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ConuroHHble MBI‘HOH—(:)OHOHHI:IB COCTOMIHHA B JIHHeHHOH
MaTrHHTHOH Uernoudke X-Y

PafoTa nocpslleHa HCC/AeIOBAHHI0 MATHUTHBIX BO30yXdeHHi B NuHeHHOH
Hemo4ke YaCTHL CO cmiHOoM 1/2 c© yuerom nedopmanuu, llenr paboTbl - BhigC—
HHTHL BIWsIHMe OedOpMALMH HEeNOYKH Ha CBONCTBAa MAaTHHTHbIX BO3ByXIOeHRH.
PaccMaTpnpaeTcs npocTeiillas TOYHO peluaemMasi MATHHTHAS MOAE/b. - “MoAelb
X-Y”. [No oTHoweHuo X KoneGaHuAM LENOYKH HCHOAb3yeTCsH KBa3ukilacCHYe—
ckuft mooxoa. [lokazaHo, 9TO B Takof MOAeaM MOLYT CyuwiecTsaBaTe BO36yxae-
Hus CONMMTOHHOrO THIA, NpencTrab/siollde cofo# CaMOcCOr/iacoBaHHbie CBA3aH-
Hble COCTOSIHHS MATCHOHOB M (OHOHOB. DT BO3OYXOEHHS PACIPOCTPAHAITCH
BOONL LEMOYKH C MOCTOSHHOH CKOPOCTB H 6e3 pasamblTEd, MX aHeprusa MoxeT
nexaTb HHX¥e 2Hepruu CBOBOOHBIX MarCHOHOB.

Pa6ora BemmonHeHa B Jla6oparopui TeopeTuveckoit ¢nauke OUAH.

Coo6menne OBbeanHEHHOrO WHCTHTYTA AnepHbiX uccrenosanuil. [Qy6ua 1978
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Scolitary Bound States Between Magnons
and Phonons in a Linear X-Y Magnetic Chain

It is shown that in a linear magnetic chain solitary
excitations can exist as selfconsistent bound states bet-
ween the spin deviation and the lattice deformation. Such
excitations can move along the chain with constant velocid
ty without smearing. The energy of the excitation can lie
lower than the free magnon energy.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Communicotion of the Joint institute for Nuclear Research. Dubno 1978

©1978 O6veanHeRHbLIA HACTHTYT sAepHbix HccJeaoBanad [ly6Ha

A/

It was shown in and /2/ (in the quasiclassical and
quantun-meohanical consideration, respectively) that in a one-di-
mensional ferromagnetic ohain of the Heisenberg type not only or-
dinary but also solitary magnons (or briefly "solitons") can
exist and propagate along the chain with constant velocity with-~
out smearing. The present paper is devoted to the investigation
of the analogous problem in the case of the so-called X-Y model
/3/ in the presence of a constant magnetic field :( and a vari-
able magnetic field H,wsat in the direction of axis Z. We shall
follow the quasiclassical way of conaideration /1/; by a straight-
forward examination one can see that the consistent quantum
treatment /2/ leads to the same results.

Let us write the Hamiltonian of the chain in the nearest-

neighbour approximation in the form:
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where !u is the magnetic moment, and J(X'.m- X,) is the exchange

(1)



integral whose value is determined by positions of the atoms at
the nearest neighbouring sites in the chain () and 3j+1). T and U
are the kinetic and potential energy of the chain, respectively:

t ]
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Here m 1is the mass of the atom, Yo is the sound velocity; for
U the harmonio approximation is taken, and the lattice conetant
04 18 assumed to be equal to 1 for simplieity.
The oyclic components of the spin vector S S:_l

S -_ - S S+ (S = -L) can be expresesed by the Fermi creati-
on a and annihilation aj operators as follows /4/:

S;= a}ﬂ‘(q-za:a,), S n(4 -2.0° m) . (9)

n<}

For the exchange integral we can use the linear approxi-
mation with respect to the atom displacements:

3(X3,,.’X‘-) = :]o— Ja (x‘in' XJ) , (%)

0J
where ﬂ‘e-m >0 { J decreases when the distance

between the atoms 1m‘:reasea).

By means of (3) and (4) the Hamiltonian (1) turne into:
HeT+U-p (e Hont) Xy
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where N is the number of the atoms in the chain.

We shall seek for the solution of the SchrBdinger equaticn

harlemd = Hivind (6)

in the following structure:

P = 55: C,lt) af o) )

and normalized by the ocondition:

Qymle)y = L lcm) - 1. ®)

Substituting of the Hamiltonian (5) and the wave function
(7) into the Schrddinger equation (6) leads to the following set

of equations for the coefficients C(t) :

it%& [T+ U -l ) (X Rueost)] ;- 3 (G G e
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Following /1 we construct the functional:

H= 9| HIYRY) =
=T+(- )M('K +§, cosat) 3 fr(x*x~c°5“t)}d:q(ﬁ_
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which plays the role of the classical Hamilton funotion in terme
of the canonioally conjugate variables I, and P,. The cerrespon-

ding Hamilton equations have the form:
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Eliminating ﬁd from the system (10) we obtain the equations:

X .
™ -Q)Jt"‘- = mY% (Kt K- 1%) +

(11)
t % [C: (Cau' Cia) + € (C:“ - C:_4 )] .

The two terms in the right-hand side of (11) describe the
actions of different elastic forces upon the J’th atom from the
deformed lattice. The first one is connected with the kinetic de-
grees of freedom in the undistorted lattice and the second origi-
nates from the deformation due to the spin deviation.

The equations (9) and (11) allow one to find the atom
displacements xJ and the anmplitudes c: which determine the dis-
tribution of the excitation along the chain. We shall seek for
this set of equations in the most interesting case when the size
5£ of the lattice deformation is much larger than the lattice
constant (i >> 1). Then we can 80 over to a continuum approxima-
tion, i.e. we can oonsider }Ij and (:j as smooth functions of the
continuous variable g . So Ty~ X( s,t), Cy—> &( §+t ). Then

the set of equations (9) and (l1) can be replaced by two differen-
tial equations:
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Looking for a solution of the latter equation in the form
of excitations which propagate along the chain with constant ve-
locity v, we assume X = x(§ - vt) and get from (13) that

_Qﬁ__ J{lcl’ '_\L
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We pee that under this assumption |C|" is a function of one argu-
ment (§ - vt) only. The equation (14) has a plain physical meaning.
The deformation {3 X, is proportional to the probability dist-
ribution ‘Cll of the spin excitation along the chain., The coeffi-
clent for lCl‘ represents the total change of the length of the
chain. One can see it easily taking into account that ‘“Cl,ﬂs =]l

acoording to (8). Inserting (14) into (12) we get the following
nonlinear equation:

it [Ty -p L) Heosat)- T -

T, A%C 3. (15)
" w0

where T + U 18 given by
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The exact solution of equation (15) which vanishes at

T+«U-

infinity has the form:
i(xs-wt-asinat-y, -vt-s,
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where Ks - coincides with the wave vector of the free magnon
with velocity v (i;§%=7n being the effective maes of the mag-
non), i, q_hv.‘ (4-Pl)3.3;" is the size of the region where the
probability distribution of the excitation differs essentially

from zero,

hw=-T+7

y
AT TR S S
-(_2.‘-4))‘ ot 1Js - \2 1’
83 (’mV,) (1-p*)
d-—(i-l)”—x‘ bit tants waich
3 30" and ‘¢, and g. are arbitrary constants whic
can be determined by the initial conditions.

For T + U from (16) by means of (17) we obtain:

. 7, It p
T-U 49-(mv‘.’1‘11 T, 4-p2)3 (t6a)

and therefore for the energy E!ﬁw we get finally':

v 0] 4sp
2.3 T and, (mv2) (- p*P )

E=-(3-4)pd - 3o

If v is small enough, the energy E 1lies lower than the free

———a

magnon emergy. In particular, the soliton rest energy (7-0) is
separated by a gap y
o ... E—
24 Jo (w2}

So, the solitary state considered is more favourable, If 3 =0 the

energy given by (18) coincides with the low-lying energy spectrun,
found in /5/

It is interesting to note that because of the identity

Tl Si oo +4 _Q_t
et asmat ) Z 3“(0‘) ¢ inm

(d,(el) being the Bessel functions) the solution (17) can be pre-

Sented as a linear one-soliton superposition:

C(g.’()=i‘3’v§"‘ f“gh(mm)t%) stch % - (130)

Finally, the authors would like to thank Dr. Kh.I. Push-

karov for many valuable discussions.

References

1. D.I. Pushkarov, Kh,I. Pushkarov phys.stat.sol.(b) 81, 703
{1977).

2. D.I. Pushkarov, Kh.I. Pusihkarov ICTP, Trieste, Internal Re-
port 1C/77/139.

3. E. Lieb, T. Schulz, D. Mattis Ann. Phys. 16, 407 (1961).



4. S.A. Pikin, V.M. Tsukernik Zh.Ekep.Teor.Fie. 50, 1377 (1966).
5. V.M. Kontorovich, V.M. Teukernik Zh.Ekep.Teor.Fiz. 62, 355

(1972).

Received by Publishing Department
on December 18, 1978.



