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DywKapoB !1.11., BnaxoB Y!,n. Eli· 12099 
ConHTOHHbl€ M8rHOH-¢0HOHHbl€ COCTOHHHH B 1Ht:HetiHO:ti: 

MarHHTHoll ueno~Ke X-Y 

Pa6oTa IIOCBSilll9H8 HCCJ19ilOB8HHJO M8r'HHTHb!X B036y>KLl9HliH B Jnt:Heti:HOll 

uenoqKe qacruu co crrHHOM 1/2 c yqeroM ne¢opMauuu. Uenb pa6oThi - sbiHC­
HHTb BJ1H51HHe a.e¢opMBUH:H U€IIO'l.IKH H8 CBOti:CTB8 MarHiiTHblX B036y>Kil€HHi1. 

PaccMaTpHsaercst npocreihiiaSI TO'<IHO peUJaeMaSI MarHHTHas:r Monenh - "Monenh 
X-Y ". flo OTHOlll9HHlO K KOJle6aHHSIM U9IlQt.{KH RCIIOJlb3yeTC51 KB83UKJ18CCH'4e­

CKI-fi1 rro.axon. floKasaao, "<ITO s TaKoll MonenH Moryr cywecrsasaTb sos6y>Kne­
HH:SI COJlHTOHHOr'O THIIB, ITp9llCT8BJ151IOWH9 C060ti C8MOCO!"J18COB8HHbi€ CB5138H­

Hble COCT05IHH51 M8r'HOHOB H cflOHOHOB. 3nt B036y>K..U9HIHI pacnpOCTp8HSUOTC5I 

BLlOJlb U9IIOt.IKH C IIOCTOSIHHOii CKOpOCTblO 1-1 6e3 p83MbTTUSI. Hx 8Hepr'HSI MO!KeT 

ne)!{8Tb HH)!{€ 8Hepr~!H CB060,UHbiX MarHOHOB. 

Pa6oTa Bbmo.rmeHa B Jla6opaTopHH reopeTli"'::ecKoii 4m3HKH OHHH. 

Coo6meHHe 05bellnHeHHoro HHCTHTyTa HllepHhiX nccneJIOBaHnii. lly5Ha 1978 

Pushkarov D.I., Vlahov J.P. Eli · 12099 

Solitary Bound States Between Magnons 
and Phonons in a Linear X-Y !1agnetic Chain 

It is shown that in a linear magnetic chain solitary 
excitations can exist as selfconsistent bound states bet­
ween the spin deviation and the lattice deformation. Such 
excitations can move along the chain with constant veloci 
ty without smearing. The energy of the excitation can lie 
lower than the free magnon energy. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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It was shown in /l/ and / 2/ (in the quasiclassical and 

quantum-mechanical consideration, respectively) that in a one-di­

mensional ferromagnetic chain of the Heisenberg type not only or­

dinary but also solitary magnons (or briefly "solitons") can 

exist and propagate along the chain with constant velocity with­

out smearing. The present paper is devoted to the investigation 

of the analogous problem in the case of the so-called X-Y model 

131 in the presence of a constant magnetic field ~ and a vari­

able magnetic field lf4 tos~t in the direction of axis z. We shall 

follow the quasiclassioal way of oonslderation /l/1 by a straight­

forward examination one can see that the consistent quantum 

treatment / 2/ leads to the same results. 

Let us write the Hamiltonian of the chain in the nearest-

neighbour approximation in the form: 

H • 1' + U -J4 Jt t s; -f X.tOl.n.t fS~ 
( 1) 

-t ~ ~J(x, .. -x,) [ s: s; .. + s; s;.] , 
where f" is the magnetic moment, and 3{x ••• -X~) is the exchange 
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integral whose value is determined by positions of the atoms at 

the nearest neighbouring sites in the ohain (j and j+l). T and U 

are the kinetic and potential energy of the chain, respectively: 

T-. ~~ ~~~, U = m{- L(~ .. -x.t · (2.) 
J 

Here m is the mass of the atom, v
0 

is the sound velocityJ for 

U the harmonic approximation is taken, and the lattice constant 

4 is assumed to be equal to l for simplicity. 

The cyclic components of the spin vector s: = s: ± t Sy
1 "I ~ - ... J ~ S. "" 2:' - S S ( S • t") can be expressed by the Fermi creati-

• + ~ II /4/ on ~. and annihilation a. operators as follows : 

S. = a. '•-2. a .. ~ ... , - ... n ... ) . ·-~ ~ s: = n (~-1G:01..,) (.\J 
~ •cJ 

(a) 

For the exchange integral we can use the linear approxi­

mation with respect to the atom displacements: 

3lxj..-x.) !::: J. · .'J. (X.;.,- x,i) , (.lt) 
I'J I()!J 

where u4•- ( > 0 { J decreases when the distance ~ x...-x.i) 
between the atoms increases). 

By means of (3) and (4) the Hamiltonian (1) turns into: 

H = T ... U -J' { J • x. w.o. t ) f ... 
+ r l X+ lCftOsll.t) t-o; (lJ - t ~ ( ~~ QJ•• + ~.4 Q. ) .. 

1- ~ ~ (x ••• -X4)( ~ fA4 .. + a~. 4,~) . 
oJ 
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(S) 

where N is the number or the atoms in the chain. 

We shall seek for the solution of the Schr3dinger equation 

1 t ~t \ 41lt1) • HI o/tt)> (6) 

in the following structure: 

\lftt1) = L C.ilt) a.": l o) 
J J 

(7) 
and normalized by the condition: 

<'VUl \ lt'lt)) = ~I Cjlt)\
1 
= i (_g) 

cl 

Substituting of the Hamiltonian (5) and the wave function 

(7) i~to the SchrOdinger equation (6) leads to the following set 

of equations for the coefficients CJ{t) : 

it~ tUt = [ T -r U -r( ~ -~)\J<+ J(.c.os.n.t)Jc~--f(c,;.4+Ct-.)+ 
~ - \ .. , 

(9} + f [ ( c~ .. xJ ... - cci-• xJ.,)- ( cJ •• - t.:.; •• P'.iJ 

Following /l/ we construct the functional: 

rv 

H = (lf(i)l HI q'(t1 > = 

~ T+U-rtX+:K1 cos.o.t) ~ t-r\X+JC.cos.n.t)fC7Ca-

::J ( it It ) 
_ 'J.o '4= \ CJ CJu+ C..~CJ ., + ~ 'L(x. -x·)(c*c * ) 2. d J+• .) .; j+t + <; .. c .i 

which plays the role ot the classical Hamilton function in terms 

of the canonically oon3uaate variables X~ and P~. fbe oorrespon­

d1Dg Hamilton equations haTe the torm: 
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x. = li)H 
4 qP: = 

J . ,.... 

_£_ 
'tn. 

H =-lli 
d <;))(. = - 'Tn Yo'l. ( 2. XJ - X.i+•- '}(j-1)- (10) 

6 

-~ [ ( c~cJ+c;cd-i )- ( <:a~.cj- c;cj.1)] . 

Eliminating Pj from the system {10) we obtain the equations: 

1n r;}'LX,S 

'OP = 'm vo'" t X.;H t "'d-1 -2. )<..;) + 

!I [ ,. ( - . . ( * - * )] t- -T c~ cd+1 cd-•) + c" 'c~H c.H 
( 11) 

The two terms in the right-hand side of (11) describe the 

actions of different elastic foroes upon the j'th atom trom the 

deformed lattice. The first one is connected with the kinetic de­

greee of freedom in the undietorted lattice and the second origi­

nates from the detor~tion due to the spin deviation. 

The equations (9) and (11) allow one to find the atom 

displacements Ij and the amplitudes c
3 

whioh determine the dis­

tribution of the excitation along the chain. We shall seek tor 

this set of equations in the most interesting oase when the size 

~ of the lattice deformation is much larger than. the lattice 

constant ( J. > > 1). Then we can go over to a continuum approxima­

tion, i.e. we oan consider Xj and Cj as smooth functions of the 

continuous variable§. So Xj--+ X( g ,t ), c
3
---.c( ~ ,t ). Then 

the set of equations (9) and (11) can be replaced by two differen­

tial equations: 

6 

) 

·J 
·) 

it~~ = [ T + u- ~' \ ~ -~ H x ~ x1 cosn t)] c-

rotx m­t;)P 

3. f C ~'LC, ) ., C t;> X - T ,,. .. fdS" + u. iij" 

,_ f(}x rr 'J I C It = 'trl v. 1()$1. + <)4 <()~ • 

(41) 

(f!) 

Looking tor a solution of the latter equation in the form 

ot excitations which propagate along the ohain With constant ve-

looity v, we assume X • X(~ - vt) and get from (13) that 

'i)X 

~= 
J. ICI' v 

' Aa­
'W\. V0

1 ( 4 - pt. } r V8 
( 411} 

We see that under this assumption IC11 is a function of one argu­

ment (\- vt) only. The equation {14) has a plain physical meaning. 

The deformation •• ~ is proportional to the probability dist-
l ~~ 

ribution \CI of the spin excitation along the ohain. The coeffi-

cient tor jCj1 represents the total ohange of the length of the 

chain. One can see it easily taking into account that Jljct1ds •1 

according to {8). Inserting (14) into (12) we get the following 

nonlinear equation: 

ih ~~ = (T+U -p(~ -~)('X+J4 CO!>.Q.t)-~o]C-
:J. t;Jtc, !141 l ( (5) 

- -;:- ;ar- 'YI'lV.2.(~-pt) fc I C 

where T + U is given by 
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, + u • 3: • ... ~2. r ,. 
""'.: (4-tl" IC{~.t)j- J~. ( f6) 

-... 
The exact solution of equation (15) which vanishes at 

infinity has the form: 

Cl~.t)= -~ e'{Ks-wt-.£Si1I..O..t-'(.) h ~ -vt-~. 
'{?1 Stc l {H) 

where K,. t,v coincides w1 th the wave vector of the free magnon 
.... t" . 

with veloci t~ v ( ~= 111.* being the effective mass of the mag-
l.A 2. 

non), .{ .. 1'11lV.'(4-.~')3.J~ is the size of the region where the 

probability distribution of the excitation differs essentially 

from zero, 

It t.,.r rr1 
1iw = T + U- ( ~ --t)rX- J. + 2-=r. - sl.('lllv:)1 (1-~")1 ' 

(
I( ) ~x. 

cl. •- y-4 'iA t and 'f0 and ~. are arbitrary constants which 

can be determined by the initial conditions. 

For T + U from (16) by means of (17) we obtain: 

T + U .. - 31" 
4'2. (..,.. v.2. )1 3. 

and therefore for the energy E :daw 

E • -t ~ -4} 1- X - 3. 
ti1v1 

-t -­
t!lo 

H· p1 
lf- ,G2.)3 

we get finally: 

t 46 ") 

n .. lf 4-s p1 

-t-It :J-.-('In..:....V-.t.-)2. (t-{Y-J3 ·(~) 

It v ie small enough, the ener1y B lies lower than the tree 
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.;. 

' 

magnon energy. In particular, the soliton rest energy (v-0} is 

separated by a gap 

Dat = 

So, the solitary state considered is more favo~able. If 3i~Othe 

energy given by (18) coincides with the low-lying energy spectrum, 
found in / 5/. 

It is interesting to note that because of the identity 

e±•cls'ln.a.t = f_ ~ ... (oi} e±h!,.a.t 
-coo 

(Jm(dl) being the Bessel functions) the solution (17) can be pre­

sented as a linear one-soliton superposition: 

C{ t) .r IT..(ad l(t~-(t.u+'IIIA)t-y.) L i-Yt-~ ( ) 
~. .. f= ~2.! t ~ten 1.. • n~ 

Finally, the authors would like to thank Dr. Kh. I. Push­

karov for many valuable disoussions. 
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