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A Dynamical Statistical Approach
for Description of Motion of a Fast
Particle Through a Crystal

A general scheme for the description of a fast
charged particle motion through a crystal is suggested.
The starting point for the theoretical investigation in
this approach is the distribution function f(zys,). The pa-
rameters ¥, 2% 81 are phase-space variables of this pro-
blems. As a result an exact formal equation for f(zys))
is obtained. The small parameters which occur in this
problem are cornsidered.
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A great variety of physical phenomena arises when an energetic
charged particle falls into a crystal at a small angle with respect
to a crystal axis (axis channeling) or to a crystal plane {plane

)/1/

channeling . Since the angle V’ and the across momentum of the
incident particle are very small, the particle wave vector corres-
ponding to motion perpendicular to the direction of channeling is
very small too. In other words the phenomenon of motion of a fast
particle in chamneling is due to the near -~ forward scattering.
That is why this motion can be very well described within classical
/2/

mechanics . This allows us to develop an approach for the descrip-
tion of channeling using the distribution function for the "small"
subsystem and the Hamilton equations of motion., Relativistic effects
can easily be included in this approach. They lead only to renorma-
lization of some parameters of the considered problem, Therefore we
consider here the commonly suggested scheme for the description of
a fast charged particle motion through a crystal neglecting the re-
lativistic effects.

The starting point for the theoretical investigation in this
approach is the distribution function [(ZJ{U, S.i) . It can be
obtained from the distribution function oftthe whole system

by integrating over the variables of the crystal subsystem

,l:(z,;o,gl) =5a/ZZ {(z,so;si,z), (1)



where Z is the set of phase-space variables of the crystal
subsystem, i.e., /‘V‘:Zj VSRS ‘-.’.,/V_. 5’: is the velocity of an
ion in the <Z -th lattice site and Z‘ is its space coordinate.

S_,_ is the set of phase-space variables of the incident particle
in the plane perpendicular to the direction of chenneling, ;U is a
parameter describing the energy distribution of incident particles
and Z is the time.

The dynamics of the whole system is determined by the Hemiltoni-

an function H
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where {VI is the incident particle mess; U/ , its velocity, J-L{,
is the Hamiltonian function of the crystal subsystem, I) is the
interaction potential between the incident particle and an ion of
the crystal. The time evolution of the ( S-Z2) system is discribed

by the whole Liouville equation:
? o — i flad 3
7{(%.5”.3 Z)— S ,[(J_L‘Vti—), (3)

where J'{ is Liouville's cperator of the (5+27) system, defined
aa{/v’, } » Where 2’ , f are Poisson's brackets. The aim of the
present paper is to obtain a closed equation for the distribution
function /! (2 ¥'%, ) . The stationary case of this problem is
considered here, i.e., / (29 )J) /(Z ¥ ) does not depend on time,
Let us introduce the new phase-space variables )" 3 ﬂ V.i H
g - (Z2, A ) = (Vs UZ/) . U, 1is the velocity determined
by the initial energy t‘. of the incident particle, 2, = 1/»%" R
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By ueing the relation ’T = we can rewrite the sta-
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is the Liouville eperator of the crystal subsystem
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is the Z ‘component of the operator describing the interaction

between the incident particle and lattice.
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is the transverse component of the same operator. Equation (4) is 1like
an ordinary Liouville equation in which Z coordinate plays the role
of the evolution parameter, Now, we shall use a modified version of
the approaoh/B/ suggested in paper/4/ to obtain a closed form equa-
tion for thne distribution function /(= ¥ S_L) . The projective :
operator /? is defined by the initial conditions which are obvious
for the present problem:

flaws ) = A5 )0 () (s)
).
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where [ (¥ ) is the incident particle distribution function in
Z2=0 , i.e, the initial distribution function of the particle.
‘Z‘,‘,(Z/) is the Gibbs distribution function for the crystal sub-

asystem,
So, as in/4/, the projective operators are
P Cime ), D(Z) P 6)
and the function is
A(2ws,5) = [1-R ]/ (2v,2), )
Notice that
EX'EY /”/(:%\,J“_ . (8)

Using equation (4) and definitions (6)-(8), we can easily obtain the

following system of equations.
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The initial conditions for the system of equations (9) are:

A2ws ) =@rsy) . Alews, ) 0. (10)
2=0 - C

Now, we solve this system of equations with initial conditions (10)
for the function /(2% <), i.e., exclude the function yal
from equations (9). As a result we obtain the closed equation for
the distribution function /(2 % %)

Let us consider the following equation:
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The solution of this equation can be written msing the T-exponent

form of the operator £ (Z’ with respect to the 7 parameter:

Nlevs, =) = Terp)- 5(@)# jz\(v\, 2 (2)

ﬁo ( 7" 5 —’—_) is any functior.
Let us introduce the operator / /2)which is the inverse from the

left T-exponent of the operator u(l'/’)

A
/=) /r’)\P g-(/‘ )n’c/: 7. (13)
Then after this the following change of variables in the system of
equation (9) is made

Az v 5,%) T(e”:[- \n»(’;f?)-‘//‘( o(zvs, ). o
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For the function 5(; 5, ) » we have
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As a result, the following equation for # (2 ¥ ij_,_) can be
obtained
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[~ T+ AT =4, ] D) [evys)dr,

It 18 an exact equation describing " 2 -evolution" of the incident
particle, However, it is a formal equation, because it is not elear
how the introduced operators |eIP[ S ,C(l‘ :ITJ LCI) operate upon
functions. Thus it is very important to know the small parameters
which occur in this problem. They allow us to develop an expansion
for equation (17) or for the system of equations (9).

The first smell parameter is the effective parameter connected
with the weakness of interaction between the fast particles and ions
of the lattice. This can be explained taking into account that in
classical mechanics the near-forward scattering is usually connected
with the weakness of interaction between scatterer and scattered
systems, This small parameter is denoted by & ., The second small

parameter in this case is the angle between the direction of motion

of ircident particle and the crystal axis or crystal plane. These
small parameters are the same for light or heavy particles.
$~m e« 1 : 7 1ig the effective parameter of smallness.

The initial energy of the incident particle in the channeling
is high. Thus [; gt i.e,, the initial energy of the
incident particle is proportional to a large parameter.

For light particles the product éfalf', can reasonably be sup-
posed of the order of unity. In this case 7/’: is a large quantity
’

- are propor-
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tional to another small parameter )°. For light particles

and the terms with coefficients like

/RN P gt ~1,

In the case of heavy particles the channeling parameter proportional

to I/'}:L can be not small enough and the terms with coefficients
£ —_—

proportional to ,/ .ﬂi: become important. In this case we propose
&

S Lo
the following relations

ot~ 1 ; P~ o =L,
where [> 1is the incident particle momentum.
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