СООБЩЕНИЯ ОБЪЕАИНЕННORO ИНСТИТУТА
 ЯАEPHओX ИССАЕАОВАНИЙ

E.Kolley, W.Kolley

1206/2-79
REMARKS ON THE MAGNON ENERGY
IN HUBBARD FERROMAGNETS

E17-12121

E.Kolley, W.Kolley

R ${ }^{\text {OMALKS ON THE MAGNON ENERGY }}$ IN HUBBARD FERROMAGNETS

Коллей Е., Коллей В.

Об энергии магнонов в хаббардовских ферромагнетиках
Перенормированная магнонная энергня узкозонных ферромагнетиков (при $\mathrm{T}=0$) получена из полюса восприимчивости, что позволило избежат простой замены затравочного внугриатомного хаббардовского взаимодейния Бете-Солпитера с учетом локального обмена и электрон-электронного лестничного приближения. С помощью неравенства Боголюбова няйдены оценка снизу зависящей от волнового вектора поперечной стятической восприимчивости и оценка сверху для спинволновой жесткости. Приведен чнсленный пример.

Работа выполнена в Лаборатории теоретической физики ОИяи.

Сообщение Объединенного института ядерных исследований. Дубна 1978

$$
\text { Kolley E., Kolley } W \text {. }
$$

E17-12121
Remarks on the Magnon Energy in Hubbard
Ferromagnets
A renormalized magnon energy of itinerant-electron ferromagnets at zero temperature is calculated by a suscally the bare intratz which avoids to replace heuristi ally ective one. The validity of the ward identity is stressed ef , to derive a lower bound for ne mentur bopendent static transverse susceptibility and an upper bound for the spin wave stiffness constant. A numerical example is given.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nucleor Research. Dubno 1978

1. INTRODUCTION

In a previous study $/ 1 /$ the magnon energy $\omega_{q}=D q^{2}$ (small momentum q, cubic crystals) for ferromagnetic transition metals was renormalized by taking into account electron-electron correlations on the basis of the Hubbard model /2/

$$
\begin{equation*}
H=\sum_{\vec{k} \sigma} \varepsilon_{\vec{k}} n_{\vec{k} \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow} . \tag{1}
\end{equation*}
$$

Here $n_{k} \sigma$ ($n_{i \sigma}$) is the occupation number operator for Bloch (Wannier) states with spin $\sigma, \varepsilon_{\vec{k}}$ is the band energy, and U denotes the initial Coulomb interaction. The spin wave stiffness constant D was evaluated from the formula /3/

$$
\begin{equation*}
D=\frac{1}{2\left\langle S^{z}\right\rangle}\left[\lim _{q \rightarrow 0} \frac{1}{q^{2}}\left\langle\left[S_{\vec{q}}^{+}, q J_{-\vec{q}}^{-}\right]\right\rangle-\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} \chi_{J}^{+-}(\vec{q}, \omega)\right], \tag{2}
\end{equation*}
$$

where $\chi \underset{J}{+-}(\vec{q}, \omega)$ means the transverse spin current-current susceptibility, and $2\left\langle\mathrm{~S}^{2}\right\rangle$ is the magnetization per site. For the $\mathrm{Ha}-$ miltonian (1) the Fourier tranaforms of the transeres spin den-
sity and current operatore are defined by

$$
\begin{array}{cc}
S_{\vec{q}}^{+}=\frac{1}{\sqrt{N}} \sum_{\vec{k}} c_{\vec{k} \uparrow}^{+} c_{\vec{k}+\vec{q} \downarrow}, & S_{-\vec{q}}^{-}=\left(S_{\vec{q}}^{+}\right)^{+}, \\
q J_{\vec{q}}^{+}=\frac{1}{\sqrt{N}} \sum_{\vec{k}}\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right) c_{\vec{k}+}^{+} c_{\vec{k}+\vec{q} \downarrow}, & J_{-\vec{q}}^{-}=\left(J_{\vec{q}}^{+}\right)^{+}, \tag{4}
\end{array}
$$

reap., where $\mathrm{c}_{\overrightarrow{\mathrm{k}} \sigma}^{+}$creates an electron in the state $|\overrightarrow{\mathrm{k}} \sigma\rangle$, and N is the number of lattice aites. Since it is customary to determine D through a pole of the transverse spin denaity-density susceptibility $\chi^{+-}(\vec{q}, \omega)$ one has, on the other hand, the preacription /4/

$$
\begin{equation*}
D=-\frac{1}{2\left\langle S^{2}\right\rangle} \lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0}\left[\frac{\omega^{2}}{q^{2}}\left(\chi^{+-}(\vec{q}, \omega)+\frac{2\left\langle S^{2}\right\rangle}{\omega}\right)\right] \tag{5}
\end{equation*}
$$

In this paper we calculate the stiffness constant from (5), unlike the approach $/ 1 /$, by solving a Bethe-Salpeter equation within the local exchange approximation. The resultant D, including particle-particle scatterings by the local ladder approximation (LLA) /5/, coincides with D found in $/ 1 /$ on the basis of (2). A lower bound for the static susceptibility $\quad \chi^{+-}(\vec{q}, \omega=0)$ and, therefore, an upper bound for D are obtained by applying Bogolubov's inequality $/ 6 /$ (general bound considerations in $/ 7 /$ were based on the Hohenberg-Kohn theorem). Correlation effects on D and the effective interaction are illustrated by a numerical example.
2. DERIVATION OF D BY SOLVING A BETHE-SALPETER EQUATION

To handle the electron-electron interaction in the framework of the perturbation theory the transverse susceptibilities in (2) and (5) must be formulated within a microscopic Fermi liquid approach $/ 4 /$. Hence, at zero temperature, the following expressions in terms of causal functions can be written down:

$$
\begin{align*}
& \chi^{+-}(\vec{q}, \omega)=-\left\langle\left\langle S_{\vec{q}}^{+}, S_{-q}^{-}\right\rangle\right\rangle=i \int d t e^{i \omega t}\left\langle T S_{\vec{q}}^{+}(t) S_{-q}^{-}(0)\right\rangle \\
& =\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) \Lambda_{0-\vec{q} \uparrow \downarrow}(E, E+\omega) G_{\vec{k}+\vec{q} \downarrow}(E+\omega), \tag{6}\\
& \chi_{1}^{+-}(\vec{q}, \omega)=-\left\langle q J_{\vec{q}}^{+}, S_{-\vec{q}}^{-}\right\rangle_{\omega}=\frac{i}{N}\left(\frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) \Lambda_{1 \vec{i} \vec{k}+\vec{q}}(E, E+\omega) G_{\vec{k}+\vec{q}+}(E+\omega)\right. \tag{7}\\
& =-\left\langle\left\langle S_{\vec{q}}^{+}, q J_{-\vec{q}}^{-}\right\rangle\right\rangle_{\omega}=\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}}\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right) G_{\overrightarrow{k f}}(E) \Lambda_{0-\vec{q}+t}(E, E+\omega) G_{\vec{k}+\vec{q} \downarrow}(E+\omega), \\
& q^{2} \chi_{j}^{+-}(\vec{q}, \omega)=-\left\langle\left\langle q_{\vec{q}}^{+}, q J_{-\vec{q}}^{-}\right\rangle=\frac{i}{N}\left(\frac{d E}{2 \pi} \sum_{\vec{k}}\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right) G_{\vec{k} t}(E) \Lambda_{1 \vec{k} \vec{k}+\vec{q}}(E, E+\omega) G_{\vec{k}+\vec{q} \downarrow}(E+\omega),\right.\right. \tag{8}
\end{align*}
$$

where 〈...〉 means the ground-atate expectation value, $G_{\vec{k} \sigma}(E)$ denotes the one-particle Green function, and $\chi_{1}^{+-}(\vec{q}, \omega)$ is the traneverse spin current-density susceptibility. The effective spin-flip vertices $\Lambda_{0-\vec{q} \uparrow \downarrow}$ and $\Lambda_{1} \underset{\uparrow}{\vec{k}} \vec{k}+\vec{q}$ eatiafy the Bethe-Sal-peter-type equations

$$
\begin{align*}
& \Lambda_{0-\vec{q}+t}(E, E+\omega)=1-\left(\frac{d \bar{E}}{2 \pi} i I_{\uparrow \downarrow \downarrow \uparrow}(E, \bar{E}+\omega ; \omega) \frac{1}{N} \sum_{\vec{k}} G_{\vec{k} \uparrow}(\bar{E}) \Lambda_{0-\vec{q} \uparrow t}(\bar{E}, \bar{E}+\omega) G_{\vec{k}+\vec{q} \downarrow}(\bar{E}+\omega),\right. \tag{9}
\end{align*}
$$

where the irreducible particle-hole vertex $I_{\uparrow \downarrow \downarrow \uparrow}(E, \bar{E}+\omega ; \omega)=I_{\uparrow \downarrow \downarrow \uparrow}(E$, $\overline{\mathrm{E}}+\omega ; \mathrm{E}+\omega, \overline{\mathrm{E}})$, presumed to be site-diagonal, mediates the local

exchange.

In the particle-particle channel we make use of the LLA scheme /5/

$$
\begin{align*}
\sum_{\sigma}(E) & =\int \frac{d \bar{E}}{2 \pi i} G_{-\sigma}(\bar{E}) T(E+\bar{E}), \tag{11}\\
T(E) & =\left[\frac{1}{U}+\int \frac{d \bar{E}}{2 \pi i} G_{\sigma}(\bar{E}) G_{\sigma}(E-\bar{E})\right]^{-1}, \tag{12}\\
n=\sum_{\sigma} n_{\sigma} & =\sum_{\sigma} \int \frac{d E}{2 \pi i} G_{\sigma}(E), \quad G_{\sigma}(E)=\frac{1}{N} \sum_{\vec{k}} G_{\vec{k} \sigma}(E), \tag{13}\\
G_{\vec{k} \sigma}^{-1}(E) & =E-E_{\vec{k}}-\sum_{\sigma}(E), \tag{14}
\end{align*}
$$

where $\Sigma_{\sigma}(E)$ is the self-energy, $T(E+\bar{E})$ denotes the two-particle vertex, and $n\left(n_{\sigma}\right)$ is the average number of electrons per aite (with epin σ). In the particle-hole channel we choose the kernel

$$
\begin{equation*}
I_{\uparrow \downarrow \uparrow}(E, \bar{E}+\omega ; \omega)=-T(E+\bar{E}+\omega) \tag{15}
\end{equation*}
$$

By aubetituting (15) into (9) and (10), using (11) and the dressed propagator (14) one proves, for the present approximation, the validity of the Ward-Takahashi-relation (cf., e.g., /8/)

$$
\begin{equation*}
\omega \Lambda_{0-\vec{q} \uparrow \downarrow}\left(E_{1} E+\omega\right)-\Lambda_{\underset{\uparrow}{1} \vec{k}+\vec{q}}(E, E+\omega)=G_{\vec{k}+\vec{q} \downarrow}^{-1}(E+\omega)-G_{\vec{k} \uparrow}^{-1}(E) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\omega \chi^{+-}(\vec{q}, \omega)-\chi_{1}^{+-}(\vec{q}, \omega)=n_{\downarrow}-n_{\uparrow}=-2\left\langle S^{2}\right\rangle . \tag{17}
\end{equation*}
$$

Purthermore, on combining (7), (8), and (16) one gets

$$
\begin{align*}
\omega X_{1}^{+-}(\vec{q}, \omega)-q^{2} \chi_{J}^{+-}(\vec{q}, \omega) & =-C_{\vec{q}} \\
& =\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}}\left[\left(\varepsilon_{\vec{k}+\vec{q}}^{-} \varepsilon_{\vec{k}}\right) G_{\vec{k} \uparrow}(E)+\left(\varepsilon_{\vec{k}-\vec{q}}-\varepsilon_{\vec{k}}\right) G_{\vec{k} \downarrow}(E)\right] . \tag{18}
\end{align*}
$$

Note that (17) and (18) hold rigorously (without approximations) as can be shown immediately from the equations of motion.

In order to solve the integral equation (9) via (15) we replace $T(E+\bar{E}+\omega$) by an approximated kernel $\widetilde{T}(E, E+\omega)$, yielding with (6) the relation

$$
\begin{equation*}
\Lambda_{o-\vec{q}+\downarrow}(E, E+\omega)=1+\widetilde{T}(E, E+\omega) \chi^{+-}(\vec{q}, \omega) \tag{19}
\end{equation*}
$$

Analogously, from (10) and (7) it follows that

$$
\begin{equation*}
\Lambda_{\substack{\vec{k} \vec{k}+\vec{q}}}(E, E+\omega)=\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}+\widetilde{T}(E, E+\omega) \chi_{1}^{+-}(\vec{q}, \omega) . \tag{20}
\end{equation*}
$$

To determine $\mathbb{T}(E, E+W)$ explicitly one has to fulfil the Ward identity (16). By inserting (19) and (20) into (16), provided that the r.h.s. of (16) is expressed by (14), we find

$$
\begin{equation*}
\widetilde{T}(E, E+\omega)=\frac{\Sigma_{\uparrow}(E)-\Sigma_{\downarrow}(E+\omega)}{n_{\downarrow}-n_{\uparrow}}, \tag{21}
\end{equation*}
$$

Where (17) was ueed, too. How one subatituter (19) into (6), and (20) into (7) to obtain the solutions

$$
\begin{align*}
& \chi^{+-}(\vec{q}, \omega)=\frac{\hat{x}_{0}(\vec{q}, \omega)}{1-\tilde{x}(\vec{q}, \omega)}, \tag{22}\\
& \chi_{1}^{+-}(\vec{q}, \omega)=\frac{\hat{x}_{1}(\vec{q}, \omega)}{1-\tilde{x}(\vec{q}, \omega)} \tag{23}
\end{align*}
$$

with the abbreviations

$$
\begin{align*}
& \hat{\chi}_{0}(\vec{q}, \omega)=\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) G_{\vec{k}+\vec{q} \downarrow}(E+\omega), \tag{24}\\
& \hat{\chi}_{1}(\vec{q}, \omega)=\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) G_{\vec{k}+\vec{q} \downarrow}(E+\omega)\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right), \tag{25}\\
& \tilde{\chi}(\vec{q}, \omega)=\frac{i}{N} \int \frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) G_{\vec{k}+\vec{q} \downarrow}(E+\omega) \tilde{T}(E, E+\omega) . \tag{26}
\end{align*}
$$

On the other hand, the time-reversal symmetry invoived in (7) leade on the basis of (19) to $\chi_{1}^{+-}(\vec{q}, w)=\hat{\chi}_{1}(\vec{q}, \omega)+\tilde{\chi}_{1}(\vec{q}, \omega) \chi^{+-}(\vec{q}, \omega)$, implying in view of (22) and (23) the condition

$$
\begin{equation*}
\hat{x}_{0}(\vec{q}, \omega) \tilde{x}_{1}(\vec{q}, \omega)=\hat{x}_{1}(\vec{q}, \omega) \tilde{x}^{(}(\vec{q}, \omega), \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{X}_{1}(\vec{q}, \omega)=\frac{i}{N}\left(\frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) G_{\vec{k}+\vec{q} \downarrow}(E+\omega) \tilde{T}(E, E+\omega)\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right)\right. \tag{28}
\end{equation*}
$$

It is pointed out that (27) ia fulfilled trivially in two cases: at $\vec{q}=0$ and in the Hartree-Fock approximation $\quad \Sigma_{\sigma}=U_{-\sigma}$, where (21) in reduced to $\widetilde{T}=U$.

On combining (22) and (23) with (17) the pole in (22) can be rewritten as $\chi^{+}(\vec{q}, \omega)=\left(n_{\downarrow}-n_{\uparrow}\right)\left[\omega-\frac{\hat{x}_{1}(\vec{q}, \omega)}{\hat{\chi}_{0}(\vec{q}, \omega)}\right]^{-1}$ which has to obey the necessary and sufficient condition (27), 1.e.,

$$
\begin{equation*}
x^{+-}(\vec{q}, \omega)=\frac{n_{\downarrow}-n_{\uparrow}}{\omega-\frac{\tilde{x}_{1}(\vec{q}, \omega)}{\tilde{x}(\vec{q}, \omega)}} \tag{29}
\end{equation*}
$$

The calculation of low-lying apin wave excitations requires expanding (28) to second order in \vec{q} :
$\tilde{\chi}_{1}(\vec{q}, \omega)=\frac{i}{2 N} / \frac{d E}{2 \pi} \sum_{\vec{k}} G_{\vec{k} \uparrow}(E) G_{\vec{k} \downarrow}(E+\omega)\left[G_{\vec{k} \downarrow}(E+\omega)-G_{\vec{k} \uparrow}(E)\right] \widetilde{T}(E, E+\omega)\left(\vec{q} \cdot \nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}$,
where

$$
\begin{equation*}
G_{\vec{k} \uparrow}(E) G_{\vec{k} \downarrow}(E+\omega)=\frac{G_{\vec{k} \uparrow}(E)-G_{\vec{k} \downarrow}(E+\omega)}{\omega-\sum_{\downarrow}(E+\omega)+\sum_{\uparrow}(E)} \tag{31}
\end{equation*}
$$

which results from (14). Define the magnon energy in the denominator of (29) by $\mathrm{Dq}^{2}=\left.\frac{\tilde{x}_{1}(\vec{q}, \omega)}{\tilde{x}(\vec{q}, \omega)}\right|_{\omega=0}$ or, equivalently, D according
to (5). First, one gets $f r o m(26)$ by using (21) and (31) the stato (5). First, one gets from (26) by using (21) and (31) the static limit $\tilde{\chi} \quad(\vec{q}=0, \omega=0)=1$. Secondly, to order $q^{2}, \tilde{\chi}_{1}(\vec{q}, \omega=0)$ is available from (30) to derive by means of (21) and (31) the spin wave stiffness constant

$$
\begin{equation*}
D=\frac{1}{6\left(n_{\uparrow}-n_{\downarrow}\right)} \frac{i}{N}\left(\frac{d E}{2 \pi} \sum_{\vec{k}}\left[G_{\vec{k} \uparrow}(E)-G_{\vec{k} \downarrow}(E)\right]^{2}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2},\right. \tag{32}
\end{equation*}
$$

where cubic symmetry was employed. Going over to retarded ("r") Green functions we obtain

$$
\begin{equation*}
D=\frac{1}{6 \pi\left(n_{\uparrow}-n_{\downarrow}\right)} \operatorname{Im} \int_{-\infty}^{\mu} d E \frac{1}{N} \sum_{\vec{k}}\left[G_{\vec{k} \uparrow}^{+}(E)-G_{\vec{k} \downarrow}^{\top}(E)\right]^{2}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2} \tag{33}
\end{equation*}
$$

where μ denotes the Fermi level．The expression（33）agrees with the result for D obtained in $/ 1 /$ ．Additional vertex correc－ tions to the stiffness formula do not appear．These are cancelled by the Ward identity（16）and the symmetry relation（27），leaving juat the propagator renormalization．The pole behaviour of
$\chi^{+-}(\vec{q}, \omega)$ is here explicitly derived unlike the treatment $/ 1 /$ ． Especially，the present acheme makes evident the influence of electron－electron ladders on the particle－hole channel．

3．BOUNDS ON $\chi^{+-}(\vec{q}, \omega=0)$ AND D

As has been shown in section 2，D is directly related to the inverse of the static transverse susceptibility $\quad \chi^{+-}(\vec{q}, \omega=0)$ ． Thus it is useful to consider Bogolubov＇s inequality／6／

$$
\begin{equation*}
\left|\langle A, B\rangle_{\omega=0}\right|^{2} \leqslant\left|《 A, A^{+}\right\rangle_{\omega=0}\left|\|\left\langle B^{+}, B\right\rangle_{\omega=0}\right| \tag{34}
\end{equation*}
$$

or，equivalently（cf．／9／），

$$
\begin{equation*}
|\langle[Q, B]\rangle|^{2} \leq\left|\left\langle\left[Q,\left[Q^{+}, H\right]\right]\right\rangle\right|\left|<B^{+}, B\right\rangle_{\omega=0} \mid . \tag{35}
\end{equation*}
$$

Bogolubov＇s inequality was applied in $/ 10,11 /$ to itinerant－elec－ tron systems to prove the absence of magnetic ordering in one and two dimenaions at nonzero temperature．

In this eection ve eetimate the magnon energy of Hubbard ferromagnete at zero temperature．Choosing $B_{\vec{q}}=S_{-\vec{q}}^{-}$and $A_{\vec{q}}=q J_{\vec{q}}^{+}$de－ fined in（3）and（4）we write（34）in the form

$$
\begin{equation*}
\left.\frac{4\left\langle S^{2}\right\rangle^{2}}{\left|《 q J_{\vec{q}}^{+}, q J_{-\vec{q}}^{-}\right\rangle_{\omega=0} \mid} \leq\left|《 S_{\vec{q},}^{+} S_{-q}^{-}\right\rangle_{\omega=0} \right\rvert\, \tag{36}
\end{equation*}
$$

Where $\left\langle\left\{\mathrm{q}_{\vec{q}}^{+}, \mathrm{S}_{-\mathrm{q}}^{-}\right\rangle\right\rangle_{\omega=0}=-\left\langle\left[\mathrm{s}_{\vec{q}}^{+}, \mathrm{S}_{-\overrightarrow{\mathrm{q}}}^{-}\right]\right\rangle=-2\left\langle\mathrm{~s}^{\mathrm{z}}\right\rangle$ was used as a conse－ quence of（17）combined with（7）．On the other hand，one can ex－ preas（35）with $Q_{\dot{q}}=S_{\dot{q}}^{+}, B_{\dot{q}}=S_{-q}^{-}$，and H from（1）as

$$
\begin{equation*}
\left.\frac{4\left\langle S^{2}\right\rangle^{2}}{\left|C_{\vec{q}}\right|} \leq\left|\ll S_{\vec{q}}^{+}, S_{-q}^{-}\right\rangle_{\omega=0} \right\rvert\, \tag{37}
\end{equation*}
$$

which elso followe directiy from（36）by taking the lisait $\omega \rightarrow 0$ in（18）together with（8）．Prom（18）$C_{\vec{q}}$ becomes

$$
\begin{equation*}
C_{\vec{q}}=\frac{1}{N} \sum_{i j} t_{i j}\left\{\left(e^{-i \vec{q}\left(\vec{R}_{i}-\vec{R}_{j}\right)}-1\right)\left\langle c_{i \uparrow}^{+} c_{j \downarrow}\right\rangle+\left(e^{i q\left(\vec{R}_{i}-\vec{R}_{j}\right)}-1\right)\left\langle c_{i \downarrow}^{+} c_{j \downarrow}\right\rangle\right\}, \tag{38}
\end{equation*}
$$

where $c_{i \sigma}^{+}\left(c_{i \sigma}\right)$ crastes（annibilatea）a spin σ electron in the Wannier atate at lattice site $1, t_{1 j}=\frac{1}{N} \sum_{\vec{k}} \varepsilon \vec{k} e^{i \vec{k}\left(\vec{R}_{i}-\vec{R}_{j}\right)}$ are the hopping integrals，and \vec{R}_{i} is the position vector of site i ．

Dealing with long wavelength excitations we quote $C_{\vec{q}}$ in the lowest order of \vec{q} ，i．e．，in order q^{2} ．It is

$$
\begin{equation*}
C_{\vec{q}}=-\frac{q^{2}}{6 N} \sum_{i j \sigma} t_{i j}\left(\vec{R}_{i}-\vec{R}_{j}\right)^{2}\left\langle c_{i \sigma}^{+} c_{j \sigma}\right\rangle \tag{39}
\end{equation*}
$$

where cubic symmetry is presumed．An estimation of $C_{\vec{q}}$ is perfor－ med by reatricting to a ac lattice and including only nearest－ neighbour hopping integrale $t_{i j}=t$ ．Then one may write

$$
\begin{equation*}
\left.\left|C_{\vec{q}}\right|=\frac{q^{2} \alpha^{2} t}{6 N}\left|\sum_{i \sigma} \sum_{j(\neq i)}^{\prime}\left\langle c_{i \sigma}^{+} c_{j \sigma}\right\rangle\right| \leq q^{2} \alpha^{2} t n\right) \tag{40}
\end{equation*}
$$

where $\left|\left\langle c_{i \sigma}^{+} c_{j \sigma}\right\rangle\right| \leqslant n_{\sigma}$ is used, and a is the lattice constant. Substitution of (40) into (37) gives a lower bound for the atatic transeree ausceptibility

$$
\begin{equation*}
\frac{\left(n_{+}-n_{\downarrow}\right)^{2}}{n a^{2} t} \frac{1}{q^{2}} \leq\left|\left\langle\left\langle S_{\vec{q}}^{+} S_{-q}^{-}\right\rangle\right\rangle_{\omega=0}\right|=\left|\chi^{+-}(\vec{q}, \omega=0)\right| \tag{41}
\end{equation*}
$$

This implies (cf. the context of (29)) an upper bound for the atiffness constant

$$
\begin{equation*}
D \leq a^{2} t \tag{42}
\end{equation*}
$$

which is written down in the eaturated ferromagnetic case.
Additionally, we introduce the spectral decomposition /6/

$$
\begin{equation*}
\chi^{+-r}(\vec{q}, \omega)=-\left\langle S_{\vec{q}}^{+}, S_{-\vec{q}}^{-}\right\rangle_{\omega}^{+}=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{sign} \omega^{\prime}}{\omega-\omega^{\prime}+i \varepsilon} I_{\underset{\vec{q}}{+} S_{-\vec{q}}^{-}}\left(\omega^{\prime}\right) \tag{43}
\end{equation*}
$$

where $I_{S_{\vec{q}}}^{+} \underset{\vec{q}}{-}(\omega) \geqslant 0$ is the epectral denaity at zero temperature. The static susceptibility becomes

$$
\begin{equation*}
-\left\langle\left\langle S_{\vec{q}}^{+}, S_{\vec{q}}^{-}\right\rangle\right\rangle_{\omega=0}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{1}{\left|\omega^{\prime}\right|} I_{S_{\vec{q}}^{+} S_{-\vec{q}}^{-}}\left(\omega^{\prime}\right)>0 \tag{44}
\end{equation*}
$$

Let us define the mean excitation spectrum by the momenta (cf. /12,13/)

$$
\begin{equation*}
\overline{\omega_{\vec{q}}^{n}}=\frac{\int_{0}^{\infty} \frac{d \omega}{2 \pi} \omega^{n-1}\left(I_{S_{\vec{T}}^{+} S_{\vec{q}}^{-}}(\omega)+I_{S_{-\vec{q}}^{-} S_{\vec{q}}^{+}}(\omega)\right)}{\int_{0}^{\infty} \frac{d \omega}{2 \pi} \frac{1}{\omega}\left(I_{S_{\vec{q}}^{+} S_{-q}^{-}}(\omega)+I_{S_{-q}^{-} S_{\vec{q}}^{+}}(\omega)\right)},(n=1,2, \ldots) \tag{45}
\end{equation*}
$$

Then one verifieg the average energy of the excitations to be

$$
\begin{equation*}
\bar{\omega}_{\vec{q}}=\frac{\zeta_{\vec{q}}}{-\left\langle\left\langle S_{\vec{q}}^{+}, S_{-\vec{q}}^{-}\right\rangle_{\omega=0}\right.}, \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\vec{q}}=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} I_{S_{\vec{q}}^{+} S_{-q}^{-}}(\omega)=\left\langle S_{\vec{q}}^{+} S_{-\vec{q}}^{-}+S_{-9}^{-} S_{\vec{q}}^{+}\right\rangle>0 \tag{47}
\end{equation*}
$$

Here we have used $\mathrm{I}_{\mathrm{S}_{\vec{q}}^{+}} \mathrm{S}_{-\vec{q}}^{-}(\omega)=\mathrm{I}_{\overrightarrow{S_{\vec{q}}^{-}}} \mathrm{S}_{\overrightarrow{\mathrm{a}}}^{+}(-\omega)$ to replace the denominator of (45) by (44). Note that (47) is to be distinguished from the sum rule $\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}$ aign $\omega \mathrm{I}_{\mathrm{S}_{\vec{q}}^{+}} \mathrm{S}_{-\vec{q}}^{-}(\omega)=2\left\langle\mathrm{~S}^{2}\right\rangle$. The second moment

$$
\begin{equation*}
\overline{\omega_{\vec{q}}^{2}}=\frac{C_{\vec{q}}}{-\left\langle\left\langle S_{\vec{q}}^{+}, S_{-q}^{-}\right\rangle_{\omega=0}\right.}=\frac{\left\langle q J_{\vec{q}}^{+}, q J_{-\vec{q}}^{-}\right\rangle_{\omega=0}}{\left\langle S_{\vec{q}}^{+}, S_{-\vec{q}}^{-}\right\rangle_{\omega=0}}, \tag{48}
\end{equation*}
$$

where $\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \omega$ sign $\omega I_{S_{\vec{q}}^{-}} S_{\vec{q}}^{+}(\omega)=-\left\langle\left[S_{\vec{q}}^{+},\left[S_{-\vec{q}}^{-}, H\right]\right]\right\rangle$ (f-sum rule) was employed. The relation $\omega^{2} I_{S_{\vec{q}}^{+}}^{-\infty} S_{-\vec{q}}^{-\vec{q}}(\omega)=I_{q J_{\vec{q}}^{+} q J_{-\vec{q}}^{-}}(\omega)$ can also be chosen to get (48); compare (18) at $\omega=0$ and $\frac{q}{q} \neq 0$. Note that $-\left\langle q J_{\vec{q}}^{+}, q J_{-\mathrm{q}}^{-}\right\rangle_{\omega=0} \geq 0$.

Using (37) and (40) we can estimate (46) and (48) as

$$
\begin{align*}
& \bar{\omega}_{\vec{q}} \leq \frac{C_{\vec{q}}}{4\left\langle S^{2}\right\rangle^{2}} \zeta_{\vec{q}} \leq \frac{a^{2} t n}{4\left\langle S^{2}\right\rangle^{2}} q^{2} J_{\vec{q}}, \tag{49}\\
& \overline{\omega_{\vec{q}}^{2}} \leq \frac{C_{\vec{q}}^{2}}{4\left\langle S^{2}\right\rangle^{2}} \leq \frac{a^{4} t^{2} n^{2}}{4\left\langle S^{2}\right\rangle^{2} q^{4}}, \tag{50}
\end{align*}
$$

where the r.b.s. are valid for sufficiently small q. The definition (45) predicte $\overline{\omega_{\vec{q}}^{2}} \geq \bar{\omega}_{\vec{q}}^{2}$ so that $J_{\vec{q}} \leq 2\left|\left\langle S^{2}\right\rangle\right|$ for $q \rightarrow 0$ 12/. Then (49) and (50) refer to the existence of gapless spin
wave excitations provided that $\left\langle\mathrm{s}^{2}\right\rangle \neq 0$. Putting $\bar{\omega}_{\mathbf{q}} \equiv \omega_{\mathrm{q}}=\mathrm{Dq}{ }^{2}$ and going over to the saturated case we arrive again at (42).

4. A NUMERICAL EXAMPLE

To illustrate the use of the formula (32) for D we solve the LLA scheme (11) to (14) self-consistently and compare the results with those of the Hartree-Fock treatment (see Fig.1b). The following assumptions have been made /1/: a ac lattice with a semielliptic unperturbed density of states (bendwidth $2 w=12 t$, in reduced unita $2 w=1$) and the velocity dispersion law $\frac{1}{N} \sum_{\vec{k}} \delta\left(E-\varepsilon_{\vec{k}}\right)\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}$ $=\frac{2 v_{m}^{2}}{\pi w}\left(1-\left(\frac{E}{W}\right)^{2}\right)^{3 / 2} \theta(w-|E|)$ (v_{m} is of order wa). In Fig. 1 a the special value $\Gamma=T(2 \mu)$ of the ladder vertex function $T(E+\bar{E})$ indicates the renormalization of the bare interaction U. The application of (42) to the present example yields $D / d_{o} \leq 3 / 4$ which is fulfilled in both approximations. The tendency of the D-curves refers to the validity of this estimation for larger U, too.

Fig.1.a) Effective Coulomb interaction Γ (in unita of the bandwidth $2 w$) and b) spin wave stiffness constant D vs. bare U/2w for $n=0.5$. D is scaled in units of $d_{0}=\frac{2}{9} w a^{2}$ and in abso-. lute units with $2 w=6.3 \mathrm{eV}, a=4 \AA$; the dashed line shows HartreeFock reaulta.

REFERENCES

1. Kolley E., Kolley W. phys.stat.sol.(b), 1978, 90, p.K103.
2. Hubbard J. Proc. Koy.Soc., 1963, A276, p.238.
3. Edwards D.M., Fisher B. J. Physique, 1971, 32, p.C1-697.
4. Kolley E., Kolley W. JINR, E17-11771, Dubna, 1978.
5. Babanov Yu.A., Naish V.E., Sokolov O.B., Finaghkin V.K. phys. stat.sol.(b), 1973, 56, p. K87.
6. Боголобов Н. Н. Сб. "Статистическая физика и квантовая теория поля", "Наука", I973, с. 7.
7. L1u K. L., Voako S.H. J. Phys., 1978, P8, p. 1539.
8. Hertz J.A., Edwards D.M. Phys.Rev.Lett., 1972, 28, p. 1334 ; J. Phys., 1973, F3, p. 2174.
9. Богалшов Н. Н. (мл.), Садовников Б.И. Некоторые вопросн статистическон механики, "Выст. школа", I975.
10. Wegner F. Phys.Lett., 1967, 24A, p. 131.
11. Walker M. B. , Ruijgrok Th. W. Phys.Rev. . 1968, 171, p. 513.
12. Wagner H. Z. Phyaik, 1966, 195, p. 273.
13. Izuyama T. Phys.Rev., 1972, B5, p. 190.

Received by Publishing Department
on December 22, 1978 .

