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1. INTRODUCTION

One of the simplest, yet unsolved, prob-
lems in lattice statistics is the pure
I -mer problem in which each site of lattice
is singly occupied by one element of a rec-
tilinear I-mer molecule. The pure T -mer
problem is characterized by the residual
entropy or "molecular freedom" per I -mer
¢,,defined so that the number of arrangements
of n I -mers on a lattice of Nxf sites is
asymptotically (¢,)".The exact solution for
the case of dimers was obtained by Fisher/
and Kasteleyn’u/for the square lattice and
subsequently for other two-dimensional lat-
tices (Kasteleyn /5). No rigorous treat-
ments of the general I -mer problem have
yet been given.

The Bethe approximation on a lattice
of coordination number ¢ leads to

é =(ﬂ[1___2_’(r_1)]cr/2~r+1 (1L.1)
r 2 cr
and becomes invalid as I increases (¢, is
less than unity already for r>3 in the
case of a square lattice). There are enough
data, provided by the matrix method of
Kramers-Wannier (Van Craen/m/), the Kikuchi
method (Kaye and Burley /6/ ), series ex~-
pansions {(Van Craen and Bellemans/lﬂ) to



obtain fair estimates of the exact solution
of trimer problem,

Recently Kowalsky and Priezzhev/7/
and Gagunashvili and Priezzhev’k/have in-
vestigated rigorously lower and wupper
bounds of ¢, for arbitrary 22 Their results
are summarized in the following three in-
equalities:

¢, <(5) exp{-ﬂ-— for r even, (1.2)
r- 1Vr 17 o ,
¢ <(——=) ewl—- farch(-"— ~ cos¢)dp} forrodd (1 .3)
r— 2 LU r-1
¢ >expl iy (1.4)
T wl

where (G=0.915965... (Catalan’s constant).

In the present paper we develop a method
of approaching the prcblem which is an ex-
tension of these works. This method based
on the combinatorial principle of inclusion
and exclusion provides a series technique
for estimating the molecular freedom per
I -mer for arbitrary r> 2,

2. RECTILINEAR POLIMERS ON THE SUPERLATTICE

Consider a planar quadratic mrxnr lattice
te which one can attach rectilinear r -mers
in such a way that every I -mer occupies T
lattice points and the lattice is fully
occupied by I -mers., We denote the lattice
points by (X y) and define points of quadratic
mxn suparlattice as points with coordi-
nates (X Y) which obey

X(modr) = 0,
Y(modr) = 0.

To estimate ¢,, we use the following proposi-
tion (Kowalsky and Priezzhev 77/ ).

Proposition 1. Let i(mn) points of the lat-
tice be occupied by mn I -mers, arranged
on the superlattice, then the rest of points
may be covered with f-mers not more than
in one manner.

So, any arbitrary configuration of r-mers
is defined by arrangement of mmn T -mers on
the superlattice. There are 2r different
ways in which a superlattice site may be
occupied and consequently there are alto-
gether (2)™" possibilities. Many of them,
however, are unacceptable because of incom-
patibilities between arrangements of diffe-
rent T -mers on the superlattice.

Let us consider the reasons for which
the r -mer configuration ¢ on the superlattice
may be unacceptable. The simplest of them
is the intersection of r-mers covering
neighbouring superlattice points. To clarify
other cases we introduce some auxiliary no-

tions.

By reduced coordinates of the point (X Yy)
we understand the pair of integers [i,j]
defined by

X (modr) 1€, 1,...,r-1)

-
Il

y (modr) i&@©1,.., -1

—.
il

Let C be a configuration of r-mers on the
superlattice and B(C) be a set of a super-
lattice bounds partially covered by r-mers
from C. Each bound appears in B(C) 0,1,2 times
if there are 0,1 or 2 I -mers covering this
bound. A digraph is defined as a collection
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of superlattice sites and collection of
bounds B(C). A cycle of a digraph is a col-
lection of bounds of the form pIPE*QG“"mkdp1'
where P;p; denote the bounds joining super-
lattice points p; and P;. and all points

in the collection save p; are distinct.

A cycle is closed relative to reduced coor-
dinates [i,jTi#0 ,j#0 if all points of the
basic mrxnr lattice belonging to its bounds
and having reduced coordinates [i, 0] , [0, j]
are covered by r-mers from C.

The cycle %% r Pyby resulting from inter-
section of two neighbouring r-mers from C
in the basic lattice points is closed, too,
with respect to reduced coordinates of these
points. We call any closed cycle the contour

and we use gﬁljﬁizjg.u;isjs) to denote
the contour closed with respect to coordi-
nates hljﬂ,ﬁzjgﬁnik,jg or g if the va-

lues of these coordinates are not essential.
We will say that the configuration C gene-
rates the contour g. Note that different
configurations can generate the same contour
and a few contours can correspond to one
cycle.

Proposition 2. (Gagunashvili, Priezzhev’?)
If the T -mers configuration C on the super-
lattice generates at least one contour g,
then the dense packed configuration on the
basic lattice involving C does not exist.
Thus, in order to get an explicit expres-
sion 'for ¢,,we need to exclude from the
total number ()" of r-mers configurations
on the superlattice those generating con-
tours. Consider the set of all distinct con-
tours {gJ , s=1to k where k is the maximum
number of contours for given lattice. Let

P be the total number of r -mers configu-
rations on the superlattice. Let P; be the
number of configurations generating the con-

tour g; and Pipi?"”% be the number gene-

rating the contours gil.g% reess B Then by

the principle of inclusion and exclusion the
number of configurations Po generating none
of the contours is given by

P =P-3P. + S P. . +u+(=D" x
0 i i<, Miele

(2.1)
X > P.

K
; et )P,
1< <<y 1>e e

'iS e

One may take on trust that excluding of the
configurations generating the contours
exhausts the set of all unacceptable configu-
rations. At least we have the following sta-

tement (Priezzhev /®/ ):

Proposition 3. In the case =2 Py 1is
the number of all possible dense and non-
overlapping arrangements of dimers on the
square lattice .

Conjecture, The proposition 3 is valid
for all r> 2

If the conjecture holds, we obtain the
expression for the molecular freedom of
I -mers on the basic mrxnr lattice:

1/rmn 2.
¢l’ =(P0) * ( 2)

In the opposite case the right-hand side
of equation (2.2) is the upper bound of ¢,.
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3. DERIVATION OF THE SERIES EXPANSION

Let Gy be the set of contours B 18 g8y,
generated by TI-mer configuration on the
superlattice, The index s denotes the number
of superlattice points belonging to con-
tours from Gg v(Gy) denotes the number of
contours in the set G . Note, that one may
arrange an I-mer on each of mn-s super-
lattice points which do not belong to Gy
in 2r independent ways. We define WG by

(G ) -
- Y= W), (3.1)
C

where the prime denotes the summation over
configurations C generating the set G,.

By definition [W(G)) is the number of ar-
rangements of s r -mers on the s superlat-
tice sites which lead to the set of contours
G;.According to (2.1), in notations intro-
duced we have

V(GQ) V(G3) v(G
P =P+ 3 371 + 3 3(-1)
Gy C G, C

md

tot 2 3(=1D =
3 C'mnC
mn  mn-2 (3.2)
@) @ WGy
@I WGkt I WG )
G3 Gmn

We define the generating function
N N S
Ag®=@) 11+ = wy ()% 1, (3.3)
s=2

where N=mn and

©(9) = st W(G).

In the thermodynamic limit

/ o0
A =lim (A 1YY Saits E ow(ex®y) (3.4)

N-»oo N s=2

where it can be shown that

w(s) = wN(S)l N=1
From (2.2), (3.,2), (3,3) and (3.4) it fol-
lows that

o :[A(:‘)l;)] 1t _en! {1+2w(s)(§r~)si e (3.5)

From the boundedness of ¢, for each fixedr
the convergence of the series in equation
(3.5) follows: so w(s)/t® 50 for s>~ We
shall see below that the convergence is ra-
pid enough to estimate ¢, using the first
few terms of the series.

4. GRAPH DATA

To begin the calculation of the coeffi-
cients (s), let us consider a few simple
cases.

1. Case s$=2,r1=3. In this case G, contains
only contour (M(Gg)1) from the collection g(1,0),
g2, 0) , =(1,0;2,0) ,800,1) , &0, 2 , 80,1, 0,2). The r-mer
configurations corresponding to the first
three contours are shown in fig.l(b), (c), (d).

The remaining three contours correspond to
vertical r -mers. Thus, for r=3 w_(2)=-

and w(2)=-6. A simple calculation shows
that for arbitrary r

0 (&=~ 2—(2—9—N w(2) = 1= 1).
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Fig. 1. Case 8=2, r=3.0pen circles denote
superlattice points. (a) A cycle, (b), (c),
(d) T -mer configurations generating con-
tours g1,0), &2 0), gQ,0;2 0).

1 i 1.1
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I
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Fig. 2. (a) Two connected cycles in case s=3.

(b) The r ~mer configuration (r=38) generating
contours g(1,0) and g2, 0).
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Fig. 3. Cycles contributing in the coeffi-
cient w(4).
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2. Case 8$=3,r1r=3.0ne of the two configu-
rations appearing in this case is shown in
fig. 2. We see that wy(3)=2N,w(d)=2. For arbit-
rary r>2 we have

Li-1) ot
5 —N, «(3)= 1:22 ii - 1).

(&—2 Z

3. Case s=4. This case is illustrated in
fig. 3. The enumeration of the contours
corresponding to cycles of the type (a)
leads to

N(N - 7)[( r-by2

Similarly, for the cycles of the type (b)
we have

an - ‘—" By 2

and for those of type (c):

r=1i~1 5
oN z 3 SU=D g
i=3j=2 2

0 (r=2 orr=3)

Using these expressions, we obtain

PP Gk VR R Pt (VI
2 i=3 j=2 2
where we use conventions that a sum is equal
to zero, if in the summation the lower index
exceeds the upper one.
To consider more general cases, let us
make first some preliminary remarks. Among
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the set of contours arising on a digraph
there can appear such pairs of contours g
and g’ that for any configuration of r-mers
the presence of g” necessitates the vresence
of g, but the inverse does not hold. In that
case following the principle of inclusion
and exclusion when calculating the coeffi-
cient w(s) we should take into account only
the contribution from contour g.

Now let us derive general expressions
for w(s) up to eighth order. To this end
consider all possible types of connected
cycles entering into the 8-th order expan-
sion (Table 1) and calculate the numbers of
I -mers configurations generating different
contours which correspond to each of these
cycles. These numbers will be denoted by K®
for each value of the I ~-mer length, their
dependence on other indices is shown in
Table 1. Indices i, j,k f,n take such values
that the total number of cycle vertices does
not exceed eight. Formulae for calculating
the number of r -mer configurations K®
can be found in Appendix A. Appendix B con-
tains formulae for calculating the coeffi-
cients w(s) expressed through K ,

5. RESULTS

The expansion coefficients w(s), s=2,3,...,8
obtained by evaluating expressions Al-All
and Bl-B7 for first twenty values of r are
listed in Table 2. The series in eqg. (3.5)
has been truncated after the eight term
and resulting values of the molecular free-
dom

11 8 1.5 14
¢, =() U +S§=2m(S)(—2T) !

12

e e A e

Table 1

T
n Type of cycle k® n Type of cycle KO

. )
Ky @M 8 K

), .
K, (kD)

(r)

LSRTERATY

)
Ks

(O]
10 10

KOk 0.

K(')

(r)
Ky 11 11

AR

are listed in the last column of Table 2.
These expansions are not long enough to
lead to an accurate estimate of ¢, by using
the Pade technique. Nevertheless, to make

a comparison with results of the previous
papers we have estimated ¢, and ¢5 by eva-
luating the Pade approximants P(22) and
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Expansion coefficients

Table 2

w(8)

and molecular freedom ¢r

row(2)  w(3) w(4) w(5) w(6) w (7N w (3 Y.
2 -2 0 -7 0 ~50 0 =472 1.82
3 -6 2 63 72 ~-1302 2552 ~35912 1.66
4 -2 8 -254 576 ~10596 40464 ~596041 1.55
5 ~20 20 ~710 2402, =49900 280600 ~4757065 1.48
6 =30 40 1608 7212 ~170702 1263200 ~24714755 1.42
7 =42 70 =3157 17682 =473354 4336502 ~96842767 1.38
8 . =56 112 ~5628 37744 «1131368 12346448 =310832678 1.34
9 =72 168 -9324 72828 «2420664 30641256 =859905270 1.32
10 -390 240 ~14595 130104 ~4753770 68450640 «2120515650 1.29
1 «110 -330 =21835 218724 -8718974 140699460 =4771407850 1.27
12 =132 440 «31482 350064 -15124428 270315584 ~9963307607 1.26
13 =156 572 -44018 537966  =25047204 491091744  ~13551975079 1.24
14 =182 728 ~59969 798980 ~39887302 851161168, ~36408772309 1.23
15 =210 910  =79905 1152606  -61426610 1417146770  -64824333305 1,22
16 =240 112_.9 =104440 1621536 -91892816 2279043680 ~111022357660 1.21
17 -272 1360 =134232 2231896 ~=-134028272 3555894895 ~183801981692 1.20
18 -305 1632 -169983 ¢3013488 ~-191163810 5402319840 ~295328614140 1.19
19 ~342 1938 =~212439 4000032 =267297510 8015955600 =462094556508 1.18
20 =380 2280 =262390 5229408 =367178420 11645870640 ~706072161205 1.17
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calculated ¢, with its upper and lower

bounds reported in the Introduction. For
instance, atr=20 from equations (1.2), (1.4),
we have l.l9;2¢202 l1.06, ¢zd=l'l7 so that

the accuracy is not worse than (-10%, +23%).

APPENDIX A

") r-1 m-1 my-1
K= 55 3
mui-t m_ei-2  m =0 ! (a1)
). . (o r)
Kz( (.j,,0) = K:) k)/< (j+f)
(a2)
(r) ; L)
K, (L,Jf,k,{)= /\1((}'*{)‘(
r-1 m;-4 my-9 -1 m, me-1 Ny -1 -1 (A3)
[z 223 2 > 5
m; = M‘._.:t“l m1-1 piem, p=q "‘ainax(n‘k)-1 n -L’-Z n=o ,
Ky (ig k,tn)= K7 ¢ilen).
(a4)

r-i < et -1 [ mm(rm p)-1 2,-1

{ZJZ SN 27}

m
N-Jl M1 Pk p 2kt p=d gn-1 4, =n2 3,20 ">

K r_ K (2){rz Z’, Zm_L z (m,~m+1)(m - "HZ)/«’-} (a5)

ln,c/m */ mcl ms= 1

-1

my

(r) r1
{Z 5 m(mm/zj

"""1 m=1

(26)

16

r1 ret
K;ﬂg{ Z mm(m. m)[mm(m mn )4-4]/2‘
- ma1 m=q

r-1 nxm

KT =K7m {Z > 2

m a} P2 ma}

m(2r-m-1)/2 }

b4

/\/'(:’._. K:"(z,)i Z— min (m,m \m

mlsl m=t¢

r-t m-i

K (r‘)= (

11

m ){i "i n(2r-n- 1)/2}

m=2 m= n=2

APPENDIX B
w(2)=-2K7(2)
@@= 2 K7,

w -7 @)= 2K

(r)

“,
w(6)= 24 K"’(z)K‘"’(sMZK‘:’(;),

r)

w(c)— 21<("(e) 46[K, (2)] 20[K‘"’(s)]

._3:,K"’2)1<"’(4) ZIK (1111)+41< 11111

L

(A7)

(a8)

(A9)

(a10)

(A11)

(B1)
(B2)

(B3)

(34)

B5)

)I
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(r),

"ok

)
1

w(7)=2K X7+ 44 K )+ 56K, 1)K ;)

r . r r (B6
« 276 (K@K v+ 8K (2,01)+ 8K 1,2,1,1)

171 2

- BK (2 1) - 8K (1,2,1,0,1)- 4K (0,1,2,1,1)

PR 22 I 2

- (o ll Ly r 2
w(8)=-2K"(8)-382[K )] 520K DK B)] (a1,

~020[K ] K " y-39 (K] - 54K T K l6)

~72 KUK15) - 60K C KT (141,1)

1

“tr r) )
60K @K1, 8K, (3,10 8K70,3,10)
)

207

™

+8 Kf’(;}:)u})}:)+8K,f”(/,3 L) =4K,(2,1,2,1)

J

2520 ’ )

— 4K 0,2,02)- 8K 2,11,2) - 8K T (2,2,1,1)

[( v )
4K (2 ,2) 44K (12,12, )4 16K, (2,2,1,11)

4 ]

‘ ) r (r)
S QK ,3,00)+ 8K (2, 1,2,,)4 8K, (1,2,2,1,1)

~4K - 2K - 8K 48K 18K 4K - §K
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