type relations. The 
asymptotics of the integral (3.8) is computed, 
as it is known, by means of expansion of 
ImiD~1 !. near the right end of the cut. This 
asymptotics in contradistinction to (3.7) 
is not of pure~y exponential character. In 
our next work, where we intend to make the 
concrete calculations for each of the 
hydrodynamic modes, it will be shown that 
at sufficiently large times namely EJOO 
plays the main role at the time asymptotics 
of the mode xj (t). 

. k 
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APPENDIX A 

Consider some inalytical properties of 
the functions u)r, )(k, z) in the complex 
variable L Considering the dependence of 
all hydrodynamic frequencies z (q) only on 
.... r I ql we p a s s on in the i n t e g r a 1 s ( 2 • 1 2 ) to 
the spherical coordinates, representing 
these integrals in the forms: 

ko 1 'I' <e. q) 
U( z) = J dq f <Ig -z--.=--¢-<~~q)- ' 

0 -1 

........ 

(A. 1 ) 

Here e = cos(k,q) and f/J(e, q) is the sum of 
frequencies, 

.... .... .... 
cf>(e, q) = zr (ik- qi) + z~(iql) = f/J l<e. q) + if/J2(e, q). (A. 2) 

All analytical singularities of the function 
U(~ are determined by the 'xistence and 
the nature of the integrand (A.l) denomina­
tor zeros. Evidently, U(~ is regular in that 
region of the z-plane, for the points of 
which the equations 

z = x + iy = f/J(e, q) or 

have no solution. 
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X= cp l(e, q) 
I 

y = f/J2 <e. q) 
(A. 3) 

Suppose that for the region ~ points of 
the z-plane the solution of (A.3) exists. 
Introduce the Jacobian 

a¢1 a¢2 !it !i~ 
J(e, q) = -at- -aq- - aq ae (A. 4) 

and consider two cases: a) the Jacobian 
J(e, q)=O for all e. q <lei .:s 1, o .:s q), b) the 
Jacobian J(e, q) tO for all e, q. 

The Jacobian (A.4) may be equal to zero 
for all e, q only when f/J 1 and ¢ 2 are functio­
nally connected, i.e., are bound, for instan­
ce, by the relation 

¢2 <e. q) = F<¢ 1 <e. q)). (A. 5) 

Then the reg ion ~ is some curve in the 't - · 
plane, defined by the equation 

y = F(x). 
(A. 6} 

We show that when passing over the curve 
z = x + iF(x) on the z -plane the function 
~~ changes by jump. Make to this end the 
replacement of variables e and q in the 

integral (A.l) by e.(= ¢
1

<e, q) and consider 
the difference of the function U(z) values 
"above" and "below" the curve in the points 
z1, 2= X+ iF(x)± iO[l+ iF'(x)]. The contribu-
tion to this difference is given, evidently, 
only by the ~ntegration over the vicinity 
of the point (= x, where the denominator of 
the integrand (A.l) in the variables e,( 
may be written, taking account of (A.S), as 
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x + iF(x) ± iO [ 1 + iF '(x)] - '- iF(') == [ 1 + iF '(x)](x- '± iO). 

Now use the relation [x- iOf1
- [x + i0]- 1 = 

= 277i8(x), and, returning to the variables 
~~ obtain the expression for the jump 

U(z(x)-iOz'(x))- U(z(x) + iOz'(x))= 

ko 1 
-1 

(A. 7) 

= 277i[1+iF'(x)] J ( dq~'l'(g, q)8(x-¢
1
(g, q)). 

0 -1 

A simple example of the considered situation 
is the case of bothfrequencies in (A.2)being 

real quantities, such as ~f= ~· ~~ or 
r,f=~a,T. Then ¢

2
(g,q)=O and y=F(x)=O and 

the formula (A.7) determines the jump of the 
function U(~ imaginary part when crossing 
the real axis y=O on the section 

min ¢
1 

(g, q) _s x _s max ¢
1 

(g, q). (A. 8) 
g,q g,q 
Consider now the case b). As J(g, q) t 0 

all g, q, we can pass on in the integral 
to new variables '= ¢ 1 (g, q), K = ¢ 2(g, q) 
write it down in the form 

for 
(A. 1 ) 

and 

U( z) = (( tit:~ ___ !~~~~~-
x + iy- '-=-i~ 

(A. 9) 

$ 

It is easy to make sure that the integral 
(A.9) doesn't diverge if zE$. For this 
purpose it is sufficient to single out from 
(A. 9) the integral 8 U(z) over the small 
vicinity l'+iK-zl.::;8 of the "singular" point 
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'+iK=Z and in this vicinity to pass to the 
polar coordinates ,_x =rcoscp ,K-y=rsincp. Then 
we get 

8 217 -lcp 
8U(x) = - f dr J dcp e 'l'(x + rcoscp , y + r sincp)=o(8).(A. 10) 

0 0 

If the point '+iK=Z is situated at the distan­
ce r 0 <8 from the region$ boundary, the U 
estimation 8U changes somewhat, 8U=0(8), but 
in both cases the integral over the vicinity 
'+iK=Z remains finite and disappears at 840. 
Using the obtained estimations it's easy 
to check that U(z) is the continuous function 
of z in the region $. More detailed analysis 
shows the function U(z) being non-differen­
tiable in the region $ (the Cauchy-Riemann 
conditions are not satisfied). 

So, if the conditions J(g,q)=O or J(g,q)fO 
a r e sa t i sf i e d for a 11 I el .:::; 1, o .:::; q, then in the 
f i r s t c as e the fun c t ion U( z) i s r e g u l a r on 
the z-plane with the cut along the curve 
(A.6), Z= X+iF(x), near which its value 
changes by jump. In the second case the 
function U(~ is regular outside the region 
$ of the existence of the equations system 
(A.3) solutions, and it is continuous but 
non-differentiable inside $. It is easy 
to spread the last conclusing to the case 
when J(g, q) =I 0 for g, q excepting some curve 
on ~q -plane. Namely such situation arises 
if one or both of the "virtual" modes are 
sound ones, e.g., in (A.2) the indices r= a; 

e =a or r = "· e =a'. 
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