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Collective Effects Influence on the Time
Asymptotics of the Hydrodynamic Modes 'in
the Neutral Gases. I. Analytical Singularities
of the Hydrodynamic Modes at Small k and |z

The behaviour of the hydrodynamics normal modes in
large time~space intervals is considered. The hydrodyna=-
mi¢s is constructed on the basis of the kinetic equation
for the hard-sphere gas, which takes into account the ef-
fects, caused by interaction of the particles with col-
lective excitations in medium, The analytical singulari-
ties of the normal modes are investigated in the region
of small kK and |z] (z is the Laplace variable).

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR,
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In 1968 B.I.Alder and T.E.Wainwright 7Y/
made the numerical calculations of the velo-
city autocorrelation function in the systems
of hard disks and hard spheres using the
molecular dynamics method. They found out
that the damping' of this function was obvi-
ously nonexponential. After the animated
discussion 723/ of these results it turned
out that the interaction between the particles
and collective motions should necessarily be
taken into account for the more precise
definition of the kinetic equations. These
collective motions are caused by the viscosi-
ty, heat conductivity and sound wave. Such
a corrected system of the kinetic equations
was formulated by M,H.Ernst, I.R.Dorfman 74/
and N.N.Bogolubov 5/ (the EDB equations) .

It should be noted that this system is simi-
lar in character to the system of equations
for plasma, from which the Lennard-Balescu
kinetic equation %7/ is derived,

We use the EDB system of equations for
the investigation of the behaviour of the
hydrodynamic normal modes at the time inter-
vals large compared to the mean free path
time and with small wave number in the units
of inverse free path., In other words, in
the Laplace <z -representation in time and



the Fourier K -representation in coordinates
the case k- 0,|z/»0 is considered. '

In section 1 the EDB equations for the
low density system are linearized near the
equilibrium solution, The linearized nonlo-
cal hydrodynamic equations generalizing the
Navier-Stokes equations are written down.
The solutions of these equations (in the
limit of small k and |z ), which are hydro-
dynamic normal modes Xﬁz==X£(m/Djw»@' are
given in section 2. Section 3 is devoted to
the general investigation of the character
of the asymptotical expansion of the denomi-
nators Dj(k, 2 at |z, k~0. Here it is shown
that the main terms of the expansion are
irregular in z and k. As a consequence there
exists not only the nonanalytical dependence
of the poles D}lw,m on the wave number k,
demonstrated in "4/, but also appear the cut-
lines in Z-plane, where Dj&,z) loses its
continuity. The existence of such cuts
leads finally to not purely exponential
dependence of the normal modes Xd@) at suf-
ficiently large t.

1. KINETIC EQUATION WITH REGARD FOR THE
COLLECTIVE MOTIONS AND NONLOCAL
HYDRODYNAMICS

The kinetic equation for the one-particle
distribution function ﬂ(D is obtained from
hierarchy of equations®/ for the S-particle
distribution functions F;(1,2,..,8 or cor-
relation functions Gg(1,...,s). According
to /4:5,9/ the first two equations of the
hierarchy for the hard-sphere system are of
the form
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{ 5‘3— ~AIF (1) =n [A2T(LF (DF (2 +G, 1,2} (1.1)
t

{ gt— ~ A -A 3G, (1,2) = TAIF, (DF (D) + G, (L2} +

+n(1+P ) [A3TA)IF (DG, (2.3) +

(1.2)
+F (36 ,(1,2) + G, (1.2.3)},

where n is the number density, the operator

d
A =—;Sﬂ:~and operator ﬂzpermutes the

ar .
particlesindices. T(1.2) is the retarded col-

lision operator for hard spheres, defined

8

as

T(1,2) = a fdJ(Ulzz)@)(\?lzJ)ta(Flz - aOJ)Blz(J-
‘ (1.3)
—3(F12+ a0l

i » »

where ag is sphere diameter, o is unit vector,
2> '] .
\712=\71—v2 and - 1?12=?1—r2 are relative velocity
-

and distance, and the operator Blé”? ?hanges
the velocities V.V, into the velocities
"pbefore the collision®,
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Let us write down the one-particle fun~-
ction FtU)and the two-particle correlation
function G;(1,2 in the form

F, (1) =M1+ x, (D},

G, (1.2) = S BB a7, =T, + x, (1.1, (-4

where ¢(1) is the normalized Maxwellian

and g(ﬁ120 is the equilibrium binary cor-
relation function. We insert (1.4) into

the first equations of the hierarchy (1.1),
(1.2), and, assuming that the system weakly
deviates from the equilibrium state and has
sufficiently small density, neglect the
nonlinear terms of the type X'y as well

as the tripple correlations GJL23) As a
result we obtain the linear system of equa-~
tions for x,(1) and x,(1,2), which is used

for the investigation of the hard-sphere gas
state evolution. Suppose that at the initial
moment t=0 the system is already in a local
equilibrium state and put xR=JL@=0-Then pas-
sing on to the Laplace time representation
and the Fourier space representation,
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X
and solving the equation for x.(1,2) we get

the following equation for the function

x, (0

t

{z+ikv-nLl;,(v)—nR._l;Z (v)lx.iz(v)=x_l;(v, 0). (1.5)

Here * x’K@:m is the space Fourier—trqgsform
of the function xt=0(D.The operator L (v) is
the Fourier-transform of the operator L(1)
and has the form:

Lﬁ,(vl) =[Avy gV T (v, V) + Ti{(vl’ VP ) (1.6)

where 'D*@1'€2) is the Fourier-transform
with respect to F,,0f the collision operator
(1.3)

O > —iKl'_’lz
TK (Vi Vo)=[dr e T(1,2). (1.7)

*Note that in deriving (1.5) the terms,
including the equilibrium correlations
gd?12D, were neglected as in’%/, The conside-
ration of these terms will lead apparently
to the appearance of density corrections
to the collision operator T(1,2). Point out
also that in the expression for R (1) (1.8)
it is convenient, as it has been shown
in,Mc to conserve the operator T(1,2) in
braces. This term is absent in the system
of equationsﬁ/’ but in the considered ap-
proximation it is not essential. ‘
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Finally REAw is the Fourier-transform of
the operator

R(D)=[R2DT(L,2)lz- A ~A, - T(L,2) -

. (1.8
~nL(D) - nL(2)} T T(L2) (1+ Py ) )

The explicit form of the Fourier represen-
tation for R, (1) will be obtained later on.

On the basis of the kinetic equation
(1.5) we shall build the linearized hydro-
dynamic equations, i.e., the system of
equations for deviations of the average
values of the functions LV and V® from the
corresponding equilibrium values., It is
convenient to consider the linear combinations
of 1,? v? which are eigenfunctionsg of the
linearized Boltzmann operator(mﬁrmw calculated
in the lowest in k-0 approximation,

aaﬁ (V) =~ vog DY oo a1
. VB30u® uy/2
R 2
e R A Y (1.9)
k V10 u® '

Ui > > >
al;»a (V)=g(a) v/u, a=12,

where g, g® g3 are unit vectors,

@y _g , OF0 _g

>
g ij -

i o

The functions a;(w are orthonormalized,

> = §

T
‘<ai,a s

@

with respect to the scalar product

<f1,f2>=_fdx7¢(v)rl(3)f2(?/). (1.10)

The deviations from the equilibrium averages
we are interested in are defined by

T =<a_l;. > >, r = aTo ’ . 1.11
Xz R X% AR ( )

The hydrodynamics equations can be obtained
from (1.5) by using the projection-operator
method of Zwanzig/19/ and represented in the
form/4/,

. 257 i
. 2 l(z+ike; )'o‘ij +k°0;; (k, z)ixkz =
=0Ty (1.12)

VS P
=x k(0) lklkz'

where

W = =0, w_=o0C, c=u\/—g—, (1.13)
¢ is the low-deng}ty sound velocity. The

matrix elements lh(m@ are of the form

IJrS k,z) =
(1.14)

T . 7 -1 B
=<aﬁ»,(v3—wr){z+1PJ.(kv)—nL0—nRR,Zl (v3 ws)aE,>,



where P, is the projection-operator of the
velocity functions onto the subspace ortho-
normal to the hydrodynamic basis (1.9). Here
for the sake of deflnlteness k is taken to
be parallel to the z axis, kv—kvy Both
functions in the right-hand side of (1 12)
depend on the initial condition X;(V 0). The
first of them is the projection x»(VO)onto
the corresponding basis function, *m)
—<a§ *@» The second one can be obtained
if in the right-hand side -(1.14) under the
sign of the scalar product, one replaces
(Vg ~wg )a—l»‘ by P_Lxlr(O). When deriving (1.12)
and (1.14) we, as in’%/, have replaced in
(1.5) the operator L»W) by the linearized
Boltzmann operator L (w Here we suppose
that the matrix elements <amlrﬁa»> as well
as<3i R» a%> give disappearing in the

low den51ty limit corrections to the coef-
ficients of the regular part of expansion
in k for the functions in the braces (1.12),
to the sound velocity, for instance.

2. HYDRODYNAMIC NORMAL MODES

Finally we shall be interested in the
character of the decrease of the hydro-
dynamical perturbations at t-ow

. foto, dz . .
x1O= [ ey, (2.1)
k —im+ 0, 2ri k,z

slowly changing at the distances of the order
of free path lengthA , calculated in the
lowest order in the dens1ty (k <k, ~A_1)
Therefore, it is sufficient to cons1der
equation (1.12) at small k and |z ({z] < ck).
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I tihre nondiagonal elements (of the order
Ofk%of the coefficient matrix are neglected
in (1.12}, the system of equations "splits"
and its solutions, which are the normail
hydrodynamic modes at small k, can be writ-
ten as

{ A

0) .-
-3 Do(k,2) = 2+ ikw, + kU (k,2). (2.2)
(k,2) J 1 33

The consideratio 1 of the nondiagonal elements
UIJ\ ) and the Ik ;- quantities from the
rlght -hand side cf (1.12) gives the correc-
tions of Ok?3 to the function Dj(k; zy and
the corrections of Oﬂ)xi(m to the function
k(m. (Note, that if the linearization of
the system of equations (1.1), (1.2) is
performed correctly, the initial value
XL@)ae at k-0). Within the same approxima-
tion we may also neglect the explicit depen-
dence on kand zin formulae (1.14) and use
for ﬁ” k, z) the following expression:

i
[an

(k, 2) =
i 2 (2.3)

-1 Nl
—--<~-<a » (Vg —wj){L0+Rﬁ».zl (vs—wj)a;%

Uk 2) =

Here U;(k,z) (2.3) depends on k and z only
through the ¥k and z dependence of the
operator R;Z.The last can be justified

by the fact that the asymptotical expansion
of the functions [U (k,z) - U (0,0)] begins from the
nonregular terms’ decrea51ng at k, |zl -0 slower
than z or k.

11



From this p01nt of view consider the
operator R'* W) Let us expand the braces
in (1.8) 1n the series with respect to the
collision operator T(,2 and perform the
Fourier transformation. We get

(v) (“) (v) ‘ (2.4)

where

q1 . n - > >
( )— f —————————— dV2¢)(V2)T—> (V » v )X
(2r q

xG(k—-q.v:q.V|Z)T»_»(V Vo )GK -,V ,q. {2)...
1 S Tel®ihg 1'2 2 2 V2

. (2.5)
".T‘Yn“i,nq(vr )G(k qn, 1; q,.Vylz) x
x [T—En(v1 , V2) + TI{,_ i,n(v A )P12 1.

We_Pave introduced here the operator G&rcl;
k2w2|@ directly connected with the Green
function for the linearized Enskog-Boltzmann
equation,

_ '—>—>——> B ‘ s —’—> > -1
={z +iq(v, v1)+1kv1-nka_4v1)-nLa(v2ﬂ =

-a > —B > —ﬁ > —qa > 2.6
. ||ai‘,_a,(v1 )a&, (v2 »>><<a i,(v2 )ai_ i’(vl)” ( )
a.f z-2,&~d) - 240 '
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Tha last eguality corresponds (in Dirac
notations and with the scalar product (1.10)
to Lheaeﬂpapfe >n of the kernel of the opera-
tor I, v gV i 2) in the system of the exact
eigenrunhtiﬁng 5»00 of the operator
(nLgyﬂEGL corroepunding to the eigenvalues
Zz, (k). We shall omit here the detailed inves-
tigation of the expressions (2.5), ({(2.6),
performed in 4. Note, however, that any
analytical singularities of the integrals
(2.5) at k~»0,z2-0 can be connected only with
the integration over the regionlajya& More-~
over, the contribution to these singularities
is given only by the terms of the sum (2,6)
which correspond to the intermediate
("virtual"”) hydrodynamic modes with the
frequencies Eé@DaO at q- 0. Therefore, in
order to guarantee the accuracy only of
the flrst terms of the asymptotlc expansion
m(W at k,lzl-0 we limit ourselves in (2.6)
only to the contributions from the “vigtual"
hydrodynamic modes to all operators G&,Gﬁ
q, Vplz) in (2.5). Cut off all integrals
over iﬂ,ﬁw.”,an at ﬁlgko, where kaiis of
the order of free path Ay. Furthermore, due to
ag<< Ay we can neglect also the dependence
of the collision operator T»Uq,vz) on the
wave number, as this dependence is essential
at q~a01 according to (1.7). Besides, for
the values a»@) and z @) in (2.6) we use
the elgenfun}étlons a—»(\ﬁ (1.9) of the perturbed
linearized Boltzmann operator (L, ~1ikV).
These eigenfunctions are calculated to the
zero approximation in k,and the corresponding
eigenfrequences are calculated in k2—appro—
ximation,

13



: 1 2 _ .
Za(k)=—lack—-—2—l—‘k , o= t1

__+2p -
2, (k) = -k*D,, ;

0 (2.7)
znlw)=zn2&)=zn@)=—k Dﬂ;

ip_ 1 2
21" 3 DT+3D7’.

Here D =7n/nmm is the kinematic viscosity,
DT=2mgn is the thermodiffusion coefficient,
I'is the sound-wave damping constant. Coef-
ficients of the shear viscosity n and the
heat conductivity x are given by their low-
density values,

-1 5um
N=—=-—5<Vv Vv ,L vv>=~ 22
yr0 oy 16y7a2
_ 1 v? 1 y2 _15 7 (2.8)
K_-*—<(—u——-5)vx,L0(-——5)vx>~—4— -

Due to these approximations the series
(2.4), (2.5) can be summed. The insertion
of the result of summation into (2.3) gives
after using the definition of the scalar
product and hydrodynamic frequencies (1.13),
(2.7, (2.8), the following expression for
the functions ﬁj&,@:

KU, (k, z)=—zj(k)—ikwj+k2Uj(k, 2). (2.9)

14

Thus the denominators in the expressions
(2.2) for the hydrodynamic normal modes can
be written down now as

Dj(k 2=z ~ 2, (K) + kU, (k, 2). (2.10)
‘) For the functions Uj@,@ we get
¢
U,k 2=3 0", 2, (2.11)
j A
¢ 2 N L
U%')@vm:?g_ f dq3 ! > T @ ’
%qﬁko(%) z-2, (K- 9-2p(J (2.12)

where j,1,¢ are the "hydrodynamic", indices,
jt.l =0, T,nm,. The coefficients A7 (3 "
depend only on the unit vectors J/q, q°/q°
and represent the following integrals:

l’,[ > o>

AJ (qqu'=

—u ! fd‘7¢(v)a%(\7) a%(x?)aé,@){vs_w ik (2.13)

r,f
Note that some of the coefficients Aj @ q9)
turn into zero due to integrand (2.13) being
odd relative to the vector V components,

Namely:
1 T > > sT > > T,T -> >
Al @d)=A77(@qd)=A," (4 4)=0;
na 7’(1 7’(1
N7 (2.14)
T,T > - > 3, T,T > o,
) A (q.q)=A; B (2, 47=0 A (g )=0

15
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Therefore, the corresponding terms i’ ~ droep

out of the sums (2.,11). Besides, using the
invariance of the functions a%(ﬁ (1.9) and
the frequencies ﬂ(m (2.7)%rélat%ye to the
rotations of the vectors k and V. it may
be shown that the functions U(kz\ depend
only on‘k\ and the eguality fn [M L

3. THE BEHAVIOUR OF THE FUNCTIONS
Uj (k, z7 AT SMALL Kk, |z

The relations (2.10) and (2.11), obtained
as a result of the above-mentioned approxima-
tions, permit us to guarantee only the main
terms of the asymptotical expansion of the
functions DJ& z) and U; (k, 2) with coefficients,
defined in the low den51ty limit. Show that
in this approximation we should neglect
some terms in sums (2.11)., Just from the
form of integrals (2.12) it is easy to see
that any analytical singularities of the
functions U;(, z) at k, |zl-0 can be connected
only with integration over the region g-0
(say 0<q<q <Kk o 9o is arbitraty), where all
the hydrodynamlc frequencies L(@ turn into
zero. For example, all the derlvatlves from
Uj&,@ with respect to 2, beginning from
the second one, diverge at k,|z -0, namely,
near the lowest limit q=0. At the same time
the integrals of the type (2,12) over the
region qogqgko are the regular functions
ziat sufficiently smallk and {z. Thus, if
one expresses the first terms of the asym-
ptotical expansion U, (k, 2) as a sum (in the
region of the small 'k and [zl ) of the
regular and nonanalytic functions,

16

is true.

U, & 2 =T, (0, 0)+U B, 2) + (J 08, 7,

(reg
Uj )(k, z)=clz+czk + eee sy

then for the existence of Ugmnw(k,@ only
the integral (2.12) over the vicinity of

q=0 is responsible, while the contribution
to the regular part !U ©, m+lﬁmgh z)} is
given mainly by the reglon of large g= k .The
coefficients U 0, 0), €y Cy depend, surely,
on the parameter k .If the expansion of the
function {U, i 2) = U;(0, 0)4 begins from the
regular part, and UGBk, g decreases more
quickly at Kk, |z/+0, then, in the framework
of the accepted approximation, one must
neglect not only USMnm’ but also'Ugmg) (as
it was done in the course of the derivation
of (2.3)). Then the consideration of U, (k, 2)
in m(k,@ (2.10) will lead to the appegrance
of the small addition (in the low - density
limit) to the corresponding kinetic coef-
ficient of the form

lszr ( > > ‘2 2k
U,0.0)=~ 3% CRA. "9l vko
Cor 2“q<ko 278 zp(@)+z (@ nDj

3,2
~(na0)-Dj.
(3.1)

where D; is one of the coefficients: D,,Dror I'.
Thus, we are interested only in the case,

when the main term in the expansion of the

difference {Uj(k, 2 - U;0 0} is U8, 1),

It is easy to see that we deal with just

this situation, To this end it is sufficient

to show that in the sum (2.11) there exist

17



the terms U, {Kﬂ with even fizet derivatives
with respect to 2 divergent at k, |z -0, Real-
ly, eguaticns (2.12) yield:
LI
- I, ¢ PESN [»]
: . s, b 2
9 15 u® dg sA; o 7
UL (X8 = TR T, i .
ga k=0 B gqp (2n)° ![z (k=Q)+ zp (@-zF k-0
7 >0 2 -0
(3.2)
The guantities Gq,) are the functions
cf the unit vector q /q, and so convergence

cf the integral depends only on the behaviour
of the integral denominator at ¢-0. From

the formulae (2.7) for hydredynamic frequen-
cies it follows that when

r,ﬂ:na,nﬁ;rj :7h’T; r=0=T;r=¢g, l=-0g, (3.3)

the sum of frequenciés[zr(®4~q(®]»aq2 at
g-Fand integral (3.2) diverges at q=0 if Kk,
|z 0. For the rest couples of indices r,/
integral (3.2) converges* at k=0,2=0.1It is
possible al?o to show that the first deriva-
tive of U(r )m,@ with respect to k for

the ;ndlces r, { in (3.3) even if diverges
at k,[z-0 then not faster th.f integral
(3.2). In the rest cases dU™Y)y existi

It means that the series expansion of U('ka
for the indices LI out of set (3.3) beglns
either from the regular terms of the type
€4z +Ck or from the nonregular terms decrea-
sing at k,|zZ/-0 faster than ¢;z+Cyk. In both

*For some couples of indices rf the fun-
ctions qu)&,@ are nondifferentiable near
z=0 for finite k. In this case the reasoning
made above needs the correction which,
however, doesn’t change the obtained conclu-
sions,.
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the cases one must neglect these terms with
respect t%rfhe main asymptotics of the fun-
ctions ''(k, 27 with the indices f,r from
the set (g 3), which only must be retained
in the sum (2,11),

Thus, taking into account (2.14) we get
the following expression for the main terms
of asymptotical expansion of the functions

(s) m . (8) ..(T
Uy, D=0y, + U, 5 Uy ke =04 0T

Uyk, =0+ uP g 0D

) (e MB) . . (8)
U s = E U .a B ; U . o= i
J a’le'z J J a’f
(m,,T T,
o™= 3 1o T g ey

From the rest terms of sum (2,11) the con-
stants U(Fﬂ)m,ﬂ) retained in (3.4), which
are of the same order of magnitude as

U (0,0), U_(0,0), U (0, 0). Finally, however,
we shall neglect the quantities Ujm,m giving,
according to estimation (3.1), nonessential
corrections to the kinetic coefficients and
don't affecting the character of the time
asymptotics of the hydrodynamic m fdes. For
the same reason the functions U(')@ z)

in (3.4) may be deflned by relatlons (2.12),
where the arguments &-@ and q in the integ-
rand are replaced by (ak- q) and (bk+(f) with
sufficiently arbitrary constants 2, b satis-
fying the condition a + b =1, |a~1,|b~1. In

19



fact, substitution of the variable §=q’+ bk
into (2.12) shifts the ﬂholg integration
region of the vector bk, |q"+bk| < k,. 1If
bk~k«$0 we can consider, however, that as
before liﬂgko, neglecting at the same time
the contribution in (2.12), which results
from the integration over the region, adjoin-
ing to the boundary, q'»ko. As is shown ‘above,
this circumstance doesn’'t affect aFalytic
singularities of the functions UQ')w.a from
(3.4) at small k and |zl and counts only

on the constants U}h ) (0, 0) depending on
the cutting parameter,

In conclusion we make some general remarks
concerning the character of time dependence
of the hydrodynamic modes represented by
integral (2.1). The function Xiz (2.2) has
the poles on Z-plane at the points where
the denominator D.(k, z) (2.10) turns into
zero. As according to (3.1) Uﬂk,m is pro-
portional to the small parameter of the prob-
lem, the solution of the equation Djw,m=0
in the low density approximation is of the
form

2,0~ 2,09~ KU (&, 2, (k). (3.5)

For the reason of nonregularity of the main
terms of the functions U, (k,z2)(3.4) expansion
ink and z it is clear tﬁat the "renormali-
zed" hydrodynamic frequencies z. (K) should
ifgfnd nonanalytically on the wave number

Besides, for each of the functions Ujm,@
as well as for Dj&,m there is the line on
the z-plane crossing which the function
changes by jump. As is shown in Appendix A,
just the functions U?”, U?T) from (3.4),
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containing the contributions from the interme-
diate viscous modes or viscous and heat
ones, possess these singularities. (Remark
that, according t% Appendix A results, all
the functions [ﬂ?)(m zZ) not included in
(3.4) are continuous in z).

Thus, the integral (2.1) breaks down into
two parts

X, 0/ x1®-E'0-EJn+Elw, (3.6)

where the first term contains the contribu-
tion from the poles D}lw,@ and is of the
form

Ejl(t) ~ exp{c‘z‘j &)} (3.7)

The second term represents the integral over
the cut-line and is written down as

. X9
i dx xt -1
E2@)= [‘—;—e Im{Dj (k{xﬂ, , (3.8)

Xq
where the position of the cut-line and the
value of the jump of the function D}l(k,m
on it,Im{U?(k,mi, are determined with the
help of (A.8), (A.7) - type relations. The
asymptotics of the integral (3.8) is computed,
as it is known, by means of expansion of
mﬂD}l} . near the right end of the cut. This
asymptotics in contradistinction to (3.7)
is not of purely exponential character. In
our next work, where we intend to make the
concrete calculations for each of the
hydrodynamic modes, it will be shown that
at sufficiently large times namely Eé(ﬂ
plays the main role at the time asymptotics
of the mode xi(o.
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APPENDIX A

Consider some inalytical properties of
the functions U?'kk,m in the complex
variable 2. Considering the dependence of
all hydrodynamic frequencies z (q only on
ldf we pass on in the integrals (2.12) to
the spherical coordinates, representing
these integrals in the forms:

ko 1 ¥ (£,
U(z) = [ dq 1{ as AT s (A,1)
0 —-—

Here &=cos(k,q) and ¢(£q) is the sum of
frequencies,

$& Q=2 (K- a)+ z,(la) = ¢ (& ) +ig & 0. (A.2)

All analytical singularities of the function
U(zy are determined by the existence anq

the nature of the integrand (A.1) denomina-
tor zeros, Evidently, U(z) is regular in that
region of the z-plane, for the points of

which the equations

x=¢1(§’Q)
z=x+iy=¢(& @ or {y=¢2(§,q) (a.3)

have no solution,
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Suppose that for the region ® points of
the z-plane the solution of (A.3) exists.
Introduce the Jacobian

_ 9%y 98, a9y 94,
J¢ Q= _0_5_ *56— - E _55" (A.4)

and consider two cases: a) the Jacobian
J¢ 9=0 for all ¢q (& <1, 0<q), b) the
Jacobian J(& @#0 for all ¢, q.

The Jacobian (A.4) may be equal to zero
for all §q only when ¢y and ¢, are functio-
nally connected, i.e., are bound, for instan-
ce, by the relation

$,(& D = Flg | (& Q). (a.5)

Then the region ® is some curve in the 2 -
plane, defined by the equation

y = Fx. (A.6)

We show that when passing over the curve

z=x+iF(x) on the z~Plane the function

U(z) changes by jump. Make to this end the
replacement of variables ¢ and q in the
integral (A.1) by ¢ ¢ = ¢ﬁ§,® and consider
the difference of the function U(z) values
"above" and "below" the curve in the points
Zy9=X+iF(®)*i0{1+iF (x)]. The contribu-
tion to this difference is given, evidently,
only by the integration over the vicinity
of the point (=% where the denominator of
the integrand (A.1) in the variables & ¢
may be written, taking account of (A.5), as
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X+ iF(x) +i0[1 + iF ()] - ¢ = iR = [1+ iF (®](x - ¢ +i0).

Now use the relation ([x - mrl—[x-+im—1=
¥2nﬂﬂn, and, returning to the variables
£,q, obtain the expression for the jump

U(z(x) -i02°(%) - U(z(x) + i0z'(X)) =
- ko 4 (A.7)
= 27i[1+iF’(®)] [ [ dqd¢¥(¢ Qd(x-¢ 1(§, Q).
0 -1

A simple example of the considered situation
is the case of both frequencies in (A.2)being
real quantities, such as rl=1n_, 7 or

r,f = q,,T. Then ¢2(§ 9=0 and y=F(x=0 and
the formula (A.7) determines the jump of the
function U(z) imaginary part when crossing
the real axis y=0 on the section

min ¢>1(§,q) < x < maxgbl(f, q). (A.8)

§9q fsq

Consider now the case b). As J( @Q#0 for
all & q, we can pass on in the integral (A.1)

to new variables ({=¢,( 9, « :«ﬁéf,m and
write it down in the form

v
U = ] Qe (2.9)
o +iy-{ - ik

It is easy to make sure that the integral
(A.9) doesn’t diverge if z€®. For this
purpose it is sufficient to single out from
(A.9) the integral & U(z) over the small
vicinity |{+ik~-12|<$ of the "singular" point
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{+1k=2 and in this vicinity to pass to the
polar coordinates (-x=rcose ,xk-y=rsing. Then
we get

7 -
8U(x) = ~ ?dr 2{ doe *W(x+rcosg,y+r sin 9=0(8).(a , 10)
0 0

If the point {+ik=2 1is situated at the distan-
ce ry<8 from the region ® boundary, the U
estimation 8U changes somewhat, 8U=0(5), but
in both cases the integral over the vicinity
(+ik=2z remains finite and disappears at &§-0.
Using the obtained estimations it's easy
to check that U(z) is the continuous function
of Z in the region ®. More detailed analysis
shows the function U(z) being non-differen-
tiable in the region ® (the Cauchy-Riemann
conditions are not satisfied).

So, if the conditions J& Q=0 or J& @#0
are satisfied for all |£§/<l, 0<q, then in the
first case the function U(2) is regular on
the Z-plane with the cut along the curve
(A.6), z=x+i1F(x), near which its value
changes by jump. In the second case the
function U(z) is regular outside the region
® of the existence of the equations system
(A.3) solutions, and it is continuous but
non-differentiable inside ®. It is easy
to spread the last conclusing to the case
when J(& @ #0 for &4q excepting some curve
on &4 -plane., Namely such situation arises
if one or both of the "virtual" modes are
sound ones, e.g., in (A.2) the indices r= g;

’

f =06 or r=o, =g’
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