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The Critical Exponents z anrl 'I for Two-Component 
Quantum System at Zero Temperature 

The dynamical critical exponent z and anomalous part of the 
dimension 'I are calculated for two-component quantum systems 
at T = 0 by using \Vilson's renormalization group method. The 
exponents z and 'I are found in the <2 approximation, where <=2-d 
and d is the space dimensionality of the system. The critical 
asymptotic behaviour of the dynamic susceptibility is also obtained. 
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1. INTRODUCTION 

Quantum effects in critical phenomena have been stu
died recently in a number of systems1 l a, b,3,-~. 5,9,11, l2a-e,l3, VJ/, 
At the present stage it is well known that at T f. 0 the 
critical behaviour of a quantum system is the same as 
the classical one since the quantum effects became 
irrelevant. Changes in the critical behaviour were found 
at T = 0 when a transition is induced by changing an ex
ternal parameter (e.g., the transverse field in an Ising 
or quantum X-Y model, etc.). A straightforward appli
cation of Wilson's renormalization group (RG) method/171 
encounters the difficulty of non-commuting operators. 
This difficulty can be circumvented by applying the func
tional representation for the partition function leading 
to the classical free-energy functional which the conven
tional RG method can be applied to. Whenever the Mat
subara frequencies enter into the problem in a form non
equivalent to wavevector components, a dimensional cross 
over from d to d + z 1\1 F arises when the temperature 
tends to zero. Here d is the space dimensionality of the 
system and z !\11' is the value of the dynamical critical 
exponent as applied to the T -~ 0 case in the "mean 
field" regime. 

Our interest is two-component quantum system such 
as an X-Y model or a Bose system. In this case zMF== 2 
and the expansion parameter for the fixed point "Hamil
tonian" and critical exponents is < = 2-d. It has been 
found/la,h, 3 / that at T=O for d;::2 the Gaussian mo
del "Hamiltonian" should describe the leading critical 
behaviour. 
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For d < 2 the system shows a nonstandard critical 
behaviour. It is interesting that although for d < 2 there 
exists the non-trivial stable fixed point, the critical 
exponents y and v have Gaus,ian v'lues ( y = 1, and 
v = 112 ) in the first order in £ 

1 a, b, 3 • In the present 
article we calculate in the lowest non-trivial order in 
f two other important exponents, the dynamical critical · 
exponent z and anomalous part of the dimension TJ I 2,8, 17 ~ 

2. THE FREE-ENERGY FUNCTIONAL 

The free-energy F of a quantum system can be 
written as follows 

-(iF = ln Tre-{:3H = C + lnfd(¢) e-s[¢] (2.1) 

where H is the microscopic Hamiltonian of the system, 
C is some constant non-•~sscntial in our consideration, 
S[ ¢] is the "action" functional of the system for the 
imaginary "time", d ( ¢) ... denotes the functional integral 
over ~assical fields ¢A. (k, w v) entering into the prob-
lem ( k and w = 2n-vT are the wave vector and Matsu-

v . 
bara frequency, respectively). For the two-component 
system we have two real fields or, equivalently, one 
complex field ¢ ( k, wv ). The functional S[ ¢] can be 
written in the last case as follows 

S[¢]=I-1---1- I J u2 <k
1 , ... ,k

2
,w , ... ,(tJ 

2 2n I -> ,. n n v v n=l (n!) f3 - v1 ... v2
nk1 ... K 20 

I 2n 

... ... 
o(k I+ ... + k

0 

4 4 Ro X 
- kn+l- ... -k2n)l-' IJI + ... +vn,vn+I+ ... +IJ2n 

~ ~ ~ 4 

X ci>*(k 1 , cq, ) ... cp*(k n, Wv ) cf> (kn+l• cq; ) ... cf> (k2n, Wv ) J (2 .2) 
I n n+I 2n 

where 

J 
k 

_1_ J d~ 
)
d .... 

(2rr [k[<A 

with A a cut-off on wave vectors. 
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(2.3) 

The correspondence between the microscopic Hamil
tonian H and S[ o l can be easily established transfor
ming to the functional integral the expression for a par
tition function which has been ~b~ined in terms of func
tional derivatives by Walasek 16

'. For example for the 
X- Y model in the transverse field r we have 

H = -l'L s~ - 1 ~ L. s:' s.- , 
j I 2 i,,i IJ I J + 

where I ij is the exchange integral and S ~ = 

The functions u 2" are then defined as follows 

-> I -> + - -1 
u

2
(k,w ) =[I- (k) +<S S >w } 

v v 

.... .... 
u2n(kl, ... ,k2n'wl'l , ... ,wl!2n u (w , ... ,(uv 

2n VI 2n 

s X+ 
i -

(2.4) 

is y 
i 

(2.5) 

f-3 
= fdr1 ... dr2n<T,st<r 1) ... S7(r0 )S-(rn+I) ... S-(r20l>

11 
x 

0 0 

X exp j i[ (tJIJJ Tl + ... + Ct\~T n - WJ!n+IT n+ I- ... - WJ!2n T 2n]} 

( n ~ 2), 

where 

I<k) 
~ ik .... ..., I r .. 

.... ij e 11 
r .. 
IJ 

f3 . + - IW T + -< S S > w = J d r e v < S. ( r ) S . > 

< ... >H 
0 

v o I I Ho 

Tre-f:3Ho 

Tre-{:3 Ho 

(n ::::_ 2) , 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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+ 
S ~ ( r) 

I 

rHo ± -rHo 
e si e (2.10) 

with 

H ~ -l'lSZ 
0 i 

(2.11) 

The transformation from H to S[ ¢] based on the for
malism developed by Walasekll 6/ can be performed for 
each spin and Bose system, and seems to be somewhat 
simpler than that which has been realized for some quan
tum systems/3 •4 •5•9 • 11 ,Is/, using the Hubbard
Stratonovich formula/6 •14/. 

It is easy to see that the field ¢ and inverse tem-
perature rJ can be always transformed in such a way 
that for u 2 (k, (d ,, ) we have 

-· u
2

( k, (1)) ~ r + k 2- J(d 

At T = 0 (d -• w 
7J ' 

.!_ ~ 
f-l u 

---.. _1 "' 
2--; f du _,_, 

I' 
+ O<k 1 ) . (2.12) 

(2.13) 

and 

f-3 ° 8( .. 
1'1 -1 ••• 1' ,v + ... +v ' (nl-r ... +&J -w 

1
- ... -<d

2
). 

n n+l 2n n n+ n 

(2.14) 
Thus the functional SL ¢] can be written in the following 
form 

sr ¢1 S
0 

[ ¢ ] + S I [ ¢ ] , (2.15) 

where 
"" S[ ¢] = l 

n=l 

1 . -> --> 

-2 f "' j u2n(kl , ... ,k2n'wl , ... ,(d2n) 
(n!) k WI k2 ,(JJ2 

I' n n 
~ -+ ~ ~ 

0 (k I'+ ... + kn- kn+l- ... - k2n) o(wl + ... + wn- wn+I- ... - (d2n) 

~ 4 4 -+ 

cp*(kl,wl) ... ¢*(kn,wn) ¢ (kn+l'wn+l) ... cp(k2n'w2n) (2 · 16) 

6 

and 

-->2 ·-> --> 
S0 [¢] = f (k -i&J) ¢*(k,w) ¢(k,w) 

--> 
k,w 

s I[ ¢] 

_,J 
k, (J) 

S[ ¢] - S
0 

[ ¢] 

. d-> 00 

(2rr)d+IJ, d k ( dw 
lh \ 

(2.17) 

(2.18) 

(2.19) 

3. THE RG TRANSFORMATION FOR QUANTUM SYSTEMS 

The RG transformation consists of two steps (see for 
example ref/ 1 •1). The first step is tointegrate expi--:S[¢11 

"'ver the fields ¢(k, &J) with k in the ~xternal sh.ell 
-<-1 k I'- A, where s> 1. The second step 1s to combme 
tte scale transformation of the wave vectors and fre
quencies and the renormalization transformation of the 
fields which survive the smoothing process, e.g., 

¢ (k, (l)) --> ( s ¢ ( s k, s z (J)) ' (3.1) 

where ( s and the dynamical exponent z are chosen 
so that S0 in the renormalized functional s' remains 
of the same form as the corresponding So in the ori
ginal functional 

For d < 2 the non-trivial fixed point functional S*[ ¢ ] 
can be found by using the perturbation diagrammatic 
method with respect to S 1 , which is equivalent to the 
expansion into a power series with respect to the para
meter < = 2 - d . 

In the first order in E we hav/ 1 a, b/ 

~ --> -> 
S*[ ¢] = f (r* + k- iw) ¢*(k,w)¢(k,w) + 

-> 
k,w 

u * -+ ... -+ _, 

+ - I . . . I 8 (k I + k 2 - k 3 - k 4) 8 ( w I + w 2 - w 3 - w 4) X 4 -> .. 
kl,wl k4,w4 

~ ~ -+ ~ 

x ¢*(k
1

, w
1

) ¢*(k
2

, w
2

) ¢<k 3 , w
3

) ¢<k
4

, w
4

) (3.2) 
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with 

(3.3) 
2 r* = _A f 

and 

u* = 8rr< • (3.4) 

The coefficient I; used in the renormalization trans-s 
formation defined with respect to the fixed point is the 
following 

t;,., 

where 

a ~+ 2-ry-2' s 2 

J" * 17 ( - s 
s =1+--1-. 

-a s 

ak2 k=O,w=O 

a~ 
1+--"'-1 c> a (i (J)) k = o, (t) = o 

(3.5) 

(3.6) 

(3.7) 

* -+ 
and ~ ( k, iuJ) is the self-energy; i.e., the sum of all s 
connected diagrams with two external lines. All internal 
lines of these diagrams have wave vectors-q in the shell 
_!1 <I Iii< A while two external lines have wave vectors 
8 k restricted to I k I < '~ • The dynamical critical 
exponent z is defined as ' 

Z=2+ry+a 2 + cry, (3.8) 

where 

c 1 + a (3.9) -. 
17 

4. THE EXPONENTS 17 AND z . 

* -+ It is easy to see that if L ( k, ico) is independent .... s 
of k and w , 17 = 0 , a= 0 and z = 2. i.e., these expo-

8 
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.I 

nents have the values corresponding to the Gaussian 
fixed point. Therefore for d < 2 the non-Gaussian values 
for 17 and z appear in the< 2 approximation. To cal
culate 17 and z in this order we must consider the 
diagram shown in the figure. The four-point vertex in 
this diagram denotes the "interaction constant" u* = 8rr< , 

which is connected with the non-trivial fixed point and 
an internal line corresponds to the propagator Go<q,iuJ) = 

(q2- iw)-
1
. It is easy to see that to the second order in 

< we have 
J };* 

,., I --·- .... a k 2 k = o, (t) = o 
and 

a~" 
___::__ I 
J(iw) k =0, w =0 

~~ .... a k 2 k = o, (J) = o (4.1) 

JI 
,., I = --+ 

J(ico) k=O,w=O (4.2) 

where I /k, iw) is the expression corresponding to the 
diagram shown in the figure. 

kw , k,w 

The diagram gz vzng a contribution to 17 and z in 
the < 

2 approximation. 

After simple transformations we obtain 

.!_Jls I-. 
ln s J k 2 k=O, u=O 

17 

and 

a 1 a Is · ---1 .... 
Ins a(i e:') k=O, w=O 

(4.3) 

(4.4) 
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The diagram for I 8 (k, iw) can be explicitly evaluated 
after transformation from the q, w representation to the 
r, r representation, where r and r are the position 
vector in the real space and imaginary. "time" parameter, 
respectively. Note that for T = 0, 0 < r <- "" • 

Thus I s<k. iw) can be written as follows 

... 1 u* 2 2-+"" 
I 8 (k,iw) "'----

6
fd rfdr x 

2(217) 0 

... ....... 3 
x ei(k1+wr) [ f d2qeiqrGO(r, q)] ' 

A <I"QI<A 
s 

(4.5) 

where 

1 "" -iuH 2 
Go(r, q) = -

2 
f dw e = O(r)e-rq • 

17-oo q2-iw 
(4.6) 

and e( r) is the Heaviside step function. 
In order to calculate (4.5), we note that the integration 

of Go(q; r) over large wave-vectors lying in the shell 
A < 1 -q 1 < A with s close to 1 correspond~ to the integ
lation over the shell. in the real space with 7t <I rl < f . 

Therefore we replace equation (4.5) by following one 

2 2-+ ... 1~ f d r 
I" Ck, io>l - -z C2rrl' .!_< r.l < ~ 

J\ 

fdrei(k1+wr) 
0 X 

3 ... 
G 

0 
(r, r) 

(4.7) 
with 

-3,2 
Go(r, i) =~ f d2qGo<Ci, r) eiqr' = T-3e -4r-

(217) O<jql<oo 
(4.8) 

Note that the similar method of eval~a~ng such a diag
ram was used in the classical case 10 • From equation 
(3. 7) it is easy to calculate 

a1 s 

a k 2 
u*2 

727lns 1 ... 
k=O,w=O 

(4.9) 

10 

a I __ s_l ... 
ii (iw) k =O,w=O 

u* 2 . 
=----lns 2 . 

4817 
.(4.10) 

Taking into account equations (4.3), (4.4), (4.9), (4.10), 
(3.9) and putting u* = 877c we have 

8 
., = 9 f 2 

a = 1 2 -f 

12 

and 

c = 29 
:32 

5. THE ASYMPTOTIC CRITICAL BEHAVIOUR 
OF THE DYNAMIC SUSCEPTIBILITY 

(4.11) 

(4.12) 

(4.13) 

Consider the functional average < ¢-fr (,6i', ,> .
1 1 defined as follows · w ,(u s ¢ 

," cP! Q ' ' 
k ,uJ k ,<,J S [ (/JJ 

-S[ ~~ j riA 1 

J d(¢) e -r-c (t) <pk ',(!)' 

- -sr-;:;J---J d(¢) e 
(5.1) 

Due to the laws of conservation of the wave-number 
and frequency we have 

<cft\(o¢k',(d'>s[¢]= i)(k-k')i)(w-cu')G(I"Z,co,S[¢]). (5.2) 

The function G < k, w ; S[ ¢ l) is related to the dynamic 
susceptibility x ( k, ul ) of the system at T" 0. For example 
for the x-Y model we have 

--)> --)o 2-+ -+ 
G(k,uJ,S[¢]) = I(k)- 21Ti I (k)x(k, -iw). (5.3) 

11 



We obtain equation (5.3) taking into acount that 
G(k,uJ; S[ ?]) can be reduced to the effective interac-
tion (cf/ 71 ) and 

• -> • oo . W T ~+ -
2rrix(k,-Iw) = £rlre 1 <Sk(r)S_J;>H 

= 2rr i « s! I s-.... » 
k -k E =- i w 

where 

-·+ S_,. ( T) 
k 

> = < ... H 

rH.
8

+ -rH 
e ,.. e 

k 

Tre- /3H 

Tre-/31(" 

(5.4) 

(5.5) 

(5.6) 

with H given by equation (3.4). Here << srI s.=-r '>'> E 
is the Fourier transform of the retarded Green function 
(cf./IS/ ). Proceeding simparly as in the classical case 
(see, for example~ ref. S/ ), we find the following 
scaling relation 

.... . . . 2-q .... z . G(k,w, S[¢]) = s G(sk,s w,Rs S[cb]), (5.7) 

If Scl ¢) is taken from the critical surface and s .... "" we 
have 

G(k,uJ; SJ¢] = s 2-17G(sk, szw; 8*[¢]). (5.8) 

Putting s = ..1r (k .... O)we obtain 
I k\ 

G(k, w, 8
8
[¢]) -> -2+rl f( uJ ] 

\kl \kr . 
where 

12 

f( _w 
\klz ) '\ 

2
- 17 G (A A z w · S * [ ¢ J ) • 

. ' I k'l z ' 

(5.9) 

(5.10) 

If we take s = ( l.!:::l_) -I 1 z ( w .... 0) 
A2 

the following relation holds 
_2-71 I 

G ( k, w ; s [ ¢]) = I w I z f' ( w- z k ) 
c ± 

where 
2-ry l I 

r;<w-z'k> A --z 'G [ ( \A~ I)-; k, ± A 2 ; s *[ ¢]] . 

Therefore for the critical susceptibility 
have the following asymptotic behaviour 

X <k. w=O) ,. \k\-2
+ 17 for 

-2-ry 

X (k = 0, (,J) ~ c l (t) I 
c + 

z 

-> 
k -> 0 

X e ( k, w) 

(5.11) 

(5.12) 

we 

(5.13) 

(5.14) 

where the _constants c+ and c_ are related to w .... 1j+ 
and w .... 0 , respectively. 

Taking into account the formulas (3.8), (4.11), (4.13), 
(5.13) and (5.14) for the one-dimensional quantum sys
tem (c -~ 1) atT=O for small k and w we have 

-> -> -l.ll 
Xc(k,w = 0)- \k\ (5.15) 

and 

X ,.<k 0, (u) _ c± \w\-0.40 (5.16) 

REFERENCES 

1. De Cesare L. a) Lettere al Nuovo Cim., 1978, 22, 
p.325; b) Lettere al Nuovo Cim., 1978, 22, p. 632. 

2. Fischer M.E. Rev.Mod.Phys., 1974, 46, p.597. 
3. Gerber P.R., Beck H. J.Phys., 1977, C10, p.4013. 
4. Hertz J.A. Phys. Rev., 1976, D14, P.1165. 

13 



5. Holz A., Medeiros K. T.N. J.Phys., 1975, A8, p.1115. 
6. Hubbard J. Phys. Rev.Lett., 1959, 3, p. 77. 
7. Jzyumov Yu.A., Kassan-ogly F.A., Skryabin Yu.N. 

Fields Methods in Theory of Ferromagnetism (in 
Russian), "Nauka", M., 1974, chapter II. 

8. Ma S.K. Rev.Mod.Phys., 1973, 45, p.589. 
9. Morf R., Schneider T., Stoll E. Phys. Rev., 1977, 

B16, P.462. 
10. Patashinski A.Z., Pokrovski V.L. Sov. Phys. Usp., 

1977, 20, P,31. 
11. Pjeuty P. J.Phys., 1976, C9, p.3993. 
12. Singh K.K. a) Phys.Lett., 1975,A51, p.27; b)Phys.Rev., 

1975, B12, p.2819; c) Phys. Rev., 1976, B13, p.3192; 
d) Phys. Lett., 1976, A57, p.309; e) Phys.Rev., 1978, 
B17, p.324. 

13. Stella A.L., Toigo F. Nuovo Cim., 1976, B34, p.207. 
14. Stratonovich R.L. Sov. Phys. Doklady, 1958, 2, p.416. 
15. Tyablikov S. V. Methods in Quantum Theory of Mag-

netism, 1967, Plenum Press, New York, chapter VII. 
16. Walasek K. Physica, 1977, A88, P.497. 
17. Wilson K.G., Kogut J. Phys. Rep., 1974, C12, p. 75. 
18. Young A.P. J.Phys., 1975, C8, p. L309. 

14 

Received by Publishing Department 
on October 16 1978. 


