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T- ManHqHHﬁ pacyerT Y3KO3OHHOTO ¢epp0MarHernsma B chnilapax
C HeauarohnalbHbRM seCnOpﬂJKOM

Hecneayercs monepedyHad BOCMPHIMYUBOCTL CIHHOBOTO TOKa B HEYNOps-
nogenHbix xabbapacBCkux deppomarHeTHKaXx Ha OCHose ypaBHeuusa runa Bere-
Connurepa. Bkian B kecadduLHeHT CHUHBOMHOBON XeCTKOCTH, 08YC.10B/I12HHbBLI
MarHOHHLIM pacesHieM, YYHATHIBASTCSH INYTeM yCPeAH2HHSl HeAHar OHAIBLHOTO
Gecnopsizka B anAuTuBHOM Npeaedne. [lpeacTasnedrl caMocCoriacoBatHbie HHC=
JleHHble PEeleHHS B KOMepeHTHOM JIeCTHUYHOM MpuGIiKeHur B PeppoNarHUTHON
base ans naoTHocTell COCTOSAHMIl, COBCTBEHHBIX PHEPruil B NOKAJBLHBIX ABYX=
yacrnunrix T~maTpun, He Koskperuowm npumerneHuuw 1ns cniasas NiPt
HIACTPHPYIOTCA 35¢eKTH 2NeKTPOHHBIX Koppeaguuli 4 caydaillHbIX #HTerpasios

nepeckoxa.
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The transverse spin current susceptibility of disor-
is examined employing a Bethe-
Salpeter~like equation. A magnon scattering contribution
to the spin wave stiffness coefficient is deduced by ave-
raging out off-diagonal disorder inm the additive limit.

Self-consistent numerical solutions of the coherent ladder

dered Hubbard ferromagnets

approximation are presented

densities of states, self-energies, and local two-particle

T-matrices. The application

effects of electron correlations and random hopping integ-

rals,.
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in the ferromagnetic case for

to NiPt alloys brings out the

1. INTRODUCTION

The ferromagnetic state in transition metal al-
loys is strongly affected by off-diagonal disorder
provided that, e.g., 3d- and 5d- substituents par-
ticipate in the itinerancy. Attempts to calculate
the spin wave stiffness constant D (i.,e., the magnon
energy o, =Dq”? for small @) for such systems require
the simultaneous treatment of off-diagonal random-
ness and electron-electron interaction within a
tight-binding model. Working along this line a ran-
dom phase decoupling scheme was proposed in 71/
which makes an additive ansatz for the hopping
integrals and circumvents the coherent potential
approximation ( CPA). Using the Hartree-Fock appro-
ximation (HFA) for the Hubbard-type interaction an
additional magnon scattering contribution toD was
derived in”/ for a general type of off-diagonal
disorder. In the approach”/ D was renormalized
by vertex corrections due to the random transverse
spin current and by electron-electron correlations
within the coherent ladder approximation (CLA)“4/
where the off-diagonal disorder is restricted to
the additive limit.

In the present paper the average exchange stiff=
nessD in A/ is completed in the sense of /2/ by a
magnon scattering contribution, the explicit form
of which evolves from the additivity of the current
operator. Numerical CLA results reflecting the dyna-
mical aspect of the ferromagnetism are applied to
NiPt alloys. Here the emphasis is on the overall
self-consistency of the spectral Properties arising
?rom both one- and two-particle (T-matrix) scatter-
ings.
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2, CONFIGURATIONAL AVERAGE OF THE TRANSVERSE
SPIN CURRENT SUSCEPTIBILITY

The itinerant d —electron ferromagnetism in
A B1 c alloys can be founded on the Hubbard model
Hamlltonlan including both diagonal and off- -diagonal
disorder as
H{V}= s tel e, + 3 cl;n- +%U.n, . n, |, (1)
10
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where ci,(cw) is the creation (annihilation) opera-

tor for a spin o electron in the Wannier state at

lattice site i, and Ny, =Ci Ci . For the alloy

. . . . v
configuration {v} the hopping integrals t? s, the
atomic energy cz » and the intraatomic Coulomb
interaction U? are labeled by . (y) referring to

the atomic species (yv=AB) located at site i().

To examine the dynamics of the ferromagnetic state
we first consider at zero temperature the transverse
spin current-spin current response function /3/
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Here N is the number of lattice sites, the trace
means summﬁflon (without spin) over the one-particle

states, o 1s the one-particle causal Green
functlon within {} , and<...> denotes the confi-
guration average. The effective spin-flip vertex
AV} satisfies the integral equation
5
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and ﬁ, is the position vector. The irreducible
particle-hole vertex IV is assumed to be site-
diagonal. Taking (2) to order ¢¢, i.e., putting

"’(*)3 P nd A‘:’f(EEm 1) -a-A+, (EE +0) , we get with
(3) and (4) by using cubic symmetry the following
expressions:
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In an earlier study”3 the contribution (6) was
neglected by a factorization ansatz. To give a
lowest-order estimation of the vertex corrections

hidden in QJ‘ we expand the random quantities
around their conflgurafﬂon averages. Moreover, we
make the replacement v <U >, =-U (or one may

A?‘|,‘|,‘?
. . 1 %4
choose an appropriate T-matrix value - <T/>, ).

Then by performing a double Fourler transform we

> {vl -{v} —igR;
solve (7), yielding A» o ?A 8 in first
=1l T
order of j as
Gy e @ Mg -
qty N x om k+qt 4 %E k.
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where go(@=<G;(m>c 1s the averaged Green function.

In order to get the simplest non-trivial ?pprox1—

mation of §+_ we have to replace the G in (6)

by ga s SO0 that we are left with fluctuatlng terms
in the second order. Thus, in momentum representa-
tion, (6) reads

~ +- i dE& 1 > vl > il
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By inserting (9) into (10) we arrive at
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Within the HFA treatment ?/ ap expression ana-
logous to (11) was derived in the weak-scattering
approximation, and the correspondence with virtual
magnon scattering processes was discussed, Accord-
ing to the spatial inhomogeneity of ETH , the
vertex correction in (11) appears as a consequence
of the off-diagonal randomness. For pure or only
diagonal random systems the result (11) tends to
zero due to time-reversal symmetry.

Let us carry out the configurational averaging
in (11) for an alloy with off-diagonal disorder
in the additive limit

.
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where only nearest-neighbour (n.n.) transfer in-

tegrals t f (short1¥ tV”) are included {%h'f

allows us to write vk = O J“)V with jDW 2 jgﬁvi
s(hivi

where only the random part J()V gives a nonzero

contribution to (ll). The current TUﬁ? obtained

from (8) and (12) takes the Fourier transform
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where
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In view of (11) we must average products of the

type 2<&k1ﬁ1w|k+q <k+qwnvm > According to the off~-
diagonal CPA/m/tbe decoupling scheme
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leads with (13) and (14) to
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(16)

-

2 - 5 -
Be . ,
=N<t' >, (V;s(k)+VK+ ({S(k+Q))(V§,+i>S(k +q)+V1?,s(k ).

The terms m#n in (15) give rise to 2<<k“()”m+q>>_
=c(tAA )NB* V*s@) not contributing to (11),

because V*S¢) is an odd function of E. Substitut-
ing (16) 1into (11) we find
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In the spin wave problem, we are interested in
the magnon energy quDq2valid for small q. The spin
wave stiffness constant D defined in general in/6/
(cf, 7 ) consists now of two terms

D=D - —1 _lim 1lim 7@ w) (18)
0 Ny-D, @w-0 q-0 I

corresponding to the so-called 72/ average exchange
and magnon scattering contributions. By taking into
account CPA vertex corrections originated from of f-
diagonal disorder of the type (12), the explicit
form of D, was derived to be /3/
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The quantities invloved in (19) and (20) are given
below, and E*=E+i0. The second term of (18) {g
available from (17). It represents the vertex cor-
rection resulting from the interplay hetween inter-
action and off-diagonal disorder, provided that

the spin wave is scattered by an inhomogeneous me-
dium.

3., COMPUTATIONAL METHOD

The dynamics of the electron system in the ferro-
magnetic phase will be investigated in detail by
an energy-dependent renormalization of the spin-
band splitting. Adopting the CLA scheme 4/ we can
summarize the basic formulas as follows

G, (@-(2-B-1PBs®)-% (K,2) . (21)
ko
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Here we introduced the coherent self- energy 21 @ z),
the one-~particle scattering matrix parts r (n
given explicitly in/*/ the correlation- condltlon-
ed self-energy EUHJEL the two-particle T-matrix
TY(E+E’), the partially averaged Green functfon

1
Glho(E) the average number of electrons per site



(per site per spin)lﬂna) and the Fermi energy .

The functions op, (2) are determined by the off-dia-

gonal CPA coupled conditions (23), which contain
the renormalized atomic potential ?;(z) (bare va-
lues are denoted by e =¢V).

To simplify matters, we choose the density of

states and the mean-square velocity over a constant-

energy surface related to the unperturbated pure
B-band as

Y
Lys@m-eB)-—2 (1-(E 2" gw B _ \E[), (30)
N E k ﬂWB WB
B2 2 38/2
Lsam- v, 2% 2 1 (E5)YF pwBim), (31)
Ny k K K nw B wB

-0, w2-6t2%is the half-bandwidth

within a s¢c n.n. model, and vﬁ is of order wPa
(a:. lattice constant). By means of (31) the K -
summation in (20) can be rewritten, using (21) and
(22), in the form
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The functions H,,-(E ,E )can be calculated by the
residue method. Hence, in the spin-flip case, it
results

Hop =AW 4w oW 4w (33)
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where Wi, , etC., argkobtained by interchanging the
labels, and 010 “91,(E). Besides, the analytical

expressions of H&W(EtE+)and ﬁa(E+)are available from

the conductivity treatment A/ by adding spin indi-

ces;ﬁa(E+) as well as FE, (2 in (28) can be found
analytically on the basis of (30).

4. NUMERICS AND DISCUSSION

Now we compute self-consistent ferromagnetic
solutions of the CLA scheme (21) to (29), completed
by the assumption (30), for suitable values of the
input parameters wA(=6tA%), wB 6 A, 0¥ (=U%), ¢, and n
The average electron number with spin ¢ at v sites
can be evaluated from

u u
n” - i o (E)dE:—;l- r EImG (E'), (- A,B), (38)
where pZ(E) is the partially averaged spin-depen-
dent density of states.

The numerical example of Fig.l gives HFA results
in the case of only diagonal disorder (wh-wB_w),
vHF
Uiio
instead of (25) and (26), both 04, andoy, vanish.

This means that the self-energy X =UVn:,appears

1"



Fig.l. a) Spin wave stiffness constant D,

b) Fermi energy 4, c)dc conductivity o, and

d) partial magnetizations mY versus the scatter-
ing itgength&:eA—eB for two AB, ., alloys with

(w, UA UB )= (1, 25,4.2,0.3).

Fig.l shows the stiffness coefficient D in units
of d0=%—wf,the Fermi energy p»> the partial magne-

tizations m“=n%-n", and the spin up conductivity
. N
gliven at zero temperature by

o :Sn[zamam(J))2+—-l-T)Re{i\/1-2fi(1_z“‘$)+-3£4mao,(;))z], (39)

ImaO‘r“
where £¢=u+—obﬁuﬂ,and ;:é%vg)zN/3n2V. V is the
volume of the system, Note that g,=0,
arising from the saturated magnetism, There

12

holds D>0 and m>0 (m=<mV>c:cm%(LcmPLsothat the cri-
terion for stability of the ferromagnetic ground
state against spin wave excitations is fulfilled.
In Figs. 2 - 5 we are trying to model Pt Ni _,
alloys, as an appropriate object for CLA calcula-
tions in the presence of off-diagonal disorder, by
adopting the pure values (cf. /8/) (2WPE,2WNi,eP‘—eNi

Pt Ni P .
UT, U7 ) =(7.8,4.15,0,6.61, 14.1) eV, and n''- 0.4, n =0

corresponding to the number of d-holes per atom.
In alloying n=cnP'+(1-¢)nViis fixed for a given con-
centration c.

The calculated densities of states pz and p_=
=<pg>c 1in Fig.2 and Fig.3 illustrate the variation
of the spin band splitting with ¢ in the case of
off-diagonal disorder. The two-particle correlations
provide large tails with small humps, especially
for the minority spin(,) electrons. According to
the degree of saturation the shape of the spin +
band is weakly affected by correlations. In Fig.3
and Fig.4 we present at ¢=0.175 in more detail the
spectrum resulting from the self-consistent CLA
computation. In this nearly saturated case the
imaginary parts of the retarded self-energies o, (E)
and Xy (E) indicate the distinct damping of the elec-
tron states with spin t and ,, because only elec-
trons with antiparallel spins interact. Note that
Fig.4 exhibits, in units of 2wB, the retarded func-
tions EEAE) and T'(E)ascribed to the causal functions
in (25) and (26) (site index i is omitted). One
sees that the effective local vertices TY(E) produce
the damping effect on EséE)and p:(E) in the two-
particle region.

In Fig.5a the reduced values of the effective
Coulomb interaction TY(2) are drawn as a function of
composition of Pt Nij ' alloys. The absolute values
of TV (2) decrease with ¢ from 6.5 eV to 3 eV, i.e.,
the bare value UM jis diminished by a factor of
about 4. The transition from ferromagnetism to pa-
ramagnetism connected with a critical concentrati-
on is pointed out by means of the stiffness coef~-

13
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Fig.2., Electron densities of states p” (E) (v=AB)
and p,(E), averaged partially and totally, resp.,
for an Ay 1Bg.g alloy with the set(2wA,2meA~eB
Ut UP)-(188, 1, 0, 1.59, 3.4).

3

ficient D, (Fig.5b) and the spin-dependent carrier
densities n) and n, (Fig.5c). Contrary to the HFA
values, the CLA results of Dgin Fig.5b show a peak
at €.r and refer to ynstable ferromagnetic solu-
tions for ¢=0.35and ¢=0.5 in Fig.3. A critical con-
centration of about c,, =42 at .7 Ni in Pt is confirmed
theoretically 8.9/ and experimentak}y/mﬂ Note
that correlations lead to DNfS%meVAﬂn&ﬁﬁx.whereas
the HFA result for the same parameters is about
two times greater.

In the numerical work only the average exchange
stiffness Dy was included. By taking into account
the magnon scattering contribution (17) to (18)
one may expect near ¢, a smaller D-maximum.
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Fig.3, Component densities of states pY (E)

at various concentrations ¢; alloy density
of states p_(E) , real and imaginary parts of
the coherent self-energy contribution ¢ (E)
at ¢=0.175. The parameter set is the same as

in Fig.2. -
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Fig.4. Real and imaginary parts of the self-
energiesEGJE)and effective vertices TVY(E)
caused by electron-electron correlations;
¢=0.175, the other parameters as in Fig.2.
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Fig.5. a) Effective Coulomb interactions

T (2), b) spin wave stiffness constant

Dy(® compared with HFA results (A) , c) par-
tial and total carrier densities n’, andn, (0)
versus ¢ for Pt Ni; ,alloys corresponding
to the parameter set in Fig.2.
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