СООБЩЕНИЯ
 ОБЪЕАИНЕННOГO ИНСТИТУТА
 ЯАЕРНЫX
 ИССАЕАОВАНИЙ
 АУБНА

C326

E17-12099

D.l.Pushkarov, J.P.Vlahov

SOLITARY BOUND STATES BETWEEN
MAGNONS AND PHONONS
IN A LINEAR X-Y MAGNETIC: CHAIN

E17-12099

D.I.Pushkarov, J.P.Vlahov ${ }^{2}$

SOLITARY BOUND STATES BETWEEN MAGNONS AND PHONONS
 IN I LINEAR X-Y MAGNETIC CHAIX

[^0]Пушкаров Д.И., Влахов И.П.
Солитонные магнон-фононные состояния в линейной
магнитной цепочке Х-Y
Работа посвяшена исследованию магнитных возбуждений в линейной
цепочке частии со спином $1 / 2$ с учетом деформации. Цель работы - выяс-
нить влияние деформации цепочки на свойства магнитных возбуждений.
Р-Ү". По отношению к колебаниям чепочки истользуется квазиклассиче-

$\begin{aligned} & \text { Х-Y . По отношению к колебаниям щепочки используется квазиклассие- } \\ & \text { ский попход. Показано, чго в такой модели могут сушествавать возбужде- }\end{aligned}$
ский попход. Показано, чго в такой модели могут сушествавать возбужде
ния состояния магнонов и фононов. Э ти возбуждения распространяюгся
вполь цепочки с постоянной скоростью и без размытия, Их энергия может
лежать ниже энергии свободных магнонов.
Работа выполнена в Лаборатории теоретической физики ОИЯИ.
Сообщение Объединенного института ядерных исследований. Дубна 1978
Pushkarov D.I., Vlahov J.P.
E17-12099
Solitary Bound States Between Magnons
and Phonons in a Linear X-Y Magnetic Chain
It is shown that in a linear magnetic chain solitary
excitations can exist as selfconsistent bound states bet-
ween the spin deviation and the lattice deformation. Such
excitations can move along the chain with constant veloci
ty without smearing. The energy of the excitation can lie
lower than the free magnon energy.
The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
Communicotion of the Joint Institute for Nuclear Research. Dubno 1978

It was shown in $/ 1 /$ and $/ 2 /$ (in the quasiclassical and quantum-meoianical consideration, respectively) that in a one-dimenaional ferromagnetic ohain of the Heisenberg type not only ordinary but also solitary magnons (or briefly "solitons") can exist and propagate along the chain with constant velocity without smearing. The present paper is devoted to the investigation of the analogous problem in the case of the so-called $X-Y$ model $/ 3 /$ in the presence of a constant magnetic field X and a variable magnetic field $\mathbb{X}_{1} \cos \rho t$ in the direction of axis Z. We shall follow the quasiclassical way of consideration $/ 1 /$; by a straightforward examination one can see that the consistent quantum treatment $/ 2 /$ leads to the same results.

Let us write the Hamiltonian of the chain in the nearestneighbour approximation in the form:

$$
\begin{align*}
H=T+U & -\mu X \sum_{j} S_{j}^{z}-\mu X_{i} \cos \Omega t \sum_{j} S_{j}^{z}- \tag{1}\\
& -\frac{1}{2} \sum_{j} J\left(x_{j+4}-x_{i}\right)\left[S_{i}^{+} S_{j+1}^{-}+S_{j}^{-} S_{j+4}^{+}\right]
\end{align*}
$$

Where μ is the magnetic moment, and $J\left(X_{j+4}-X_{j}\right)$ is the exchange
© 1978 Объединенны» институт ядерных исследований Дубна
integral whose value is determined by positions of the atome at the nearest neighbouring sites in the ohain (J and $J+1$). T and J are the kinetic and potential energy of the chain, reepectively:

$$
\begin{equation*}
T=\frac{1}{2 m} \sum_{d} P_{d}^{2}, \quad U=\frac{m v^{2}}{2} \sum_{j}\left(x_{d+4}-x_{d}\right)^{2} \tag{2}
\end{equation*}
$$

Here m is the mass of the atom, ∇_{0} is the sound velocity; for U the harmonio approximation is taken, and the lattice constant a is assumed to be equal to 1 for simplicity.

The oyclic components of the epin vector $S_{j}^{ \pm}=S_{d}^{x} \pm i S_{j}^{y}$, $S_{j}^{Z}=\frac{1}{2}-S_{j}^{-} S_{d}^{+} \quad\left(S=\frac{1}{2}\right)$ can be expreseed by the Fermi creation a_{i}^{+}and annihilation a_{j} operators as follows/4/:

$$
\begin{equation*}
S_{j}^{-}=a_{j}^{+} \prod\left(1-2 a_{m}^{+} a_{m}\right), \quad S_{j}^{+}=\prod_{m<j}\left(1-2 a_{m}^{+} a_{m}\right) a_{j} \tag{3}
\end{equation*}
$$

For the exchange integral we can use the linear approximation with respeot to the atom dieplacemente:

$$
\begin{equation*}
J\left(x_{j+4}-x_{i}\right) \simeq J_{0}-J_{1}\left(x_{j+4}-x_{j}\right) \tag{4}
\end{equation*}
$$

where $J_{1}=-\frac{0 J}{\partial\left(x_{j+1}-x_{j}\right)}>0$ (J decreases when the distance between the atoms increases).

By means of (3) and (4) the Hariltonian (1) turns into:

$$
\begin{gathered}
H=T+U-\mu\left(X+X_{1} \cos \Omega t\right) \frac{N}{2}+ \\
+\mu\left(x+x_{1} \cos \Omega t\right) \sum_{j} a_{j}^{+} a_{j}-\frac{J_{0}}{2} \sum_{j}\left(a_{j}^{+} a_{j+1}+a_{j+1}^{+} a_{j}\right)+ \\
+\frac{J_{2}}{2} \sum_{j}\left(x_{j+1}-x_{j}\right)\left(a_{j}^{+} a_{j+1}+a_{j+1}^{+} a_{j}\right),
\end{gathered}
$$

Where N is the number of the atoms in the chain.
We shall seek for the solution of the Schrodinger equation

$$
\begin{equation*}
\left\langle\left.\hbar \frac{\partial}{\partial t} \right\rvert\, \psi(t)\right\rangle=H|\psi(t)\rangle \tag{6}
\end{equation*}
$$

in the following structure:

$$
\begin{equation*}
|\Psi(t)\rangle=\sum_{j} C_{j}(t) a_{j}^{+}|0\rangle \tag{7}
\end{equation*}
$$

and normalized by the oondition:

$$
\begin{equation*}
\langle\Psi(t) \mid \Psi(t)\rangle=\sum_{j}\left|C_{j}(t)\right|^{2}=1 \tag{8}
\end{equation*}
$$

Substituting of the Hamiltonian (5) and the wave function (7) Into the Schrodinger equation (6) leads to the following set of equations for the coefficients $C_{j}(t)$:

$$
\begin{align*}
& \begin{aligned}
& i \hbar \frac{\partial C_{j}}{\partial t}= {\left[T+U-\mu\left(\frac{N}{2}-1\right)\left(X+X_{4} \cos \Omega t\right)\right] C_{j}-\frac{J_{0}}{2}\left(C_{j+4}+C_{j-1}\right)+} \\
&+ \frac{J_{1}}{2}\left[\left(C_{j+4} X_{j+1}-C_{j-4} X_{j-1}\right)-\left(C_{j+1}-C_{j-4}\right) X_{j}\right] . \\
& \text { Following } / 1 / \text { we construct the functional: } \\
& \tilde{H}=\langle\Psi(t)| H|\Psi(t)\rangle= \\
&= T+U-\mu\left(X+X_{4} \cos \Omega t\right) \frac{N}{2}+\mu\left(X+X_{1} \cos \Omega t\right) \sum_{j} C_{j}^{*} C_{j}- \\
&-\frac{J_{0}}{2} \sum_{j}\left(C_{j}^{*} C_{j+4}+C_{j+4}^{*} C_{j}\right)+\frac{J_{1}}{2} \sum_{j}\left(X_{j+4}-X_{j}\right)\left(C_{j}^{*} C_{j+1}+C_{j+4}^{*} C_{j}\right)
\end{aligned}
\end{align*}
$$

which plays the role of the classical Hamilton funotion in terms of the canonioally conjugate variablea X_{y} and P_{f}. The corresponding Hamilton equations have the form:

$$
\begin{align*}
\dot{x}_{j}= & \frac{\partial \tilde{H}}{\partial P_{j}}= \\
\dot{P}_{j}= & \frac{P_{j}}{m} \tag{10}\\
\partial \tilde{H}_{H}= & -m V_{0}^{2}\left(2 X_{j}-x_{j+4}-x_{j-1}\right)- \\
& -\frac{J_{1}}{2}\left[\left(C_{j+4}^{*} C_{j}+C_{j}^{*} C_{j-1}\right)-\left(C_{\partial_{+1}}^{*} C_{j}-C_{i}^{*} C_{j+1}\right)\right]
\end{align*}
$$

Eliminating \dot{P}_{j} from the system (10) we obtain the equations:
$m \frac{\partial^{2} x_{j}}{\partial t^{2}}=m v_{0}^{2}\left(x_{j+4}+x_{j-4}-2 x_{j}\right)+$

$$
\begin{equation*}
+\frac{J_{1}}{2}\left[C_{j}^{*}\left(C_{j+1}-C_{j-1}\right)+C_{j}\left(C_{j+1}^{*}-C_{j-1}^{*}\right)\right] \tag{11}
\end{equation*}
$$

The two terms in the right-hand aide of (11) deacribe the actions of different elastic forces upon the f 'th atom from the deformed lattice. The first one is connected with the kinetic degrees of freedom in the undistorted lattice and the second originates from the deformation due to the epin deviation.

The equations (9) and (11) allow one to find the atom displacements X_{j} and the arplitudes $C_{\mathcal{H}}$ which determine the dietribution of the excitation along the chain. We shall eeek for this set of equations in the most interesting case when the aize \mathcal{L} of the lattice deformation is mach larger than the lattice constant $(\mathcal{L} \gg 1)$. Then we can go over to a continuum approximation, 1.e. we can oonsider X_{j} and c_{j} as smooth functions of the continuous variable ξ. So $X_{j} \rightarrow X(\xi, t), \sigma_{j} \rightarrow c(\xi, t)$. Then the set of equations (9) and (11) can be replaced by two differential equations:

$$
\begin{align*}
i \hbar \frac{\partial C}{\partial t} & =\left[T+U-\mu\left(\frac{N}{2}-1\right)\left(\partial+X_{1} \cos \Omega t\right)\right] C- \\
& -\frac{J_{0}}{2}\left(2 C+\frac{\partial^{2} C}{\partial \xi^{2}}\right)+J_{1} C \frac{\partial x}{\partial \xi} \tag{12}\\
m \frac{\partial^{2} x}{\partial t^{2}} & =m V_{0}^{2} \frac{\partial^{2} x}{\partial \xi^{2}}+J_{1} \frac{\partial}{\partial \xi}|C|^{2} \tag{13}
\end{align*}
$$

Looking for a solution of the latter equation in the form of excitations which propagate along the chain with constant velocity ∇, we assume $X=I(\xi-\nabla t)$ and get from (13) that

$$
\begin{equation*}
\frac{\partial x}{\partial F}=-\frac{J_{1}|C|^{2}}{m V_{0}^{2}\left(1-\beta^{2}\right)}, \beta=\frac{V}{V_{0}} \tag{14}
\end{equation*}
$$

We see that under this assumption $|C|^{2}$ is a function of one argument (ξ - $v t$) only. The equation (14) has a plain phyeical meaning. The deformation $\frac{Q X}{\square \xi}$ ia proportional to the probability diatribution $|C|^{2}$ of the spin excitation along the obain. The coefficient for $|C|^{2}$ represents the total change of the length of the chain. One can see it easily taking into acoount that $\int|C|^{2} d \xi=1$ according to (8). Inserting (14) into (12) we get the following nonlinear equation:

$$
\begin{align*}
i \hbar \frac{\partial C}{\partial t}= & {\left[T+U-\mu\left(\frac{N}{2}-1\right)\left(\lambda+X_{4} \cos \Omega t\right)-J_{0}\right] C-} \\
& -\frac{J_{0}}{2} \frac{\partial^{2} C}{\partial \xi^{2}}-\frac{J_{4}^{2}}{m V_{0}^{2}\left(4-\beta^{2}\right)}|C|^{2} C \tag{45}
\end{align*}
$$

$$
\begin{equation*}
T+U=\frac{J_{1}^{2}}{2 m \xi^{2}} \frac{1+\beta^{2}}{\left(1-\beta^{2}\right)^{2}} \int_{-\infty}^{\infty}|C(\xi, t)|^{4} d \xi . \tag{16}
\end{equation*}
$$

The exact solution of equation (15) which vanishes at infinity has the form:

$$
\begin{equation*}
C(\xi, t)=\frac{1}{\sqrt{2 L}} e^{i\left(x \xi-\omega t-\alpha \sin \Omega t-\varphi_{0}\right)} \operatorname{sech} \frac{\xi-\gamma t-\xi_{0}}{\mathcal{L}}, \tag{17}
\end{equation*}
$$

where $K=\frac{\hbar V}{3_{0}}$ coincides with the wave vector of the free magnon with velocity $v\left(\frac{\hbar^{2}}{J_{0} a^{2}}=m^{*}\right.$ being the effective mass of the magnon), $\mathcal{L}=2 m V_{0}^{2}\left(1-\beta^{2}\right) J_{0} J_{4}^{-2}$ is the size of the region where the probability distribution of the excitation differs essentially from zero,

$$
\hbar \omega=T+U-\left(\frac{N}{2}-1\right) \mu X-J_{0}+\frac{\hbar^{2} v^{2}}{2 J_{0}}-\frac{J_{1}^{4}}{8 J_{0}\left(m v_{0}^{2}\right)^{2}\left(1-\beta^{2}\right)^{2}}
$$

$\alpha=-\left(\frac{X}{2}-1\right) \frac{\mu X_{1}}{\frac{1}{n}}$, and ζ_{0} and ξ_{0} are arbitrary oonstante which can be determined by the initial conditions.

$$
\text { For } T+U \text { from (16) by means of (17) we obtain: }
$$

$$
\begin{equation*}
T+U=\frac{J_{1}^{4}}{12\left(m v_{0}^{2}\right)^{2} J_{0}} \frac{1+\beta^{2}}{\left(1-\beta^{2}\right)^{3}} \tag{16a}
\end{equation*}
$$

and therefore for the energy $E \equiv \hbar \omega$ we get finally:

$$
E=-\left(\frac{N}{2}-1\right) \mu X-J_{0}+\frac{\hbar^{2} v^{2}}{2 J_{0}}-\frac{J_{1}^{4}}{24 J_{0}\left(m v_{0}^{2}\right)^{2}} \frac{1-5 \beta^{2}}{\left(1-\beta^{2}\right)^{3}} \cdot(18)
$$

magnon energy. In particular, the soliton rest energy (rwo) is separated by a gap

$$
\Delta E=\frac{J_{1}^{4}}{24 J_{0}\left(m v_{2}^{2}\right)^{2}} .
$$

So, the solitary atate considered is more favourable. If $J_{4}=0$ the energy given by (18) coincides with the low-lying energy spectrura, found in $/ 5 /$.

It is interesting to note that because of the identity

$$
e^{ \pm i \alpha \operatorname{Sin} \Omega t}=\sum_{-\infty}^{\infty} J_{m}(\alpha) e^{ \pm i m \Omega t}
$$

($J_{m}(\alpha)$ being the Bessel functione) the solution (17) can be presented as a linear one-soliton superposition:

$$
C(\xi, t)=\sum_{-\infty}^{\infty} \frac{J_{m}(\alpha)}{\sqrt{2 L}} e^{i\left(x \xi-(\omega+m \Omega) t-\varphi_{0}\right)} \operatorname{sech} \frac{\xi-y^{t}-\xi_{0}}{\mathcal{L}} \cdot(17 a)
$$

Finally, the authors would like to thank Dr. Kh.I. Pushkarov for many valuable discussions.

References

1. D.I. Pushkarov, Kh. I. Pushkarov phys.stat. sol.(b) 81, 703 (2977).
2. D.I. Pushkarov, Kh.I. Pushkarov ICTP, Trieste, Internal Report IC/77/139.
3. B. Lieb, T. Sohulz, D. Mrttis Ann. Phys. 16, 407 (1961).
4. S.A. Pikin, V. M. Tsukernik Zh. Ekep. Teor. Fiz. 50, 1377 (1966). 5. V.M. Kontorovich, V.M. Tsukernik Zh.Eksp.Teor. Fiz. 62, 355 (1972).

Received by Publishing Department on December 18, 1978.

[^0]: 1 Institute of Solid State Physics, Sofia 1113, Bulgaria.
 ${ }^{2}$ Faculty of Physics, University of Sofia, Sofia 26, Bulgaria

