ОБЬЕАИНЕННЫЙ ИНСТИТУТ ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

K.Lukierska-Walasek , K.Walasek
$720 / 2-79$
THE CRITICAL EXPONENTS z AND η FOR TWO-COMPONENT QUANTUM SYSTEM AT ZERO TEMPERATURE

K.Lukierska-Walasek* K.Walasek*

-AE CRITICAL EXPONENTS z AND η
FOR TWO-COMPONENT QUANTUM SYSTEM AT ZERO TEMPERATURE

Submitted to "Journal of Physics A"

* On leave of absence from Institute of Physics, Technical University of Wroclaw, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.

> Люкерска-Валясек К., Валясек К

Кригические экспоненты z и η для двухкомпонентных квантовых систем при нулевой температуре
При использовании метода ренормгруппы Вильсона вычисляется динамический критический индекс z и аномальная часть размерности для двухкомпонентных квантовых систем при $T=0$ Экспоненты z и η находятся в приблнжении ϵ^{2}, где $\epsilon=2$ - d , d - пространственная разме ность системы. Получается также критическое асимптотическое поведение динамической восприимчивости.

Работа выполнена в Лаборатории теоретической физики ОИЯИ

Препринт Объединенного института ядерных исследований. Дубна 1978

$$
\begin{aligned}
& \text { Lukierska-Walasek K., Walasek K. Fil7-11961 } \\
& \text { The Critical Exponents z and } \eta \text { for Two-Component } \\
& \text { Quantum System at Zero Temperature }
\end{aligned}
$$

The dynamical critical exponent z and anomalous part of the dimension η are calculated for two-component quantum systems at $T=0$ by using Wilson's renormalization group method. The exponents z and η are found in the ϵ^{2} approximation, where $\epsilon=2-d$ and d is the space dimensionality of the system. The critical asymptotic behaviour of the dynamic susceptibility is also obtained.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. INTRODUCTION

Quantum effects in critical phenomena have been studied recently in a number of systems ${ }^{1 / \mathrm{a}, \mathrm{b}, 3,4,5,9,11,12 \mathrm{a}-\mathrm{e}, 13, \mathrm{~B} / \text {, }}$ At the present stage it is well known that at $\mathrm{T} \neq 0$ the critical behaviour of a quantum system is the same as the classical one since the quantum effects became irrelevant. Changes in the critical behaviour were found at $\mathrm{T}=0$ when a transition is induced by changing an external parameter (e.g., the transverse field in an Ising or quantum $\mathrm{X}-\mathrm{Y}$ model, etc.). A straightforward application of Wilson's renormalization group (RG) method ${ }^{17 /}$ encounters the difficulty of non-commuting operators. This difficulty can be circumvented by applying the functional representation for the partition function leading to the classical free-energy functional which the conventional RG method can be applied to. Whenever the Matsubara frequencies enter into the problem in a form nonequivalent to wavevector components, a dimensional cross over from d to $d+z_{M F}$ arises when the temperature tends to zero. Here d is the space dimensionality of the system and z_{MF} is the value of the dynamical critical exponent as applied to the $\mathrm{T}=0$ case in the "mean field" regime.

Our interest is two-component quantum system such as an $X-Y$ model or a Bose system. In this case $z_{M F}=2$ and the expansion parameter for the fixed point "Hamiltonian" and critical exponents is $\epsilon=2-\mathrm{d}$. It has been found $/ 1 \mathrm{a}, \mathrm{b}, 3 / \quad$ that at $\mathrm{T}=0$ for $\mathrm{d} \geq 2$ the Gaussian model "Hamiltonian" should describe the leading critical behaviour.

For $d<2$ the system shows a nonstandard critical behaviour. It is interesting that although for $d<2$ there exists the non-trivial stable fixed point, the critical exponents γ and ν have Gaussian values ($\gamma=1$, and $\nu=1 / 2$) in the first order in $\epsilon 1 \mathrm{a}, \mathrm{b}, 3$. In the present article we calculate in the lowest non-trivial order in ϵ two other important exponents, the dynamical critical exponent z and anomalous part of the dimension $\eta^{/ 2,8,17 /}$.

2. THE FREE-ENERGY FUNCTIONAL

The free-energy F of a quantum system can be written as follows

$$
\begin{equation*}
-\beta F=\ln \operatorname{Tr} \mathrm{e}^{-\beta \mathrm{H}}=\mathrm{C}+\ln \int \mathrm{d}(\phi) \mathrm{e}^{-\mathrm{S}[\phi]} \tag{2.1}
\end{equation*}
$$

where H is the microscopic Hamiltonian of the system, C is some constant non-essential in our consideration, $S[\phi] \quad$ is the "action" functional of the system for the imaginary "time", $\mathrm{d}(\phi)$ denotes the functional integral over classical fields $\phi_{\lambda}\left(\vec{k}, \omega_{\nu}\right)$ entering into the problem ($\overrightarrow{\mathrm{k}}$ and $\omega_{\nu}=2 \pi \nu$ T are the wave vector and Matsubara frequency, respectively). For the two-component system we have two real fields or, equivalently, one complex field $\phi\left(\vec{k}, \omega_{\nu}\right)$. The functional $S[\phi]$ can be written in the last case as follows
$S[\phi]=\sum_{n=1}^{\infty} \frac{1}{(n!)^{2}} \frac{1}{\beta^{2 n-1}} \sum_{1} \ldots \nu_{2 n} \vec{k}_{1}, \ldots \vec{k}_{2 n} u_{2 n}\left(\vec{k}_{1}, \ldots, \vec{k}_{2 n}, \omega_{\nu}, \ldots, \omega_{\nu} \nu_{2 n}\right)$
$\delta\left(\vec{k}_{1}+\ldots+\vec{k}_{n}-\vec{k}_{n+1}-\ldots-\vec{k}_{2 n}\right) \beta \delta_{\nu_{1}}+\ldots+\nu_{n}, \nu_{n+1}+\ldots+\nu_{2 n} \times$
$\times \phi^{*}\left(\overrightarrow{\mathrm{k}}_{1}, \omega_{\nu_{1}}\right) \ldots \phi^{*}\left(\overrightarrow{\mathrm{k}}_{\mathrm{n}}, \omega_{\nu_{\mathrm{n}}}\right) \phi\left(\overrightarrow{\mathrm{k}}_{\mathrm{n}+1}, \omega_{\nu_{\mathrm{n}+1}}\right) \ldots \phi\left(\overrightarrow{\mathrm{k}}_{2 \mathrm{n}}, \omega_{\nu} \mathrm{N}_{\mathrm{n}}\right)$,
where

$$
\begin{equation*}
\int_{\overrightarrow{\mathbf{k}}}=\frac{1}{(2 \pi)^{\mathrm{d}}} \int_{|\overrightarrow{\mathbf{k}}|<\Lambda} \mathrm{d}^{\mathrm{d} \vec{k}} \tag{2.3}
\end{equation*}
$$

with Λ a cut-off on wave vectors.

The correspondence between the microscopic Hamiltonian H and $S[\phi]$ can be easily established transforming to the functional integral the expression for a partition function which has been obtained in terms of functional derivatives by Walasek ${ }^{16}{ }^{\circ}$. For example for the $X-Y$ model in the transverse field Γ we have

$$
\begin{equation*}
H=-\Gamma \sum_{i} S_{i}^{Z}-\frac{1}{2} \sum_{i, j} I_{i j} S_{i}^{+} S_{j}^{-} \tag{2.4}
\end{equation*}
$$

where $l_{i j}$ is the exchange integral and $S_{i}^{ \pm}=S_{i}^{\mathbf{x}} \pm i S_{i}^{y}$. The functions ${ }^{u_{2 n}}$ are then defined as follows

$$
\begin{align*}
& \mathrm{u}_{2}\left(\overrightarrow{\mathrm{k}}, \omega_{\nu}\right)=\left[\mathrm{I}^{-1}(\overrightarrow{\mathrm{k}})+\left\langle\mathrm{S}^{+} \mathrm{S}^{-}\right\rangle \omega_{\nu}\right]^{-1} \tag{2.5}\\
& \mathrm{u}_{2 \mathbf{n}}\left(\overrightarrow{\mathrm{k}}_{1}, \ldots, \overrightarrow{\mathrm{k}}_{2 \mathrm{n}}, \omega_{\nu_{1}}, \ldots, \omega_{\nu_{2 n}}\right)=\mathrm{u}_{2 \mathrm{n}}\left(\omega_{\nu_{1}}, \ldots, \omega_{\nu_{2 \mathbf{n}}}\right)= \\
& \left.=\int_{0}^{\beta} \mathrm{d} \tau_{1} \ldots \mathrm{~d} \tau_{2 \mathrm{n}}<\mathrm{T}_{\tau} \mathrm{S}_{\mathrm{i}}^{+}\left(\tau_{1}\right) \ldots \mathrm{S}_{\mathrm{i}}^{+}\left(\tau_{\mathrm{n}}\right) \mathrm{S}^{-}\left(\tau_{\mathrm{n}+\mathrm{l}}\right) \ldots \mathrm{S}^{-}\left(\tau_{\mathbf{2 n}}\right)\right\rangle{ }_{\mathrm{H}_{0}} \times \\
& \times \exp \left\{\mathrm{i}\left[\omega_{\nu_{1}} \tau_{1}+\ldots+\omega_{\nu_{\mathbf{n}}} \tau_{\mathbf{n}}-\omega_{\nu_{\mathrm{n}+1}} \tau_{\mathrm{n}+1}-\ldots-\omega_{\nu_{2 \mathbf{n}}} \tau_{2 \mathbf{n}}\right]\right\} \quad(\mathrm{n} \geq 2), \\
& (n \geq 2), \tag{2.6}
\end{align*}
$$

where

$$
\begin{align*}
& I(\vec{k})=\sum_{\vec{r}_{i j}} I_{i j} \mathrm{e}^{i \vec{k} \vec{r}_{i j}} \tag{2.7}\\
& \left.\left\langle\mathrm{~S}^{+} \mathrm{S}^{-}\right\rangle_{\omega_{\nu}}=\int_{0}^{\beta} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \omega_{\nu} \tau}<\mathrm{S}_{\mathrm{i}}^{+}(\tau) \mathrm{S}_{\mathrm{i}}^{-}\right\rangle_{\mathrm{H}_{0}} \tag{2.8}\\
& \langle\ldots\rangle_{H_{0}}=\frac{\operatorname{Tr}^{-\beta \mathrm{H}_{0}} \ldots}{\operatorname{Tr}^{-\beta \mathrm{H}_{0}}} \tag{2.9}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{S}_{\mathrm{i}}^{ \pm}(\tau)=\mathrm{e}^{\tau \mathrm{H}_{0}} \mathrm{~S}_{\mathrm{i}}^{ \pm} \mathrm{e}^{-\tau \mathrm{H}_{0}} \tag{2.10}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{0}=-\Gamma \sum_{i} S_{i}^{z} \tag{2.11}
\end{equation*}
$$

The transformation from H to $\mathrm{S}[\phi]$ based on the formalism developed by Walasek/16/ can be performed for each spin and Bose system, and seems to be somewhat simpler than that which has been realized for some quantum systems $/ 3,4,5,9,11,18 /$,
using the HubbardStratonovich formula $/ 6,14 /$,

It is easy to see that the field ϕ and inverse temperature β can be always transformed in such a way that for $u_{2}\left(\vec{k}, \omega_{\nu}\right)$ we have

$$
\begin{align*}
& \mathrm{u}_{2}\left(\overrightarrow{\mathrm{k}}, \omega_{\nu}\right)=\mathrm{r}+\hat{\mathrm{k}}^{2}-\mathrm{i}\left(\omega_{\nu},+O\left(\overrightarrow{\mathrm{k}}^{4}\right)\right. \tag{2.12}\\
& \text { At } \mathrm{T}=0 \quad \omega_{\nu} \rightarrow \omega \\
& \frac{1}{\beta}{\underset{\nu}{\nu}}^{\longrightarrow} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \tag{2.13}
\end{align*}
$$

and

$$
\begin{equation*}
\beta \delta_{\nu_{1}}+\ldots 1_{\mathbf{n}}^{\prime}, \nu_{\mathbf{n}+1}+\ldots+\nu_{\mathbf{2 n}}, \delta\left(\sigma_{1}+\cdots+\omega_{\mathbf{n}}-\omega_{\mathbf{n}+1^{-}}+\omega_{\mathbf{2}}\right) \tag{2.14}
\end{equation*}
$$

Thus the functional $S[\phi]$ can be written in the following form

$$
\begin{equation*}
S[\phi]=S_{0}[\phi] \quad+S_{1}[\phi], \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& S[\phi]=\sum_{n=1}^{\infty} \frac{1}{(n!)^{2}} \underset{\vec{k}_{1}, \omega_{1}}{\int} \ldots \vec{k}_{2 n}, \omega_{2 n} u_{2 n}\left(\vec{k}_{1}, \ldots, \vec{k}_{2 n}, \omega_{1}, \ldots, \omega_{2 n}\right) \\
& \delta\left(\vec{k}_{1},+\ldots+\vec{k}_{n}-\vec{k}_{n+1^{-}} \ldots-\vec{k}_{2 n}\right) \delta\left(\omega_{1}+\ldots+\omega_{n}-\omega_{n+1}-\ldots-\omega_{2 n}\right) \\
& \phi^{*}\left(\vec{k}_{1}, \omega_{1}\right) \ldots \phi^{*}\left(\vec{k}_{n}, \omega_{n}\right) \phi\left(\vec{k}_{n+1}, \omega_{n+1}\right) \ldots \phi\left(\vec{k}_{2 n}, \omega_{2 n}\right) \tag{2.16}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{S}_{0}[\phi]=\int_{\vec{k}, \omega}\left(\overrightarrow{\mathrm{k}}^{2}-\mathrm{i} \omega\right) \phi^{*}(\overrightarrow{\mathrm{k}}, \omega) \phi(\overrightarrow{\mathrm{k}}, \omega) \tag{2.17}\\
& \mathrm{S}_{\mathbf{l}}[\phi]=\mathrm{S}[\phi]-\mathrm{S}_{0}[\phi] \tag{2.18}\\
& \int_{\vec{k}, \omega)}=\frac{1}{(2 \pi)^{d+I}} \int_{\vec{k} \mid} \mathrm{d}^{\mathrm{d}} \overrightarrow{\mathrm{k}} \int_{-\infty}^{\infty} \mathrm{d} \omega . \tag{2.19}
\end{align*}
$$

and

3. THE RG TRANSFORMATION FOR QUANTUM SYSTEMS

The RG transformation consists of two steps (see for example ref. $\left.{ }^{1 \mathrm{a} /}\right)$. The first step is to integrate $\exp \{-S[\phi] \mid$ quer the fields $\phi(\vec{k}, \omega)$ with \vec{k} in the external shell $\frac{1}{<}<|k|<\Lambda$, where $s>1$. The second step is to combine the scale transformation of the wave vectors and frequencies and the renormalization transformation of the fields which survive the smoothing process, e.g.,

$$
\begin{equation*}
\phi(\overrightarrow{\mathrm{k}}, \omega) \longrightarrow \zeta_{\mathrm{s}} \phi\left(\mathrm{~s} \overrightarrow{\mathrm{k}}, \mathrm{~s}^{\mathrm{z}} \omega\right), \tag{3.1}
\end{equation*}
$$

where ζ_{s}, and the dynamical exponent z are chosen so that $\mathrm{S}_{\mathbf{0}}^{\prime}$ in the renormalized functional S^{\prime} remains of the same form as the corresponding S_{0} in the original functional

For $\mathrm{d}<2$ the non-trivial fixed point functional $\mathrm{S}^{*}[\phi]$ can be found by using the perturbation diagrammatic method with respect to S_{1}, which is equivalent to the expansion into a power series with respect to the parameter $\epsilon=2-\mathrm{d}$.

In the first order in ϵ we have ${ }^{/ 1 a, b /}$

$$
\begin{align*}
& \mathrm{S}^{*}[\phi]=\int_{\overrightarrow{\mathbf{k}}, \omega}\left(\mathrm{r}^{*}+\overrightarrow{\mathrm{k}}^{2}-\mathrm{i} \omega\right) \phi^{*}(\overrightarrow{\mathbf{k}}, \omega) \phi(\overrightarrow{\mathbf{k}}, \omega)+ \\
& +\frac{\mathbf{u}^{*}}{4} \overrightarrow{\mathbf{k}}_{1}, \omega_{1} \overrightarrow{\mathbf{k}}_{4}, \vec{\omega}_{4} \delta \delta\left(\overrightarrow{\mathbf{k}}_{1}+\overrightarrow{\mathrm{k}}_{2}-\overrightarrow{\mathrm{k}}_{3}-\overrightarrow{\mathrm{k}}_{4}\right) \delta\left(\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}\right) \times \\
& \times \phi^{*}\left(\vec{k}_{1}, \omega_{1}\right) \phi^{*}\left(\vec{k}_{2}, \omega_{2}\right) \phi\left(\overrightarrow{\mathbf{k}}_{3}, \omega_{3}\right) \phi\left(\overrightarrow{\mathrm{k}}_{4}, \omega_{4}\right) \tag{3.2}
\end{align*}
$$

with

$$
\begin{equation*}
\mathbf{r}^{*}=-\Lambda^{2} \epsilon \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{*}=8 \pi \epsilon . \tag{3.4}
\end{equation*}
$$

The coefficient ζ_{s} used in the renormalization transformation defined with respect to the fixed point is the following

$$
\begin{equation*}
\zeta_{\mathrm{s}}=\mathrm{s}^{\frac{\mathbf{d}}{\mathbf{2}}+2-\eta-\frac{\mathbf{a}}{\mathbf{2}}}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{s}^{\eta}=1+\left.\frac{\partial \Sigma_{\mathrm{s}}^{*}}{\partial \mathrm{k}^{2}}\right|_{\overrightarrow{\mathrm{k}}=0}=0, \omega=\mathbf{0} \tag{3.6}\\
& \mathbf{s}^{\mathbf{- a}}=1+\left.\frac{\partial \Sigma_{\mathrm{s}}}{\partial(\mathrm{i} \omega)}\right|_{\overrightarrow{\mathbf{k}}=0, \omega=0} \tag{3.7}
\end{align*}
$$

and $\Sigma_{s}^{*}(\vec{k}, i \omega)$ is the self-energy; i.e., the sum of all connected diagrams with two external lines. All internal lines of these diagrams have wave vectors \vec{q} in the shell $\frac{\Lambda}{s}<|\vec{q}|<\Lambda$ while two external lines have wave vectors $\mathrm{s} \overrightarrow{\mathrm{k}}$ restricted to $|\overrightarrow{\mathrm{k}}|<\frac{\Lambda}{\mathrm{s}}$. The dynamical critical exponent z is defined as

$$
\begin{equation*}
\mathbf{z}=2+\eta+\mathbf{a}=2+\mathbf{c} \eta \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{c}=1+\frac{\mathbf{a}}{\eta} \tag{3.9}
\end{equation*}
$$

4. THE EXPONENTS η AND z .

It is easy to see that if $\Sigma_{s}^{*}(\vec{k}, i \omega) \quad$ is independent of $\overrightarrow{\mathrm{k}}$ and $\omega, \eta=0, \mathrm{a}=0$ and $\mathrm{z}=2$, i.e., these expo-
nents have the values corresponding to the Gaussian fixed point. Therefore for $d<2$ the non-Gaussian values for η and z appear in the $\epsilon 2$ approximation. To calculate η and z in this order we must consider the diagram shown in the figure. The four-point vertex in this diagram denotes the "interaction constant" $u^{*}=8 \pi \epsilon$, which is connected with the non-trivial fixed point and an internal line corresponds to the propagator $\mathrm{G}_{0}(\overrightarrow{\mathrm{q}}, \mathrm{i} \omega)=$ $\left(q^{2}-i \omega\right)^{-1}$. It is easy to see that to the second order in ϵ we have

$$
\begin{equation*}
\left.\frac{\partial \Sigma_{\mathbf{s}}^{*}}{\partial \mathrm{k}^{2}}\right|_{\overrightarrow{\mathrm{k}}=0, \omega=0}=\left.\frac{\partial \mathrm{I}_{\mathbf{s}}}{\partial \mathrm{k}^{2}}\right|_{\overrightarrow{\mathrm{k}}=0, \omega)} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\frac{\partial \Sigma_{s}}{\partial(\mathrm{i} \omega)}\right|_{\overrightarrow{\mathbf{k}}=\mathbf{0}, \omega=\mathbf{0}}=\left.\frac{\partial \mathbf{I}_{\mathbf{s}}}{\partial(\mathrm{i} \omega)}\right|_{\overrightarrow{\mathbf{k}}=\mathbf{0}, \omega=\mathbf{0}} \tag{4.2}
\end{equation*}
$$

where $I_{s}(\vec{k}, i \omega)$ is the expression corresponding to the diagram shown in the figure.

The diagram giving a contribution to η and z in
the ϵ^{2} approximation.

After simple transformations we obtain

$$
\begin{equation*}
\eta=\left.\frac{1}{\ln \mathrm{~s}} \frac{\partial \mathrm{I} \mathrm{~s}}{\partial \mathrm{k}^{2}}\right|_{\overrightarrow{\mathbf{k}}=0}, \omega=0 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{a}=-\left.\frac{1}{\ln \mathrm{~s}} \frac{\partial \mathrm{I}_{\mathbf{s}}}{\partial(\mathrm{i} \omega)}\right|_{\overrightarrow{\mathbf{k}}=\mathbf{0}, \omega=0} . \tag{4.4}
\end{equation*}
$$

The diagram for $I_{s}(\vec{k}, i \omega)$ can be explicitly evaluated after transformation from the \vec{q}, ω representation to the $\vec{r}, \tau \quad$ representation, where \vec{r} and τ are the position vector in the real space and imaginary."time" parameter, respectively. Note that for $T=0,0<\tau<\infty$.

Thus $I_{s}(\vec{k}, i \omega)$ can be written as follows

$$
\begin{gather*}
\mathrm{I}_{\mathrm{s}}(\overrightarrow{\mathrm{k}}, \mathrm{i} \omega)=-\frac{1}{2} \frac{\mathrm{u}^{* 2}}{(2 \pi)^{6}} \int \mathrm{~d}^{2} \overrightarrow{\mathrm{r}} \int_{0}^{\infty} \mathrm{d} \tau \times \\
\times \mathrm{e}^{\mathrm{i}(\vec{k} \overrightarrow{\mathrm{r}}+\omega \tau)}\left[\int_{\mathrm{s}}\left[\mathrm{~d}^{2} \overrightarrow{\mathrm{q}} \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{q}} \overrightarrow{\mathrm{r}}} \mathrm{G}_{0}(\tau, \overrightarrow{\mathrm{q}})\right]^{3},\right. \tag{4.5}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathrm{G}_{0}(\tau, \overrightarrow{\mathrm{q}})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega \frac{\mathrm{e}^{-\mathrm{i} \omega \tau}}{\mathrm{q}^{2}-\mathrm{i} \vec{\omega}}=\theta(\tau) \mathrm{e}^{-\tau \mathrm{q}^{2}} \tag{4.6}
\end{equation*}
$$

and $\theta(\tau)$ is the Heaviside step function.
In order to calculate (4.5), we note that the integration of $\mathrm{G}_{0}(\overrightarrow{\mathrm{q}} ; \tau)$ over large wave-vectors lying in the shell $\frac{\Lambda}{s}<|\overrightarrow{\mathbf{q}}|<\Lambda$ with s close to 1 corresponds to the integration over the shell in the real space with $\frac{1}{\lambda}<|\vec{r}|<\frac{s}{\lambda}$.

Therefore we replace equation (4.5) by following one

$$
\mathrm{I}_{\mathrm{s}}(\overrightarrow{\mathbf{k}}, \mathrm{i} \omega)=-\frac{1}{2} \frac{\mathrm{u}^{* 2}}{(2 \pi)^{2}} \frac{1}{\Lambda}<|\overrightarrow{\mathrm{r}}|<\frac{\mathrm{s}}{\Lambda} \mathrm{~d}^{2} \overrightarrow{\mathrm{r}} \int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \overrightarrow{\mathrm{r}}+\omega \tau)} \times \mathrm{G}_{0}^{3}(\overrightarrow{\mathrm{r}}, \tau)
$$

with

$$
\begin{equation*}
\mathrm{G}_{0}(\overrightarrow{\mathrm{r}}, \tau)=\frac{1}{(2 \pi)^{2}} \int_{0<|\overrightarrow{\mathrm{q}}|<\infty} \mathrm{d}^{2} \overrightarrow{\mathrm{q}} \mathrm{G}_{0}(\overrightarrow{\mathrm{q}}, \tau) \mathrm{e}^{\mathrm{i} \overrightarrow{\mathrm{q}} \overrightarrow{\mathrm{r}}}=\tau^{-3} \mathrm{e}^{\frac{-3 \mathbf{r}^{2}}{4 r}} . \tag{4.8}
\end{equation*}
$$

Note that the similar method of evaluating such a diagram was used in the classical case ${ }^{/ 10}$. From equation (3.7) it is easy to calculate

$$
\begin{equation*}
\left.\frac{\partial \mathrm{I}_{\mathrm{s}}}{\partial \mathrm{k}^{2}}\right|_{\overrightarrow{\mathrm{k}}=0, \omega=0}=\frac{\mathrm{u}^{* 2}}{72 \pi^{2}} \ln \mathrm{~s} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
\left.\frac{\partial \mathrm{I}_{\mathrm{s}}}{\partial(\mathrm{i} \omega)} \cdot\right|_{\vec{k}=0, \omega=0}=-\frac{\mathrm{u}^{*}}{48 \pi^{2}} \ln \mathrm{~s} \tag{4.10}
\end{equation*}
$$

Taking into account equations (4.3), (4.4), (4.9), (4.10), (3.9) and putting $u^{*}=8 \pi c \quad$ we have

$$
\begin{align*}
& \eta=\frac{8}{9} \epsilon^{2} \tag{4.11}\\
& \mathbf{a}=\frac{1}{12} \epsilon^{2} \tag{4.12}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{c}=\frac{29}{32} \tag{4.13}
\end{equation*}
$$

5. THE ASYMPTOTIC CRITICAL BEHA VIOUR OF THE DYNAMIC SUSCEPTIBILITY

Consider the functional average $\left\langle\phi_{\vec{k}}^{*}, \omega^{\phi} \overrightarrow{\mathbf{h}}^{\prime}, \omega^{\prime>} s\right| \phi \mid$

$$
\begin{equation*}
<\phi_{k, \omega}^{+} \phi_{k}^{\prime}, \omega,{ }_{s}[\phi]=\frac{\int \mathrm{d}(\phi) \mathrm{e}^{-\mathrm{s}[\phi]} \phi_{\mathbf{k},(\omega)}^{*} \phi_{\vec{k}^{\prime}, \omega^{\prime}}}{\int \mathrm{d}(\phi) \mathrm{e}^{-\mathrm{s}[\phi]}} \tag{5.1}
\end{equation*}
$$

Due to the laws of conservation of the wave-number and frequency we have

$$
\begin{equation*}
\left.<\phi_{\mathrm{k}}^{*}, \omega\right)_{\overrightarrow{\mathrm{k}}},(\omega)>\mathrm{s}[\phi]=\delta\left(\overrightarrow{\mathrm{k}}-\overrightarrow{\mathrm{k}}^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) \mathrm{G}(\overrightarrow{\mathrm{k}}, \omega, \mathrm{~S}[\phi]) . \tag{5.2}
\end{equation*}
$$

The function $G(k, \omega ; S[\phi])$ is related to the dynamic susceptibility $\chi(\vec{k},())$ of the system at $T=0$. For example for the $X-Y$ model we have

$$
\begin{equation*}
\mathrm{G}(\overrightarrow{\mathrm{k}}, \omega, \mathrm{~S}[\phi])=\mathrm{I}(\overrightarrow{\mathrm{k}})-2 \pi \mathrm{i} \mathrm{I}^{2}(\overrightarrow{\mathrm{k}}) \chi(\overrightarrow{\mathrm{k}},-\mathrm{i} \omega) \tag{5.3}
\end{equation*}
$$

We obtain equation (5.3) taking into acount that $\mathrm{G}(\overrightarrow{\mathrm{k}}, \omega ; S[\phi])$ can be reduced to the effective interac-

$$
\begin{align*}
& 2 \pi \mathrm{i} \chi(\overrightarrow{\mathrm{k}},-\mathrm{i} \omega)=\int_{0}^{\infty} \mathrm{d} \tau \mathrm{e}^{\mathrm{i} \omega \tau}<\overrightarrow{\mathrm{S}}_{\overrightarrow{\mathbf{k}}}^{+}(\tau) \mathrm{S}_{-\overrightarrow{\mathbf{k}} \mathrm{H}}^{-}= \\
& =2 \pi \mathrm{i} \ll \mathrm{~S}_{\overrightarrow{\mathbf{k}}}^{+} \mid \mathrm{S}_{-\overrightarrow{\mathbf{k}}}^{-} \gg E=-\mathrm{i} \omega, \tag{5.4}
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{\mathrm{S}}_{\overrightarrow{\mathbf{k}}}^{+-}(\tau)=\mathrm{e}^{\tau \mathrm{H}} \mathrm{~S}_{\overrightarrow{\mathbf{k}}}^{+} \mathrm{e}^{-\tau \mathrm{H}}, \tag{5.5}\\
& \langle\ldots\rangle_{\mathrm{H}}=\frac{\operatorname{Tre}^{-\beta \mathrm{H}} \ldots}{\operatorname{Tre}^{-\beta \mathrm{H}}} \tag{5.6}
\end{align*}
$$

with H given by equation (3.4). Here $\langle\underset{\mathrm{S}}{\overrightarrow{\mathbf{k}}}| \underset{\mathrm{S}_{-\vec{k}}^{-} \gg}{ } \gg$ is the Fourier transform of the retarded Green function (cf. $15 /$). Proceeding similarly as in the classical case (see, for example, ref. ${ }^{8 /}$), we find the following scaling relation

$$
\begin{equation*}
\mathrm{G}(\overrightarrow{\mathrm{k}}, \omega ; \mathrm{S}[\phi])=\mathrm{s}^{2-\eta} \mathrm{G}\left(\mathrm{~s} \overrightarrow{\mathrm{k}}, \mathrm{~s}^{\mathrm{z}} \omega ; \mathrm{R}_{\mathrm{s}} \mathrm{~S}[\phi]\right) \tag{5.7}
\end{equation*}
$$

If $S_{c}[\phi]$ is taken from the critical surface and $s \rightarrow \infty$ we have

$$
\begin{equation*}
\mathrm{G}\left(\overrightarrow{\mathrm{k}}, \omega ; \mathrm{S}_{\mathrm{e}}[\phi]=\mathrm{s}^{2-\eta} \mathrm{G}\left(\mathrm{sk}, \mathrm{~s}^{\mathrm{z}} \omega ; \mathrm{S}^{*}[\phi]\right)\right. \tag{5.8}
\end{equation*}
$$

Putting $\quad s=\frac{1}{|\vec{k}|} \quad(k \rightarrow 0)$ we obtain

$$
\begin{equation*}
\mathrm{G}\left(\overrightarrow{\mathrm{k}}, \omega, \mathrm{~S}_{\mathbf{s}}[\phi]\right)=|\overrightarrow{\mathrm{k}}|^{-2+\eta} \mathrm{f}\left(\frac{\omega}{|\overrightarrow{\mathrm{k}}|^{\mathbf{2}}}\right] \tag{5.9}
\end{equation*}
$$

where

$$
\begin{equation*}
f\left(\frac{\omega}{|\vec{k}|^{z}}\right)=\Lambda^{2-\eta} G\left(\Lambda, \frac{\Lambda^{\mathrm{z}} \omega}{|\vec{k}|^{z}} ; S^{*}[\phi]\right) \tag{5.10}
\end{equation*}
$$

If we take $s=\left(\frac{|\omega|}{\Lambda^{2}}\right)^{-1 / z}(\omega \rightarrow 0)$
the following relation holds

$$
\begin{equation*}
G\left(\vec{k}, \omega ; S_{c}[\phi]\right)=|\omega|^{-\frac{2-\eta}{z}} f_{ \pm}^{\prime}\left(\omega^{-\frac{1}{z}} \vec{k}\right) \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{f}_{ \pm}^{\prime}\left(\omega^{-\frac{1}{\mathrm{z}}} \overrightarrow{\mathrm{k}}\right)=\Lambda^{\left.\frac{2-\eta}{\mathrm{z}} \mathrm{G}\left[\left(\frac{|\omega|}{\Lambda^{2}}\right)^{-\frac{1}{\mathrm{z}}} \overrightarrow{\mathrm{k}}, \pm \Lambda^{2} ; \mathrm{S} *[\phi]\right] . . .\right]} \tag{5.12}
\end{equation*}
$$

Therefore for the critical susceptibility $\quad \chi_{c}(\vec{k}, \omega) \quad$ we have the following asymptotic behaviour

$$
\begin{align*}
& x_{\mathbf{c}}(\vec{k}, \omega=0) \sim|\vec{k}|^{-2+\eta} \text { for } \quad \vec{k} \rightarrow 0 \tag{5.13}\\
& x_{\mathbf{e}}\left(\overrightarrow{\mathrm{k}}=0,(\omega) \sim \mathbf{c}^{+}+|\omega|^{\frac{-2-\eta}{\mathbf{z}}},\right. \tag{5.14}
\end{align*}
$$

where the constants c_{+}and c_{-}are related to $\omega \rightarrow \mathbf{j}^{+}$ and $\omega \rightarrow 0^{-}$, respectively.

Taking into account the formulas (3.8), (4.11), (4.13), (5.13) and (5.14) for the one-dimensional quantum system $(\epsilon=1)$ at $T=0$ for small \vec{k} and ω we have

$$
\begin{equation*}
\chi_{c}(\vec{k}, \omega=0)-|\vec{k}|^{-1.11} \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{e}(\overrightarrow{\mathrm{k}}=0, \omega)-\mathrm{c}_{ \pm}|\omega|^{-\mathbf{0 . 4 0}} \tag{5.16}
\end{equation*}
$$

REFERENCES

1. De Cesare L. a) Lettere al Nuovo Cim., 1978, 22, p.325; b) Lettere al Nuovo Cim., 1978, 22, p. 632.
2. Fischer M.E. Rev.Mod.Phys., 1974, 46, p.597.
3. Gerber P.R., Beck H. J.Phys., 1977, C10, p. 4013.
4. Hertz J.A. Phys. Rev., 1976, D14, p. 1165.
5. Holz A., Medeiros K.T.N. J.Phys., 1975, A8, p. 1115.
6. Hubbard J. Phys. Rev.Lett., 1959, 3, p. 77.
7. Izyumov Yu.A., Kassan-ogly F.A., Skryabin Yu.N. Fields Methods in Theory of Ferromagnetism (in Russian), "Nauka", M., 1974, chapter II.
8. Ma S.K. Rev.Mod.Phys., 1973, 45, p.589.
9. Morf R., Schneider T., Stoll E. Phys. Rev., 1977, B16, p. 462 .
10. Patashinski A.Z., Pokrovski V.L. Sov. Phys. Usp., 1977, 20, p, 31.
11. Pfeuty P. J.Phys., 1976, C9, p. 3993.
12. Singh K.K. a) Phys.Lett., 1975,A51, p.27; b)Phys.Rev., 1975, B12, p.2819; c) Phys. Rev., 1976, B13, p.3192; d) Phys. Lett., 1976, A57, p.309; e) Phys.Rev., 1978, B17, p. 324.
13. Stella A.L., Toigo F. Nuovo Cim., 1976, B34, p.207.
14. Stratonovich R.L. Sov. Phys. Doklady, 1958, 2, p. 416.
15. Tyablikov S.V. Methods in Quantum Theory of Magnetism, 1967, Plenum Press, New York, chapter VII.
16. Walasek K. Physica, 1977, A88, p.497.
17. Wilson K.G., Kogut J. Phys. Rep., 1974, C12, p. 75.
18. Young A.P. J.Phys., 1975, C8, p. L309.

Received by Publishing Department on October 161978.

