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Konnell E .. Konnefl B. El7·11%0 

Cnauaonuoaast JKecrKocrb B yaKoOOHHblX tjleppoManlHTHblX 
cnnaaax co cnyqallHblMH anrerpanaMH nepccKoKa 

nonyqeua CriHHBOflHOBaSI ll<eCTKOCTb D B tjleppoMarHHTHblX 6unnpHblX 
MerannaqecKHX cnnaaax npa nyneaoii reMneparype ua ocHoBe xaoTJ<'leCKOJ1 
Moaena Xa66apaa c yqeroM aHarouanbHoro H neauaronanbHoro 6ecnopHnKoB. 
Mbl orpaHH'lBflHCb tjlnyKryaUHSIMH unrerpanoa nepecKoKa B aaanT!WHOM npeae
ne. C noMoWbJO o6o6weunoll aepCHH CPA Bbl'lncnenLl aepmnnHble nonpallKH 
K D aa cqer cnyqaiiuocrn nonepequoro cnnuoaoro roKa. Koatjl<tuunenr D 
ncpenopMapyercg a paMKax Korepeuruoro ropuaonranbnoro necrnnqnoro 
npn6nHlKeHBSI, BKJJIO'l810WCPO 3J1eKTpOH-3!lCKTpOHHbiC Koppe!lllUHH. 06cy~<ll810TCSI 

yCTOll'lHBOCTb H 38TyXSHHe CnHHOBblX BOflH, TO)I(ACCTBa Y Opaa H 3JlCKTponpo

BOAHOCTb. 

Pa6ora BbmonHeHa B na6oparopHH reopeTH'lCCKOll tPH3HKH OH HH. 

npenpHHT 06bei\I!HeHHOPO HHCTHTyTa !11\epHblX I!CC!leAOBBHI!ii, lly6Ha !978 

Kolley E., Kolley w. E17 · 119W 

Spin Wave Stiffness Constant of Narrow-Band 
Ferromagnetic Alloys with Random Hopping 

The spin wave· stiffnes~ constant D of ferromagnetic 
binary metallic alloys is derived at zero temperature 
from a random Hubbard model including diagonal and off
diagonal disorder. The fluctuations of the hopping integ
rals are restricted to the additive limit. Vertex cor
rections to D due to the randomness of the transverse 
spin current are calculated in an extended CPA. D is 
renormalized by electron-electron correlations within the 
coherent horizontal ladder approximation. Stability and 
damping of the spin waves, Ward relations, and the elect
rical conductivity are discussed. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. INTRODUCTION 

Spin wave excitations in ferromagnetic 
transition metal alloys are characterized 
by the stiffness constant D which is af
fected by both electron-electron correla
tions and disorder. The itinerant d-elect
rons responsible for ferromagnetism can be 
described by a random Hubbard model 1 11 hav
ing spin rotational symmetry. Thus in the 
long-wavelength region one can extract in 
principle, according, e.g., to Bogolubov's 
1/q2 -theorem from the broken symmetry 
( c f . 

121 
) , a gap 1 e s s mag non branch w q = Dq 2 

below the Stoner gap in the particle-hole 
excitation spectrum. 

Previous studies of D in random itinerant
electron ferromagnets are mostly based /3~7/ 
on the random phase approximation 
(RPA) combined with the coherent potential 
approximation (CPA) 181 , where the electron-
electron interaction is taken into account 
in the Hartree-Fock approximation and only 
diagonal disorder is included. In general, 
the hopping integrals in real disordered 
alloys are random. Henc~, owing to the re
lationship between D and the transverse 
spin current susceptibility 191 , there may 
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appear vertex corrections arising from the 
random current operator. In the RPA decoupl
ing scheme/10/ these vertex corrections have 
not been considered. 

In this paper we choose a microscopic 
Fermi liquid approach (cf . 1111 ) at zero 
temperature to derive D for narrow-band al
loys involving random transfer energies in 
the additive limit. In Section 2 the vertex 
corrections due to the random current are 
calculated in generalizing the diagonal di
sorder treatment 1 111 The stiffness constant 
Dis renormalized within the coherent lad
der approximation (CLA) 1121 , i.e., the self
consistent combination of the horizontal 
ladder approximationJ13/ and the off-diagonal 
CPA (see alsol14/ ) . This scheme given in 
Section 3 is beyond the RPA-CPA. Stability 
and damping of the spin waves, Ward relati
ons, and the analogy to the conductivity 
problem are discussed in Section 4. 

2. VERTEX CORRECTIONS TO THE 
STIFFNESS CONSTANT 

Let us handle the itinerant-electron 
system of narrow-band ferromagnetic alloys 
AcBl-c on the basis of the single-band Hub
bard Hamiltonian'V in the random form 

! 1/ l 
H "' ~ 

ija 
< i I i) 

{Jl c~ c. + ~ <v. n. + ~ Uv n. n. 
IJ 10 .]0 j a I I a j I I t I~ 

• ( 1 ) 

where cta<cia) creates (destroys) a S_!?in a 

electron in the Wannier state at lattice 
s it e i , and n ia = c Tac ia . W i thin a g i v en a 1 -
loy configuration ! v l the atomic energy < v I 

4 

and the bare intra-aLomic 
U v t a k e t: he r a. n d o :n \ a 1 L e s 

1 

Coulomb repulsion 
Uv ' A ( v and \ v = , B), 

respectively, accc.,rJ.ing to vrhether an A- or 
B- atom occupies the site i. The off-diago
nal disorder is assumed to be of the addi-
ti 'le type 

1 rtAA -tBB) -A 2 \c 'z;_ 

!!Jl .B B • v {' 
t .. =L 4lj+t, (i,j :n.n.): 

t ~" l ( 2) 
1] J 

0, ~~~ B,, 

•;; h c r e o '' 1. y n e a r e s t - n e i g h b our ( n . n . ) hop p in g 
integraL:; t l'Jl (or 1 short 1 y , t VJl ) are inc 1 u -· 

IJ 
ded. 

In the long-wavelength limit the magnon 
energy w =Dq2 for cubic crystals can be 

q 
determined by the spin wave stiffness formula 
lcf .14.7.111) 

1 1 + -lvl !v! +---> 
D = [lim-, «[S-. ,qJ 4 ]> > -lim lim x (q,w)] 

n •- n • +O q 2 q - q c w-.o q-->0 J 
. q ( 3) 

connected with the transverse spin current 
susceptibility 

+-(q-> )- <:'<<J+.!v!J-lv! lv! 
X • w - - , ·' • • 4 '>> > J q -q (JJ c 

( 4) 

Here (n. -n.;) is the average magnetization 
per site ( Ila: average number of u electrons 
per site), < ... >!z1 ! means the ground-state 
expectation value within !vl, and< ... > c 
denotes the configuration average. For the 
model ( 1) combined with ( 2) the transverse 
spin density operators,! (or s- __.=(S~ )+) and 

q -q q 
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its current operator 
are given by 

+ - + + J .... (or J .... = (J.... ) ) 
q -q q 

s+ 1 ~ + 
::t = _m '""c.tc.,~, e 
'! v !~ . 1 1 

......... 
-1 qRj 

( 5) 

+lvl +(0) +(l)lvl 
qJ.... =qJ .... +qJ-+ 

q q q ( 6) 

with 
_4_,. _ _,.-. 

+ (0) 1 BB -1qRi -J'lRj 
qJ-+ =-ll't (e -e )c+c. (7) 

q vN i i 1t J"' 

+ < 1) lv! 1 v -r<i"Ri -i<i.Rj + + 
qJ.... =_~l l't. (e -e )(c. c., -c. c "') 

q vN i j 1 1t J• Jt 1 

_};qJ+(l)v 
q i 

( 8) 

.... 
'tolhere N is the number of lattice sites, Ri 

denotes the position vector of site i, and 
the prime indicates the summation over nea
rest neighbours. Note that, contrary to 
the case of diagonal disorder, the current 
here includes the random part .J!(l)lvl 
being additive. q 

In order to get the stiffness constant 
D from (3) we are now looking for CPA vertex 
corrections due to the randomness of the 
current operator. Start with the first term 
of (3) rewritten by means of (2), and (5) 

to ( 3) as 

1 + -lv I lv I 1 dE I vI 
lim 2 «[ S-+ ,qJ _ .... ]> > =-~l f--<G .. a(E)x 

q-+0 q q q c 01"11 ija 2 77 1J 

-+v _,. __.. 
xjll(R.-R.)>, ij 1 J c 

.... .... .... 

jijll = -it~J (Ri -Rj ), 

( 9) 

6 

where a:1 
is the causal one-particle Green 

function. Hereafter, the cubic symmetry is 
employed. The integrand in (9) can be expres
sed in terms of the one-particle total scat
tering opera tor T~! by 

lv! lv!' lv!' 
lOa (z)j I>= trl§ (z)<j > 

c a c 
< tr + 

lvl lvl' 
( 1 0) 

, .... .... 
+<trl § (z)T (z)§ (z)j I> • a a a c 

Yll .->vJ. ll(R -R. ), J = -1 . . 1- J ij 1J 

where the trace means the summation (without 
spin) over one-particle states, and complex 
z-arguments refer to the resolvent. Adopting 
the extended CPA (c~f 1 12 ,1 4 / ) the averaged 
propagator §a(z) = < G:; (z) > takes the 
~ c 
k -transform 

ra B BB -+ -+ -1 
;:1-t (z)=(Z-< -t s(k)-l (k,z)) , 

Ka a ( 11 ) 

where 

.... .... .... 
s (k) "' }; , e i k (Ri - Rj ) 

j(~ i) 
( 1 2) 

The coherent self-energy 

.... .... .... 
l 0 (k,Z)= a 0 a(Z)+2a 

1
Jz) s(k) +a 

2
a (z) s 2 ( k) ( 1 3) 

is expressed in terms of aoa• a 1a, a 2a which 
sa t i s f y the CPA c on d i t ion s < r ~a > c = 0 
(E = 0,1,2) arising from the constraint 
<T~>c =0 imposed on the single-site scat
tering matrix 
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..... ~, --+ 
... v _. 

1 
-i(k-k) Rj ... _. _. _. 

<kIT. I k '> = -N e [ r0~ +r v (s(k) + s (k '))+Tv .s(k)s(k')]. 
1a w 1w 2 w 

( 1 4) 

The explicit expressions 

below. 

v 
for r lia are given 

It is convenient to cast the first term 
on the r.h.s. of (10) with jlvl from (9) and 
(2) in the E'ourier transform 

{vi' BB AA BB , 
trl§ (z)<j > l=-[t +C(t -t )]~ y ... ~ ... (z).x 

a c ... k k ka 
XV k S (k) , ( 1 S ) 

where c denotes the alloy concentration. 
To evaluate the second contribution of (10) 
we use the identity (for brevity, ( z, a)
arguments are dropped) 

trl §Tivl§j !vi' I= -[tr(§'Tivl§j{,,l I +trl§Tlvl~,r !I'll+ 

+tr!§T!v( §J!vll]. (16) 

More explicit1:,Y, the "derivatives" in the 

~annier spa ... ce §jj = -i§ij (Ri -Rj) and 

8 

T_!vl '=-iTI
1
vJ. (R

1
. -R.) represent vectors which 

IJ J ... I I 
form scalar products with j v in ( 16) . In 
averaging (16) the current jlvl = j<O)+ 
+ ]O>lvl can be ... retlaced immediately by 
its random par[ j (1) vl since the CPA 
requirement < T vl >c =0 holds. Therefore, 
in the framework of the modified CPA inclu
ding vertex corrections 114/, it is found 

that 

trl§'<Tlvl§j<l)lvl> l+trl<J(l){vl §Tlvl > ~'l,. 
c c 

:l [ V ... l(k)-c(tAA_tBB) v_,s(k)] v ... §.,. 
~ k K k k 
It 

( 1 7) 

.. 

The rest of (16) is handled as follows. The 
total operator Tlvl can be expressed in 
terms of Tr as multi p l e scattering s erie s . 
On the basis of (2) and (9) one decomposes 
the random current operator into single-site 
parts through j<O!v I=~ J<O':' . Then the 
- . I 

statistical correlatibns are reduced to 

<tr!§TivL§jlvll> =<~tr!§fv' §j<l)~ I> 
C j I 1 C 

( 18) 

where products of random quantities at the 
same site are averaged exactly; at different 
sites, we decouple by factorization, yielding 
no contribution due to <T~> =0 (compare 

I C 
the scheme in /14/ ). ... 

In the k -representation we have to 
substitute 

.......... , ..... 
_. _. ( l) -> 1 -i (k-k )Ri v ... _. 

<klj ~ lk'>=--e t.(V_,s(k)+V ... s(k')) (19) 
I N I k k' • 

.......... , ..... 
_. _. -> 1 -i(k-k )Ri v -> ->, 

<k\T.v 'ik'>=..._e [r ( V-~s(k)+ V-.,s(k ))+ 
I N 1i k k 

-+ ..... --+ -+ 

+ r ~ (s(k') v.,. s(k) + s(k) v ... s(k'))], 
21 k k, 

( 20) 

and the propagator ( 11) in to ( 18) leading to 

<~ tri§Tiv'§J(l)~ I>"' 2a l §~[V.,.s(k)] 2 , 
i c 2Jt It k 

( 2 1 ) 

where 
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a2 = < ,vl. t~ > Fo + < '2~ tv> F • 
IIC IIC1 ( 2 2) 

FCa (z) = ~ 2 ~-> (z)[ s (k)] e, 
k ka 

c e = o.1.2). ( 2 3) 

In getting (21) we have used the time-re
versal symmetry, The expression (22) for 
the self-energy part a 2 (see (13)) has been 

also derived in the context of the conduc
tivity problem/14/. 

Combining (15) to (18) with (21) and 
recalling the ( z, a) -arguments we obtain 
the configuration average (10) in the form 

<tr{ G;l(z)j{vl 'l>=- 2 §: (z)[ V'-> (t BBs{k) + 2 (k,z)) ?,__ 
c -> l{a k a 

k ( 2 4) 
-2a (z)!§_, (z)[v~s(k)]2. 

2a k ka I{ 

Thus the contribution (9) to the stiffness 
constant D becomes 

1 + -lv! lim- «[S _, , qJ _, 
q->0 q 2 q -q 

] lv! 
> > c 

BB -> -> 2 
x [ V..,(t s(k)+ 2 (k,E))] 

k a 

= _L 2 f il.E.{ ~: (E) x 
6N ka 277 ka 

+ ( 2 5) 

(<) -> 2 
+ 2a2a (Eh:rk_a(E)[ Vks(k)] l 

reexpressed in terms crf causal functions. 
Extending the microscopic Fermi liquid 

approach/'ll/ to off-diagonal disorder 
the spin current susceptibility (4) reads 

10 

• 

• 

2 + _, i dE lv I _, 
q X J- (q,w) =- - f --- < tr I At+ (E,E+w ;q) x 

N 277 

X GI;'I(E+w)Aivl (-q)Gtlvi(E)I> 
c 

( 2 6) 

where 

lvl . VJ1 -> dE . lvl - . 
A .. (E,E+w,Q)=X .. (q)-8 .. J-

2
-11 1· (E,E+w,w) x 

I J IJ IJ 71 
t+ H+t (27) 

lvl - lvl - - -> lvl -
x 2 G. t{E)A (E,E+w;q)G ·+ (E+w), 

mn 1m mn m 
t .j, 

\ llJl -> VII ·-> -> 
" .. (q) = t r ( -lqRi 

IJ i j e 

-> 

-iqRj ). -e ( 2 8) 

Here only the localitt of the irreducible 
particle-hole vertex Itl (E,E+w;w)= Ilvl (E,E+w;E+w,E) 

HH ~~·H 
has been assumed, By expanding .\ v and the 

effective spin-flip current Al,r} to order q 
I v t_, ... ->I v 1 I vI _, 

in (26), (27), (28) as A {q)=Q•j and A (E,E+w;q)= 
-> ... lv! t• 

=Q·At+ (E,E+w) , resp., separating diagonal and 

d . 1 f ->{v! d . off- 1.agona parts o A.. , an presum1.ng 
IJ 

cubic symmetry one gets 

+- n. ) i JdE 1-:lvl Glvl(E x ~ q = 0, w = - - < tr J ,~. + w) x 
J.... lvl 3N_ 277 ... 

x j lv!G t (E) l> +x+- (q = O,w ), 
c J 

( 2 9) 

where 

- -> i dE .... I v I x+-(q=O,w)=-f-< !A .. (E,E+w) >< 
J 3N 2 71 i II 

... I I t + 
x K v. (E+w ,E)> , 

II C 

(30) 

J. t 

.... {vl lvl :ji.v !vi 
K .. (E+w,E)=! G. -~.(E+w)Jm G . ..(E). 11 mn 1m n n1, ( 31) 

.. 't 
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The configurational averaging is achie
ved in two steps. Since the part (30) af
fected by electron correlations is beyond 
the CPA, the first step consists in making 
the factorization ansatz <Alv!. "Klv! > = 

= < Xlvl > • <i{lvl > 1 ead ing to c 
c c 

->{vi 1 iU iU 88-> 
<Kii (E+w,E)> =-N ~ ~~ (E+w)~ .... (E) V~(t s(k)+ 

+t c 1{ it+ kt R (32) 1 .... .... 
+2"(~+(k,E+w)+~t(k,E))) =0 - .... 

and x\- (q = 0, w) = 0 due to time-reversal sym-
metry. 

In the second step the off-diagonal CPA 
technique outlined in evaluating(25)can be 
applied to calculate the vertex corrections 
for the current-current response in (29) 
(compare the case treated in/141 ) ,yielding 

:-+!vi lv! ~lv! lv! 
<tr!J G.t. (E+w)J Gt (E)I>=~~-t (E+w)~c> (E)x 

C k KJ, kt 

88-> 1 -> -> 2 
x[Vk(t s(k)+ 2-(~+(k,E+w)+~t(k,E)))] + (33) 

+~[a (E+w)~ ... (E)+a (E)~~. (E+w)][ V~s(k)].2 
1{ 2 + k t 2t R• 1i. 

Returning with (25), (29), (30), (32), and 
(33)to the spin wave stiffness constant{3) ,we 
find by performing analytical continuation 
to retarded "r" quantities the final re
sult 

1 11 rr rr rr 
D = ---- Im f dE [TIt (E,E)+ ll (E,E)-2ll , (E,E)] ( 

34
) 

6n{nt-n+) -oo t H t ... 

with 

12 

:) 
l 

J 
) 

1 88 .... 1 ... II ,(z,z}=-N~~ .... (z)~ .... ,(z')[v .... (t s(k)+-2 (~ (k,z)+ 
aa 1{ ka ka k ·· a 

+ ~a, (k,z ')))] 2_.. -/i ~ [a 2a(z) ~ ka'(z ') + a2a ,(z ')~a(z)][ V 1t s(k)]2, 

( 3 5) 

. r r + + where the not at 1 on s 11 aa -(E ,E) = II aa, (E , E ) , 
E+ =E + iO are used. Here the Fermi energy 
11 is determined from the condition 

1 11 r 
~ n =-- ~ J dE Im F (E), 
a a TT a -oo Oa 

(36) n = 

where n is the average number of electrons 
p e r s i t e , and F 

0 
a( z ) i s g i v en by ( 2 3 ) . 

It is pointed out that the compact formu
lae (34) and (35) for D in ferromagnetic 
alloys include off-diagonal disorder and 
electron-electron correlations simultaneous
ly. The nonvanishing vertex corrections 
originated from the randomness of the spin 
current are proportiona 1 to a ta and a 2 a, .... 
i.e., associated with the k -dependence of 
the self-energy ~ 0 (k,z) (13). In particu
lar, a Ward identity is involved in terms .... 
of VJt~a(k,z). Restrictions are the additive 
limit (2) of the off-diagonal randomness 

and the locality of the kernel I.lv! of the 
1 

t+ + t 
Bethe-Salpeter-type equation (27). 
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3. COHERENT LADDER APPROXIMATION 

Next the coherent quantities entering 
into (34) and (35) are renormalized self
consistently by electron-electron and impuri
ty scattering mechanisms. Within the CLA 
scheme1 12/ the local interaction in the 
particle-particle channel is given in terms 
of conditionally averaged causal functions 
by 

v dli', v , v , 
~Uiia (E)= I -2!.!iL:- Gii-a(E )f'i (E+ E ), 

171 

( v = A,B) 

( 3 7) 

v ( [ 1 dE ' v ( , v (E E , )] - 1 ri. E)= -- + I ----- a . . E )G . . - • < 3 s l Uv 2 17 i I1a n-a 
I 

where rr is the effective two-particle vertex. 
The local Green function G~ia(z) written as a 
resolvent is determined in off-diagonal CPA 
by 

G ria (z) = F0a(Z)+ F0
2
a<z)r ~ia(Z)+2F0 a(z)F la(z) r~ i a(Z)+ 

+ F :a<z)r~a (z), {39) 

-v v ~v v I 
f. (z)= o. + "'u·. (z), o. = Ia 1 IIa 1 

A B 
( -f , v =A 

( 40) 
0, v = B, 

v a e (z) 
<To_ (z)> =< ____ a ____ > = 0, ( f = Q,1,2), 

w c 1 _ dv (z) c 
a 

(41) 

where 

av =(( 1
' -a )+(t 1/-a ) 2 F +('fV-a )a F , (42) 

Oa a Oa ta 2a a Oa 2a 2a 

v ,, !/ 2 F r:-1' ) F a =(t -a )-(t -a ) -~<-a a 
tcr ta ta 1CJ a Oa 2a ta ( 4 3) 

v v )2 (-v ) F a2a= -a2a +(t-ala Foa + <a -aoa a2a Oa' ( 4 4) 

dv =('fV-a )F +2(tv-a )F -a F -
a a Oa Oa ta ta 2a 2a 

[ l/ 2 - l/ . ][ 9 l - (t -a ) +(f -a )a F- -F F . 
la a Oa 2a ta 0a2a ( 4 5) 

Here the atomic potential (ra(z) is energy-
~v dependent through the s e 1 f-en erg y -:... u i iaC z) 

caused by electron correlations, t~ is 
given in (2) (i indices are dropped in (41) 
to ( 4 5 ) ) , a n d F fa i s de f i ned by ( 2 3 ) . The 
CPA conditions (41) are averaged configura
tionally with weights c and (1-c). By combi-
ning (36) to (45) with (23) and (11), (12), 
(13) to a self-consistency loop we make 
available the quantities needed to compute 
the stiffness constant D from (34) via (35) 

Let us pass to some limiting cases: 
(i) In the Hartree-Fock approximation 

one g~ts, instead of (37) and (38), the 
constant self-energy ~vu~F =Uvnv where 1Ia I 1-a 

v 
nia denotes the average electron number 
with spin a at v-sites given by 

t4 I . 15 



n':' =- .LJI! dE ImG~ra(E). 1a TT 
-oo 

Otherwise, the present scheme 
unaltered. 

( 4 6) 

remains to be 

(ii) In the case of only diagonal disor
der (labeled by d), i.e., tr= o and a 1 =a2 =o, 
(39) takes the form 

v F
0 

(z) G i i a (z) = _______ a ______ _ 

1-(;-!-' (z)-a (z))F (z) 
1a Oa Oa 

( 4 7) 

and (41) can be reduced to the CPA condition 

< 'ov (z)> a c 
( ~ (z)- a0a(z) 

< --------------> =0. -v c 
1 - ( f a(z)- a Oa(z)) F0a (z) 

( 4 8) 

... 
Note that the k -independent coherent poten-
tial La(Z)= a 0a(z) may be redefined by 
L (z)=£B +a

0 
(z) according tolll/. The a a 

stiffness constant in (34) and (35) becomes 

1 11 1 (.)r r l!- 2 
D = ----- ImJdE- L (~ ... (E)-~ (E)) ~V"""£""),(49) 

d 6rr(nt-n-~.) _00 N k kt k-1. k k 

BB ... 
where fk = t s(k). The hor i zan tal ladder 
approximation (37) and (38) is retained. 

(iii) By restricting ourselves to both 
the Hartree-Fock approximation and diagonal 
disorder we arrive at the RPA-CPAresult 13 ~ 71 

having the form (49) related to the case 
( i) . 
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4. VALIDITY CONSIDERATION 

Consider now some additional points which 
contribute to the justification of the present 
approach. Using (5) one can introduce the 
transverse susceptibility (cf.llV 

+- ... + - l v! i dE I vI ... 
X (q,w) =- <«S ... ,S_ ... q» > = -N f --- <tr!A0 ,(E,E+w;q)x 

q W C 2 TT t• 
(50) 

lvl -> lvl 
x G -1. (E +w) A 0 ( -q) G t (E) I >c 

where the effective spin-flip density A~~ 
obeys an integral equation analogous to (27) 
with Att(q) replaced by .\ 0i (q)=e-fqRi oij 

k . . h J . 1 Ta 1ng 1ntc account t e spec~a vertex 

lvl - lvl - lvl -
I. (E,E +w ;w)=- I'. (E+E+w )= -1. (E+E+w ), 

1 1 l 

tHt t~~t 

the e qua t ion ( 2 7 ) a n d i t s an a 1 o g for A ~~ L 
combined with (37) and (38) in the complete-
ly random version (i.e., v replaced by lvl ) 
yield 

lvl ... lvl ... 
wAoi(E,E+w;q)o .. -A .. (E,E+w;q) = 

•. L 1J 1J ,... ... t~ ... 
~ e -rQRiGI_vl-:1 (E+w )-dv.l-l(E)e -iqRj 

1J+ 1J t 

(51) 

where 

lvl-1 _ _ v _ V{L_ lvl 
(G (E)) .. -(E <. )8 .. t .. Lu·· (E)o .. 

1 J a 1 1J 1J 1 1 a 1J 
(52) 

The ward-Takahashi-type relation (51) refers 
to a spin conserving approximation within 

the configuration lvl. 
The stability condition of the ferromag-

netic ground state againts spin wave excita

tions 

D=D(n -n~)>O 
t 

(53) 
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may be found from the spectral representati
on 

+- r -> 1 00 
, Sil7fl w ' A ( , ) 

X (q,w)=--J dw ---~-:--I + _ w '(54) 
277_ 00 w-w +If SqS-q 

A 

where the spectral density I s:!;s-}w) ~ 0 
q -q 

is related to the configurationally avera-
ged system. The magnon pole written in the 
simplest form 

+-r-+ nf-n,. 
X (q,w)=---------

pole w-Dq2+if 
(55) 

can be separated for small q and '.U from the 

Stoner continuum, because the individual 
excitations of the elect~on-hole pairs have 
vanishing spectral weight for q-> 0. Note 
that the expression (55) implies a 
Goldstone boson characterized by 
li~wq = 0 arising from the breakdown 
Cthrough nf .J n,. ) of the spin rotational 
invariance which is given by [Hivl, S~=o1=0 
withHiv!from (1). The comparison of (54) and 
(55) leads to (53). 

In the present approximation the spin 
wave damping Yq, which enters into (55) 
instead of f .... 0, can be proved to be 

q 2 I + - r (0 D 2 ) y = ---- mx ' q = 
q nt-n+ J 

(56) 

= --~-- Re1Ilra(f1.f1)-llrr (11•11)!, 
677(llt-n,.) t+ f+ 

where TI~~(I1•11)= nt,.(l1+,u-) and TI~(I1•f1) 
are available from (35), and fl-= 11 -iO. For 
the case without off-diagonal disorder, (56) 
simplifies to 1111 
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D d q4 ~ rv r rvr 2 
Y d = -3--( --)N..:.. Im~ .... (11)Im~_, (11)(v_.( .... ) (57) 

q " n f -n,. k k f k + k k 

/5/ 
corresponding to the RPA-CPA result 

It should be mentioned that the longitu
dinal electrical conductivity can be calcu
lated with the same accuracy as D. In doing 
so, the dissipative part of the scalar ac 
conductivity Rear(w) is obtained as a 
generalized Kubo-Green~ood formula 

Rear(w )= ~ ~ J dE(_!i~l_-f(E:_~) x 
1277V a w 

(58) 
ra ~r rr ( aa ] x [II (E+w,E)+ I1 (E+w,E)- II E+w,E)-11 (E+w,E) , aa aa aa aa 

where f(E) = 8( 11 -E) is the Fermi function at 
zero temperature, V is the volume of the 
system, and e denotes the electronic charge. 
In the static limit one deduces from (58) the 
de conductivity a=ar(w=O) as 

e 2 N ra rr ] ~ 
a = --- ~ [ II ( 11 •fl)- Re II (11•11) = ..:.. a 

6 17 V a a a aa a a 
(59) 

Here II~~(E+w ,E)= n aa<E+ +w ,E- ), etc., are 
given in (35), and the conductivities at(+) 

for t(,.) spin electrons indicate the ferro
magnetic state. For diagonal disorder there 
follows the conventional form 
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e2 r 2 2 
ad = -- ~ [ Im §__. ( 11 ) ] ( V--> f •) 

3rrV-> ka k k 
ka 

( (~ c J 

Note that the Green functions a~rt self-enc~

gies in (58), (59), and (GO) arc ;:er;ormali
zed by electron correlations w~ chin the CLA. 

5. CONCLUSION 

The present deriv1ticn of r e n · ·) r ~n a l i z e ,3 

spin wave stiffness constant of ferromagne
tic metallic alloys involves CPA vertex cor
rections of the spin current susceptibility 
due to random transfer integrals of the 

special type tAB= ~ (tAA +tBB ). This additive 

limit seems to be reasonable, e.g., for 
dilute ferromagnets · (cf. 1151 and references 
therein and makes also contact to bond-
type disordered systems. Another current 
vertex correction has been excluded a priori 
by assuming locality of the effective four
leg vertices originated from the random 
Hubbard term. Such a zero range interaction 
can be justified by the screening effect of 
the (otherwise ignored) s electrons in the 
metal. The spin wave treatment is confirmed 
by a stability criterion, small damping at 
least of order q4 , and the fulfilment of 
Ward identities. According to the horizontal 
ladder approximation the proposed scheme 
is suitable for strong electron correlations 
and small carrier densities as realized,e.g., 
in some Ni -based alloys. Numerical results 
of self-consistent calculations will be 
reported in a subsequent paper. 
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