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On the Charge-Ordered Solution of the
Extended Hubbard Model in Different
Approximations

Critical curves for ferromagnetic, antiferromagne-
tic and charge-ordered alignments are compared in the
Hartree-Fock, first and third Hubbard approximations.

These curves are calculated by the method of static
magnetic susceptibility for limiting cases of strong and
weak (compared to the band-width) Coulomb interaction.
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I, Introduction

The Hubbard mode1/1/ with a repulsive correlation parameter
is a well-known model for electrons in a narrow band. A few
exact results and many approximate treatments concerning the mag-
netic and electric properties of this system are known (for a

% /2/).

review see Cyro The method of coherent potential has been

applied to the case of arbitrary band occupation for ferromagnetic
(Mizia /3/) and antiferromagnetic solution (Hizia/4/).

The aim of this paper is to discuss the possibility of the
charge~ordered state within this method for arbitrary band occupa-
tion. Charge-ordered solutions can explain the insulating beha-
viour of numerous transitions and rare-earth metal chalcogenides
(Goodenough/S/. Varma/G/, Ionova et al./7/). An attractive electron-
electron interaction (U<0) may lead to a charge-ordered phase
(Ropke et.al.la/, Mertschinglg/, Ionov et al./10/), whereas in
extended models charge-ordered solutions are possible with U > O
in special parameter ranges (Robaszkiewicz/11/, Ionova et al./12/).
In the framework of the alloy analogy approximation no charge-
ordered solution can be obtained (Brouers /13/). For this reason
in this paper the effective mean field is added /3/ to the Coulomb
electron-electron interaction which is treated in higher appro-
ximations.

Inclusion of electron-phonon interaction within the harmonic
/14/

approximation influences the Coulomb repulsion of electrons

In the case of strong Coulomb interaction U the band-width is



pupposed to be unaffected inthe lowest approximation.If the electron-

phonon coupling is strong enough, an attractive interaction bet~-
ween electrons can occur which yields a charge-ordered state for
a periodic lattice distortion. Pluctuations in the effective
charge field turn out to be important in this region. They may be
relevant in the intermediate valence problem. The influence of
an average lattice distortion on the stabilization of a mixed
valence state was considered by Sherrington and Riseborough /15/.

More involved model systems to discuss this problem are presented

n /16/.

2., Hamiltonign and Its Mean Field Approximation

The Hamiltonian for one narrow degenerate band can be written

in the form given by Hubbard/17/
ct G
H= ZZ aét/ ct. ‘/Z“t Z (o jv il pdgdCy,. /V S Z’;)

The notation is the same as in/17/. Let us recall only that
M 18 & label distinguishing the various degenerate subbands and
including the spin label,
In the interaction terﬁ we shall retain the dominant terms
with £=j=k=L or «=k , ;=L and £=4, j=4 correspond-
ing to the intra-atomic, inter-atomic Coulomb and inter-atomic

exchange interactions, respectively, what brings up
S I +
H='T'+-1‘2:Z G, iv |4 |4,,41)c;“ €ty Cig Cp
Vl “p, C"’ C+ C C +
Iw:gf‘(ﬂw Flipdr S S s G
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where T denotes the kinetic energy, symbol UJ? means the sum
over nearest neighbours only. The next biggest terms neglected

nere are/ V: (i¢ hé'l ¢§) G lglElc4) ()Ll ) . There is a
great variety of different Hamiltonians, which can be derived from
the above one. It seems to be reasonable to preserve only terms

of the Coulomb type with p=.«. , 4=V and exchange type with
pP=Y,9=m . Taking into account the commutation rules for the
operators, replacing the index .« by a6 ( & 1is a spin lavel)
and assuming additionally that the interaction integrals do not

depend on spin indices, one ootains
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Let us introduce the following integrals assuming that they

are independent of ¢+, Vv indices

U = Lo, spn |2 [ gn, apn) | U= (s, o] s, V) for e #V,

T = (o, avi)ay, su) forp #V, W= ow yvigt lou, jv) and
T'=(im, jriEljv, 4m).

After omitting in eq.(3) from the intra-atomic exchange inter—
action the spin-flip term with &§7=-€ (see/18/) and neglecting

the small double exchange terms of types (iu jvlsicvu) for a®Y and



(/4/‘.JV)‘4',J/", V) for/u.? Y one arrives at

A ’ A A _
H=Z Ay ¢l ot B2 e e * H T 2 Pt Five
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Until now we considered the electron-electron interaction in
terms of the extended Hubbard model. Additionally, the influence
of electron~lattice interactions on the magnetic and charge-ordered
state is of particular interest. For this reason, we include the
coupling of electrons in a very narrow band to a lattice system in

the harmonic approximation

Hr“+ He,- o %Fwib

.-

L l "’i E"’
% fws (h."?h‘_‘)[y.. e Ip.;-ix{e L J (5)

g~

where w';i is the phonon frequency of the Zi-th mode and yii is
the coupling constant with Xi}d. The lattice state influences not
only the one-electron energy, but the Coulomb repulsion energy of
electrons, too. After a unitary transformation, which displaces the
equilibrium positions of the normal coordinates and leads to the
polaron~-representation, one obtains for strong electron-phonon

couplmg the effective Hamiltonia.n/M/
-r A
Hepy =2 4 et (BB Ay, A=

l.dh‘
—vsce 6
Y 2 Gt A ¥ 2 AR ©

where E, ——%‘h” l)’-’; leads to a reduction of the Coulomb
repulsion. We restrict ourselves to a renormalization of repul-
sion energy and a shift in the one-electron energy levels on the

atoms. The modification of the electron hepping integrals in a

vibrating lattice is discussed in ref./l4/,

Now, using the well known mean field approximation:

4 )'1‘320’.‘ )r? + QA <h"> one finds the following expression

- 5. ~ S+
4{ zx et <,‘f2[(u 2ERI-T(p~1) nu

+u'(r..4_)(h: /‘)1—‘?2(?/4 I)(/“L.,( )};:14)_],2%' . (7)

Here p means the number of orbitals in the degenerate band,
£+4 ig the nearest neighbour lattice site to site < , Z is
the number of nearest neighbouring atoms in the lattice and rif is
the mean particle number in the (6 suﬁhand. The one-electron
energy term of eq. (6) is omitted in (7).

Let us for simplicity assume sdditionally (Mizia’>/) the
existence of the full degeneracy: <VQ}-«;)# r;f: %&-—-ﬁ £{«). Then,
index «t can be dropped in eq.(7). As a result, one gets the
follouing Hamiltonian

- Y C
tﬂ‘ ,Zr 4yl e +Z M *‘) (8)

where the molecular field constant M® ia given by
ME=U-2Ep) w7 - TG~ 4)n‘+u((r ) (nF+ n )+
-+J=2(2¢” INnsG, +ni.) . (9)

Por ferromagnetic mode one has n;‘= h‘,‘:‘i , 80 the constant
M€ ig independent of { .

Assuming the alternant lattice in which the antiferromagnetic
or charge simple alternant orders can occur, one can divide this
lattice into two sublattices o and /3 . Then, the 4 =th lattice
pites can be denoted by of and their nearest neighbours 4+ ¢
sites by B .« 5o, now from eq.(9) one has

ME = (U-2E )h"*r(f Dnl+ Ulp-I(ng + n )+
tpE(U-T)(ng+ s )

(10)



and

M,.;;:('l/r’ 1E, )h Tl ng+ U(p- 1)(,,.“1.. ”c)"‘
+ff(ﬂ ST T ) (1)

Among different magnetic modes the following most typical one

shall be considered here

x5 x5 -+
= = h—= Mg
M =Ma 2z (12)
_ FE_ n T m
Ny =ng =—73 (13)
EXY +Pm o 15 1q - by

where m is the electron number per atom and indices F AF &
are used for ferromagnetic, antiferromagnetic and charge-ordering
parameters. Using the above expressions in eqs.(10) and (11) one
can easily get the following critical values for ordering in the
mean field approximation

F AMs F s F(AF)
Aw:°2:,,:; =A ——»2;’:;:[1(,,-4)”4—2 ] ‘ (15)

r

Ao =-24M5 w o
= — - o - - - - 13 ) (R 7
o =72 Tt = TG a)-UR2E 2 DU 2p 2 (U -T)_]w - (16)

Comparison of the two last equations gives the first insight
into the role of electron-phonon (lfP) and inter-atomic Coulomb

( 11") interactions as favouring the charge-ordered state,

3. Coherent Potential Approximation

3.1, Some basic expressions

The calculations in this approximation use the Slater-Koster
state—dengity function corresponding to the semielliptic band
(Velicky et al./19/)

A RN )

where 2 is the complex energy and W is the half-band-width.
After including in the system the electron-electron correla-
tiong the Slater-Koster function is for ferromagnetic alignment

obtained by (Velicky et al./19/)

s
FS(z)=F,(z-2 ), (18)

where > ° is the mass operator (coherent potential).
For (o,/3) long-range order including antiferromagnetism as
well as the charge-order corresponding transformation has the

following form (Flischke and Mattislzo/, Brouer9/21/)

x//s)( 2)= { > fo We-27)(=- ,s)) (19)

Densities of states corresponding to the above Slater-Koster

functions are given by

§(E)==57 I Fs(?)} (20)
=85+ .0

for ferromagnetism, and

3
S«
for (i, ﬁ) alignment.

A S (=)
(8)=—35 (/3)
a=3+ 10 (21)

3.2. State densities in limiting cases.

3.2.1. First Hubbard approximation

This approximation is used here for intra-atomic intra-orbital
Coulomb interaction. The other interactions are treated in the
molecular field approximation assuming that they are only small

perturbation to the Coulomb one.



Then, with the appropriate choice of the origin of energy,
T, =0 ( ‘T, is the atomic energy level) the coherent potential
(cf. eq. (36) of /1) takes on the following form
T Iy + 1, (22)
where M'% ig equal to the M? given by eq.(9) with omitted
term,
In the strong scattering limit (14> W) one gets from eq.(22)

the following simplified expression

-5
ZNe)>—-2 =+ M'T
1-n (23)

valid for the lower subband ( |EI<w+ M'5) |

For the ('x,_/s) alternant alignment eq.(23) can be easily

generalized
-5
s . n
S (a)=—2 4L+ + M""

26
where y = o or s and 'y~ are given by eqs.(13) and (14) for

antiferromagnetism and charge-order, respectively. Using eqs.(23)

or (24) for Z and semielliptic initial density of etates [eq.(17)],

one can calculate by transformations (18) or (19) the F*¢ quan-
s . &

tities for ferromagnetism or E(/s) for (:-(,ﬂ) alignment. A next
step is to obtain the corresponding densities of states by eqs.

(20) or (21). The final results are as follows:

@ (é)-—\/:l = o 'F”)f (25)

for ferromagnetism, and

Z— 2
Jrh/ Zz if S_+_ 5_: ‘
g)l(g): EI gf w32 >O (26)
. p

otherwise

10

2 [
for («,/) order, Q =5Jt for antiferromagnetism and 531=§,,(ﬂ)

for charge-ordered state. The energies &+ are

) , (27)
€+= _ ,\,I'ib' 2:» - g _ ,rl'lr:
- d-h; AR ) * d-n, < (AR)

for antiferromagnetism and for the charge~ordered state, respecti-

vely.

Iy

15 116 d I & 4

Above M » Mo o MEE and M‘;m are the M),

quantities after substitution for hul(lg) the values correspond-
E]

ing to a given type of ordering and N, = L Zm with omitted sub-

scripts at m .

3.2.2. Third Hubbard approximation (alloy analogy method)

Now the coherent potential Z°(z) is obtained from the equa-

tion (Soven /22/, Velicky et al./19/)

2 s 6 <&
2P 2 (?) =0 (28)
g=1 ¢4 A-(&-3%=) F(=)
where the probabilities 1"’-5 and corresponding energies é';' are
equal to
’E"—=d . h—“ ? = ,\4'5‘
(29)
Pl=w® E=U+ M

2
Above, again the strongest intra-atomic intra-orbital Coulomb
interaction is described in the alloy analogy approximation and the
others are treated only as a perturbation in the molecular
/23/).

field approximation (see also Mizia

In the strong scattering limit (‘U > W) for energies ¥ 1lying



in the lower subband (|z!< W+ M'®) one can omit the unity in the

second denominator of eq.(28) as the small quantity and arrive at

& A 2 F ’Pj;__ 6 wF
2 (=)= é Fr =M= I (30)

After repeating the procedure just described for the first

Hubbard approximation with the use of the above self-energy one

gets
26 o _ 2 V 135)2 2
v (2) =2 V4~ —(&- M w
§ e (B350 Vmny = (- MY (31)
for ferromagnetism, and 5
- 2 2 2
. mv(gr- é; /w2 for ﬁi‘ {; /WD 0
g )= (32)
0 otherwise
for («,3) order, where
g, =s-M7%
- (33)
and » 'R
?1 =&~ M-x (3)

: (34)
for antiferromagnetism and charge-ordered state, respectively.
Factor g+ 1is equal to

= &5 A-)y Lk 2 @2 PN
92 72 g Vst sas , B

wpere N1 = M, or mg, , respectively.

3.2.3. Hartree~Pock approximation

In the UK W 1limit both the first and third Hubbard appro-~
ximations applied to the intra-atomic intra-orbital Coulomb inter-
action reduce to the Hartree-Fock approximation for this interaction.

So, now all the molecular fields are summed and one has

i‘f: LF5 Y
MJ. u;,)* +M

x (36)
and ‘
o 2 . 1532 2
S S == M) (37)
2 ) s 2 4
4 Sy MW - 7~ s 2 ;4
SJ (§)=4 TW N ;/V for —{—:_—~ E;,'w >0, (38)
o otherwise
where
I VE
g: =¢ V&F (39)
and , ) a
&, =6 M_a)
(40)

for antiferromagnetism and charge-ordered state, respectively.

3+3. Susceptibility criteria for different alignments

The possibility for existence of any alignment is investiga-
ted now by looking for the divergence of ptatic magnetic suscep-—
tibility.

The general formula for the susceptibility has the following
form (Pukuyama and Ehrenreich /24/)

_ 2u2¢(if)

X = 1+ on/on® (41)
where «t is the Bohr magneton and ~§($F) is the paramagnetic-
state dengity on the Permi level,

As was shown in the preceding section, in the case of initial
semielliptic density of states the final densities can be found
analytically in some limiting cases. For_these cases the derivative
in the denominator should be expressed by the state-~density func-

tion, what gives



_ 2@ (5%)
- e
41-2 ;%,;J gt

The derivative in the denominator is taken in the paramagnetic

P (42)

limit. Different densities of states calculated above for different
types of alignment and for different approximations can be used in
this simple formula.

For U<<w the Hartree-Fock approximation is used for all inter-
actions. Equating to zero the denominator in eq. (42) and using
density of states given by eq. (37), one gets the generalized Stoner

-Wohlfarth criterion for ferromagnetism:

A:r S»(ﬂ:); i)

(43)
where

I T
§UER)= g o I (44)

and r%f; is given by eq.(15).

The Fermi energy is estimated from the condition that
fF 4 ‘.SF —

n = 2[g0dt %WJ VA= (8- F) /W g, (45)

- WM,
- t5, ig
where S>(2>, My are the paramagnetic limits of_gs.(f), Mg .
After substituting son T&%S-P&Z/v/ and integrating the last expres-

sion takes the following form
. e, X
Lﬁ(h‘i)=25fF + 2-‘"‘?'; eS¢ T L(j”r) (46)

j@ estimated from this condition should be inserted into
the eq.(42) for the state-demsity function.
For @4/3) alignments the densities given by eq.(38) together
with eqs.(39) and (40) should be used in the denominator of eq.(42).

4

After equafing the latter to zero one arrives at the following

conditions

AF 1 W 1
o> A >
A"’ ’ KQ(H) ) cr ~ Kv(n) ) (47)

AF 2
where A,, and A£, are given by eqs.(15), (16) and

1+ ces E |
Sin ?F

The numerical results for the critical constants in this

KD(H):JTLW‘ £n

- g(?p) (48)

approximation are drawn in fig. 1.
Por the first Hubbard approximation in the limit the

densities of states given by egs. (25) to (27) should be used. After
the same manipulation as described above one arrives at the follo-

wing conditions for alignments

AL g8 > 1~ 2 d }f'/lﬂt L

i-n (49)
AAES LIon
o T KT n) (50)
A8y 4 .4 |
cr (i‘g’)(i"“) K);(h) (51)
with
>0 - 2 d4eosgel .
Ky () AW@"IT;?; g (Fr) (52)
where
S(¢ V= 2 . .
S = e (53)

/
In all Ac, the U constant is omitted as for this interaction
the strong scattering approximation is used.

The Permi energy is estimated now from the slightly changed

condition
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Fig. 1. The critical constants of molecular fieldgrAcr sgiven by
egs. (15) and (16) required for ferromagnetic (P), anti-
ferromagnetic (AF) , and charge (&) orderings. The

Hartree-Pock approximation is used for all interactions.

5. ¢
ol e e 4 [ 2 Y
'l“ijf‘””“‘ﬁv \/’1—(1»5"'4;’)/“/ dAS (54)
e Cwrmnl)/d-3 \
where P1; is the paramagnetic limit of P4é'$ given by eq.(9)

with U term omitted. Integrating the last equation gives the

hMm:m%;é%fJ%/w)

T3t =) () (55)

following condition for Le

{

' Q
Ace

" L

o1 02 03 04 05 06 07 08 03 1n

Fig. 2. The critical constants of molecular fields ,.AZ, s, Eiven
by eqs. (15) and (16) with omitted U , required for diffe-
rent types of alignments. Indices ﬁ_AF,Ll are used for
ferromagnetism, antiferromagnetism, and charge-order, res-
pectively. Por the strong intra-atomic intra-orbital Coulomb

interaction (U »>W) the first Hubbard approximation is

used.

Calculating for given n the ?} value from this equation and
ingerting it into eqs. (49) to (53), one arrives at critical con-
stants for different alignments. These values are drawn in fig. 2.

For the third Hubbard approximation in the 11>« 1limit the
criteria of alignments calculated on the basis of the state densi-

ties given by egs. (31) to (35) take on the following forms



a1 02 03 04 05 06 07 08 09 1n

Fig. 3., The critical conatants of molecular fields, Aé, » Eiven
" by eqe. (15) and (16) with omitted U , required for dif-
ferent types of alignmenta, Indices 5/4F,G, are used for
ferromagnetism, antiferromagnetism and charge-order, res-
pectively., For the strong intra-atomic intra-orbital
Coulomb interaction (UD> W) the third Hubbard approxima-

tion is used,

AL g0 > 1= getl2

(56)
/‘\'.AF L 4
¢ ZKT_;_(h) (57)
o m
AL >4 (58)
Km(“)

with
:-o( =_ ,___ 14 ces
) wJ—__?—“?F’ - lEe), (59)
where
So(é )——— d- 5 ces 4
S =M,

The Fermi energy and its parameter ¢r (where sing = —r )
7 7F W V1- g
can be calculated by integrating the slightly changed distribution

F e y‘f' ): Y )_“-h N ] v
i JNE)= (s Ja-5 —te-rp )t W (60)

and the result is the same as previously, so the condition given
by eq.(55) holds. _
The numerical results obtained in this approximation are

drawn in fig. 3.

4, Digcussion

As is seen from figs. 2 and 3, any Hubbard approximation does
not lead to any alignment without adding moleculer field. But the
comparison with fig. 1 shows that the interaction treated in the
first or third Hubbard approximation (here the Coulomb one) decrea-
gses the strength of molecular field required to produce any
alignment.

The strength of this minimal molecular field required for
alignment is different for different electron numbers per atom
and for different approximations. There are gome points (n = ;
and % for UDW and n =0,5 for UK W) in the vicinity of
which the éﬂde) alignment is favoured against the ferromagnetic
order both in the first and third Hubbard approximations. Moreover,
if ferromagnetic and (dLﬂ) modes are simultaneously possible, then
the energy of égﬁn alignment is always lower than that of ferro-

magnetic one.



The type of the («,3) alignment preferred (charge-order or
antiferromagnetism) depends on the approximation used and
also on the relative strength of different interactions which
were summed up to give the whole molecular field. Comparing egs.
(15) and (16) one can say that the intra-atomic intra-orbital
Coulomb interaction points to the antiferromagnetic aligmnment, if
it ie not too strong, and for this reason can be treated in the

Hartree-Fock approximation. But, if it becomes strong (UD»> W]} |

it should be correctly treated in the alloy analogy approximation
(third Hubbard approximation) in which there is no difference
between critical molecular fields required for charge-order and

for antiferromagnetism., Nevertheless, both the modes are not on the
same footing, because their molecular fields [eqs. (15) and (16)
with omitted U] are composed of different interaction constantes.
Namely, the electron-phonon and inter-atomic Coulomb interactions
prefer the charge-order state whereas the intra-atomic inter-
orbital Coulomb and inter-atomic exchange interactions,the anti-
ferromagnetism.

In the first Hubbard approximation in the U>w 1limit mo-
lecular field for antiferromagnetism is much lower than for the
charge-ordered state. This ig the main difference in the results
of the first and third Hubbard approximations.

Charge—-ordered states are obgerved in compounds containing
ions with different valence/S/'/G/’/7/. For example, the two
species of Fe -ions 2+ and 3+ in F?aéL exist physically sepa~
rated and form some kind of superlattice as in the charge~ordered
system. Besides, homogeneously-mixed valence compounds have been
congidered recently/G/. In these systems the electron coupling to

longitudinal optical phonons dominates. Here it may be possible

20

that the system undergoes a phase transition to a charge-ordered
state. How;ver, experiments show that, for example, §m S is not
an insulater in this phase. Valence fluctuations turn out to be
important. It should be noted that fluctuations in the effective-
charge field are important and relevant to the intermediate-
valence problem., Similar aspects were presented for the Anderson

model with a localized electron-phonon interaction /25/.
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