ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 ЯАЕРНЫX
 ИССАЕАОВАНИЙ

AYБHA

F-33
E17-12025
$909 / 2-79$
V.K.Fedyanin. G.M.Gavrilenko

A DYNAMICAL STATISTICAL APPROACH
FOR DESCRIPTION OF MOTION
OF A FAST PARTICLE THROUGH A CRYSTAL

E17-12025

V.K.Fedyanin. G.M.Gavrilenko

A DYNAMICAL STATISTICAL APPROACH FOR DESCRIPTION OF MOTION OF a fast particle Through a crystal

Submitted to $\triangle A H$ COCP

Федянин В.К., Гавриленко Г.М.
Динамико-статистический подход к описанию движения бистрых частиц сквозь кристалл

Получено кинетическое уравнение для функции распределения частищи большой эчергии, каналирующей сквозь кристялл

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978
Fedyanin V.K., Gavrilenko G.M.
E17-12025

A Dynamical Statistical Approach
for Description of Motion of a Fast Particle Through a Crystal
A general scheme for the description of a fast
charged particle motion through a crystal is suggested. The starting point for the theoretical investigation in this approach is the distribution function $f\left(z_{i} \psi S_{\perp}\right)$. The parameters $\psi, \quad \mathrm{z}, \mathrm{s} \downarrow$ are phase-space variables of this problems. As a result an exact formal equation for $f\left(z_{\psi} s_{1}\right)$ is obtained. The small parameters which occur in this problem are considered.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research.

A great variety of physical phenomena arises when an energetic charged particle falls into a cryatal at a small angle with reapect to a cryatal axis (axis channeling) or to a cryatal plane (plane channeling $)^{/ 1 /}$. Since the angle ψ and the across momentum of the incident particle are very amall, the particle wave vector corresponding to motion perpendicular to the direction of channeling ia very amall too. In other worde the phenomenon of motion of a fast particle in channeling is due to the near - forward acattering. That is why this motion can be very well deacribed within classical mechanica/2/. This allows us to develop an approach for the deacription of channeling uaing the diatribution function for the "small" subsyatem and the Hamilton equations of motion. Relativistic effecte can easily be included in thia approach. They lead only to renormalization of some parameters of the considered problem. Therefore we consider here the commonly suggested scheme for the description of a fast charged partjcle motion through a cryatal neglecting the relativiatic effecta.

The etarting point for the theoretical investigation in this approach is the distribution function $f_{\neq}\left(Z, \psi, S_{\perp}\right)$. It can be obtained from the distribution function of the whole system by integrating over the variablea of the cryatal subsystem

$$
\begin{equation*}
f_{t}\left(z, \psi, S_{\perp}\right)=\int d \sum f_{t}\left(z, \psi, S_{\perp}, \Sigma\right) \tag{1}
\end{equation*}
$$

where \sum is the set of phase-apace variablea of the crystal subsystem, i.e., $\left\{\vec{v}, \overrightarrow{z_{i}}\right\}, i=1,2, \ldots, N, \vec{v}_{i}$ is the velocity of an ion in the \dot{z}-th lattice site and $\overrightarrow{\mathcal{L}}$. is its apace coordinate.
S_{\perp} is the set of phase-space variables of the incident particle in the plane perpendicular to the direction of channeling, ψ is a parameter describing the energy distribution of incident particlea and t is the time.

The dynamics of the whole syatem is determined by the Hamiltonian function H.

$$
\begin{equation*}
H=\frac{v \mid \vec{v}^{2}}{2}+\sum_{i=i}^{i} V(\vec{B}-\overrightarrow{2})+H_{x p}, \tag{2}
\end{equation*}
$$

where M is the incident particle mess; \vec{V}, its velocity, H_{A} is the Hamiltonian function of the crystal subsyotem, V is the interaction potential between the incident particle and an ion of the crystal. The time evolution of the $\left(S+\sum\right)$ syatem is discribed by the whole Liouville equation:

$$
\begin{equation*}
\frac{\partial}{\partial L} f_{z}\left(s_{i}, \psi \Sigma\right)=\sqrt{1} f_{t}\left(s_{1} \psi \Sigma \Sigma\right) \tag{3}
\end{equation*}
$$

where iो is Liouville's operator of the (Sif 5) ayatem, defined as $\{t$,$\} , where \{$, $\}$ are Poisson's brackets. The aim of the present paper is to obtain a closed equation for the distribution function $\dot{f}_{t}\left(E \psi \Sigma_{2}\right)$. The atationary case of this problem is considered here, i.e., $f_{z}\left(\geq \psi \ddot{y}_{j}\right)=f\left(Z \psi S_{L}\right)$ doee not depend on time.

Let us introduce the new phase-space variablea $\psi, z, \vec{R}_{\mathcal{L}}, \vec{V}_{\perp}$; $\vec{R}=\left(2, \overrightarrow{R_{1}}\right) ; \vec{V}=\left(V_{N}=5, \psi, V_{N}\right)$. V_{0} is the velocity determined by the initial energy E_{c} of the incident particle. $v_{c}=\sqrt{\sum_{0}}$; By uaing the relation $\frac{1}{i}=-\frac{1}{r_{c} \sin t a}$ we can rewrite the atationary form of equation (3) in the following way
where

$$
\begin{aligned}
& A_{k \rho}^{\prime}=\sqrt{\frac{M}{2 E_{0}}} \frac{1}{2 i s \psi} \|_{\alpha p} \quad
\end{aligned}
$$

is the Liouville eperator of the crystal subsystem

is the Z-component of the operator deacribing the interaction between the incident particle and lattice.

$$
\begin{aligned}
& \ddot{H}_{\perp}^{\prime}=\sqrt{\frac{M}{2 E}} \frac{1}{\because 0, y^{\prime}} \cdot i_{\perp} ;
\end{aligned}
$$

is the transverae component of the aame operator. Equation (4) is like an ordinary Liouville equation in which z coordinate plays the role of the evolution parameter. Now, we shall use a modified version of the approaob/3/ suggested in paper/4/ to obtain a closed form equation for the dietribution function $\mathcal{f}\left(\underline{\mathcal{L}} S_{\perp}\right)$. The projective operator $\hat{\rho}_{o}$ is defined by the initial conditions which are obvious for the present problem:

$$
\begin{equation*}
f(z \psi, 5)=f(4, y)^{c}=\alpha(z) \tag{5}
\end{equation*}
$$

where $f(\psi)$ is the incident particle distribution function in $Z=0$, i.e., the initial distribution function of the particle. $\widehat{X}_{c}(\Sigma)$ is the Gibbe diatribution function for the cryatal subsystem.

$$
\text { So, as in } / 4 / \text {, the projective operators are }
$$

$$
\begin{equation*}
\hat{P}=\left(\hat{D}(\hat{D}) ; \quad \dot{D}=\mathcal{D}_{0}(\Sigma) \hat{B}\right. \tag{6}
\end{equation*}
$$

and the function is

$$
\begin{equation*}
\Delta\left(\Sigma^{4} s, 5\right)=\left(1-P_{0}\right] f(24=5) \tag{7}
\end{equation*}
$$

Notice that

Using equation (4) and definitions (6)-(8), we can easily obtain the following syatem of equations.

$$
\begin{aligned}
& +\left[n_{2, p}^{\prime}+n_{z}^{\prime}+\hat{N}_{1}^{\prime}\right] \Delta\left(z \times s_{1} \leq\right)+\left[n_{z}^{\prime}-\bar{n}_{z}+N_{1}^{\prime}-\hat{A}_{1}\right] \\
& \left.\times \dot{\alpha}_{0}(\leq) f\left(z x=\Sigma_{1}\right)-\dot{P}_{0} L \Lambda_{2}+\Omega_{L}\right] \Delta(z \psi=\Sigma),
\end{aligned}
$$

 The initial conditions for the system of equations (9) are:

$$
\begin{equation*}
f\left(z \psi s_{1}\right)_{z=0}=\psi_{i}\left(\psi s_{1}\right), \Delta\left(2 \psi \Xi_{1} z_{2}\right)_{2}=0 . \tag{10}
\end{equation*}
$$

Now, we solve this system of equations with initial conditions (10) for the function $f(Z \psi \leq ;)$, 1.e., exclude the function A from equations (9). As a result we obtain the closed equation for the distribution function $f\left(z \psi \therefore \because_{j}\right)$.

$$
\begin{aligned}
& \text { Let us consider the following equation: }
\end{aligned}
$$

The solution of this equation can be written using the T-exponent form of the operator $\hat{F}(\underset{\prime}{ })$ with respect to the z parameter:
$A_{0}(\psi-5)$ is any function.
Let us introduce the operator $\hat{\Gamma}(\geq)$ which is the inverse from the left T-exponent of the operator $c(\underline{x})$:

$$
\begin{equation*}
\left.\hat{T}(\geq) T r \times p / \int_{\theta}^{\underline{O}} \alpha(x) d \hat{z}\right]=1 . \tag{13}
\end{equation*}
$$

Then after this the following change of variables in the system of

$$
\begin{align*}
& \text { equation (9) is made } \\
& \qquad \mathcal{L}\left(z+S_{1} \Sigma\right)=T e x p\left[\cdot \int_{0}^{\dot{x}} \dot{x}(r) d r\right] \ddot{o}\left(z+\Sigma_{1} \Sigma\right) \tag{14}
\end{align*}
$$

For the function $\delta(z \psi \leftrightarrows, 5)$ ", we have

$$
\begin{align*}
& \times-D_{0}\left(\Sigma^{-}\right) f\left(\Xi_{2} \psi z\right), \quad d\left(z \psi s_{1} \leq\right)_{2=0}=0 . \tag{15}
\end{align*}
$$

And finally for $\Delta\left(\underline{L} \xi_{1} \leq\right)$, We obtain

$$
\begin{align*}
& \left.\Delta\left(z \psi s_{1} \Sigma\right)=\operatorname{Texp}\left[\int_{i}^{-\alpha} \hat{\nu^{2}}(\tau) d\right\rangle\right] \cdot \int_{0}^{s} \Gamma(\tau) x \\
& {\left[i_{T}^{\prime}-\bar{J}_{T}+A_{1}^{\prime}(T)-\bar{A}_{1}(T)\right] \cdot \dot{J}_{c}(\Sigma) f\left(T \psi \sum\right) d r \text {. }} \tag{16}
\end{align*}
$$

As a result, the following equation for $f\left(\geq \psi \xi_{\perp}\right)$ can be obtained

$$
\begin{aligned}
& {\left[n_{T}^{\prime}-\bar{A}_{T}+f_{\perp}^{i}(T)-\bar{n}_{1}(T)\right] \bar{D}_{L}(\Sigma) f\left(T+S_{\perp}\right) r T .}
\end{aligned}
$$

It is an exact equation describing " Z-evolution" of the incident particle. Howevar, it is a formal equation, because it is not elear how the introduced operators $\operatorname{Texp}\left[-\int_{r}^{x} \hat{R}(r) d r\right], \hat{[}(\gamma)$ operate upon functions. Thus it is very important to know the amall parameters which occur in this problem. They allow us to develop an expansion for equation (17) or for the syetem of equations (9).

The firet amall parameter is the effective parameter connected with the weakness of interaction between the fast particles and ions of the lattice. This can be explained taking into account that in classical mechanics the near-forward scattering is usually connected with the weakness of interaction between acatterer and scatterad syetems. This amall parameter is denoted by Σ. The second small parameter in this case is the angle between the direction of motion
of incident particie and the crystal axis or crystal plane. These amall parameters are the same for light or heavy particles.

$$
\psi n \lll \geq \text { is the effective parameter of smallness. }
$$

The initial energy of the incident particle in the channeling is high. Thus $E_{c} \cdots \Sigma^{i} \gg 1$, i.e., the initial energy of the incident particle is proportional to a large parameter.

For light particles the product ${ }^{-1} \frac{4}{2}$ can reasonably be supposed of the order of unity. In this case \tilde{y}_{2} is a large quantity and the terms with coefficients like $\sqrt{\frac{M}{2 E_{0}}}=\frac{1}{3 c}$ are proportional to another small parameter J^{7}. For light particlea

$$
V_{c}^{\cdots i}-\gamma<1 ; \quad \varepsilon^{-i} _\sim 1
$$

In the case of heavy particles the channeling parameter proportional to $\sqrt{\frac{M}{2 E_{0}}}$ can be not small enough and the terms with coefficients proportional to $\sqrt{\frac{M_{1}}{2 E}}$ become important. In thje case we propose the following relations

$$
\underset{o}{-1} 2-1 ; \quad P^{1}-\tilde{0}=1,
$$

where P is the incident particle momentum.
We thank Academician N. H. Bogolubov for helpfull diacussions.

References

1. P.S.Gemmell. Rev.Mod. Phys. V.46, No. 1 (1974).
2. J.K.Lindbard. Dan Vinensk Selsk. Mt.Fys.Medd. ₹. 34, No. 14 (1965).
3. H.N. Bogolubov. JINR, E17-10514, Dubna, 1978.
4. Г.М. Гав риленко, В. К. федянин. ОИЛИ, PI7-II948, Јубна, 1978.

Received by Publishing Department
on November 151978 .

