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Colour Lattices and Spin Transition Groups.
General Case

A method of derivation of colour d -dimensional
crystallographic lattices with no symmetry conditions
on basls vectors is given. A number of nonequivalent
b ~colour lattices is evaluated for d<4 and any finite n.
An application of colour lattices for obtaining spin
translation groups is presented. The results for tri-
clinic spin translation groups are compared with those
of Litvin/10/, :

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

Colour groups in crystallography are de-
fined as extensions of classical crystal-
lographic groups. The idea started in works
of Belov and Tarkhova/u.Indebom/7ﬁNiggli/w/
and others preceded by an idea of antisym-
metry (2-colour symmetry) of Heesch and
Shubnikov. Colour groups are of interest
in the theory of symmetry of compound sys-
tems (magnetic crystals, alloys, defect
crystals, etc.). It is well known that mag-
netic groups have appeared in physics as an
interpretation of 2-colour groups. The ge-
neralized magnetic groups, called spin
groups,have been recently introduced as rea-
lizations of many-coloured groups.

The different types of colour groups,
their properties and bibliography have been
reviewed by Shubnikov and Koptsik/m/ and
Opechowski/M{Only P-type colour groups

(called further colour groups) will

be considered here, as usually discussed

in connection with magnetic symmetry. Colour
point groups have been derived by Koptsik
and Kotsev’® and Harker’4/. zamorzaev’/18/ and
Shubnikov and KoptsikK'1®/ have listed 2-,

3-, 4- and 6-colour 3-dimensional lattices.



Only very limited classes of colour space
groups are known (Zamorzaev/m(Koptsik and
Kuzhukeev/learker/w has recently proposed

a method of derivation of colour lattices
with symmetry conditions on basis vectors.

He has listed also triclinic colour lat-
tices for n 16.

In this paper an algebraic method of
derivation of colour ( ~dimensional lattices
in general case, i.e., no symmetry condi-
tions are imposed on basis vectors of a lat-
tice, is presented. The exact formulas for
a number of nonequivalent n -colour lattices
are given for d<4 and any finite p. The
results are used for deriving spin transla-
tion groups of triclinic system. Prelimina-
ry definitions and basic properties of co-
lour groups are briefly presented in Sec. 2.
In Sec. 3, after formulation of four group-
theoretical lemmas, we develop a method of
obtaining n-colour lattices; the main re-
sult is given here. The spin translation
groups, abbreviated by STG's, are derived and
tabulated in Sec. 4. The examples in Table 1
show the distribution of STG’s over their
isomorphic colour images of lowest n. In
Table 2 the symbols of nonequivalent clas-
ses of triclinic STG's are given. A specific
discussion on the change of basis vectors
of a colour lattice is given in the Appen-
dix.

2. COLOUR GROUPS

For a given group Q and a discrete set
of points Rzia,@p“} let us consider an orbit
9 in R relative to §:

9=Qr1={ri|ri=gir1, g; < G}

Table 1

Examples of colour lattices (CL) and iso-
morphic to them spin translation groups (STG)

n CcL STG
1 §1111 111
2 {211} (211),(2'11),(1'11)
3 {311} (311)
4 {411} (411), (4'11)
221} (2171),(242,1),
(2% 241)
5 {511} (511)
6 (611} (611),(6'11),(3"11)
7 {711} (711)
8 {81114 (811), (8'11)
{421} (41'1)
222} (25241")
36 {36,1,1)} (36,1,1),(36,1,1)
{18,2,1}1 (18,1,1)
12,3,1} -
{6,6,1} -

Let f(r) be an arbitrary function defined on
§ry. Any value f; of function f(r) is called
a colour. An ordered pair [f(ry),r;]  is called
a colour point. Let§={fj} be a setof all n
distinct values of a function f(r) and P =
={m§ be a transitive group on¥. In parti-
cular, ? can be thought as any subgroup

of the group &, of all permutations of in-
dices of colours f,. Next, we consider or-

dered pairs (p,.g; ) where ka? and

g.¢G and define their action on colour
iTd

points [f Jj]. We may assume that elements



Table 2

Spin translation groups of triclinic system

(N 11 (Z N 1) (2,2,N)
(N 171)* (Zz N 1) (Z] Z,N)
(Z'N 1) (Z{ZyN")
(2x2y1) (Z N’l) (ZizzN,)
(R,2,1) (Z"N’1). L, N
(%2, 1) (212N

(zlzgz3)

(z;zgzy

@,z zZ.)

(2125 25)

* N even .

of ? act independently relative to elements

on:
(pk,gi)[fg,rj]= [ P Ly 8, rj]= [fq, r.);

fg,fqéﬂ:; r rSCQ.

i’
—

Any subgroup of the group Q?=? e§ ., wheree

denotes direct product of groups, is called

the colour group ( P -type colour group ),
(van der Waerden and Burckhardt7MCZamorza—

ev ) The colour group'g? is called senior

6

colour group . Usyally we are interested in
those subgroups §° of #® § which are iso-
morphic to

g=87coeg.

The subgroups G are called junior or non-
trivial colour groups. The set of classical
elements (e,g.), ¢ &7 ,giCQ , forms a subgroup
Wt of a cglour group, called classical
subgroup of a colour group. The symmetry
group of a system of colour points X is the
colour group leaving K invariant. A system
of colour points with the junior colour
group as the symmetry group has selected

"colour properties". In particular: (i)
A function f(r) 1is single-valued, i.e., only
one colour % is paired with each point

r. (ii) The numbers of colour points[Q o1y
for each colourfl of § are the same; they
are equal to the order of the classical sub-
group H! of Q?. ¢

Only junior colour groups g will be
discussed in the next sections.

A method of deriving all subgroups §
of P28 is based on an "isomorphism theorem"
(Zamorzaev/lw).

A se§ of all elements p; of # in a junior
group S constitutes a group ? isomorphic
to a factor group §/H. The elements p, of ¥
are paired with elements gkoffg by a homo-
morphism

g"g/}(zg)
We need yet the concept of the equiva-
lence of two colour groups. P

We have said that two colour groups [
and é? are equivalent if they are conjugate
subgroups of a group Qz{ajh



e 0 ~1 ~
67 wa, 6%a7l, 4 c 0 (1)
and
1 1 1
X -aiH a; ", (2)
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whe@e K is the maximal classical subgroup
of § and-§?.ln the following, only crystal-
lographic groups will be taken as groups Q
and the equivalence of colour groups will
be determined by a group

Q=2 a@" , (3)
where ¥ is either an abstract group or
a concrete group of transformations, (
is the proper subgroup of the affine group (.

3. COLOUR LATTICES

Let 9 be a d-dimensional crystallographic
lattice denoted by J:

d
T={t; t = i§1niai’ n, — integers},
where ajy ,as ,... yay are d linearly inde-
pendent vectors in d-dimensional Euclidean
space. Vectors a;,a,, ..., a4 form a basis

of §. Here we assume that no symmetry con-
ditions are imposed on basis vectors, i.e.,
any set of d linearly independent vectors

of J stands for the basis of J. The colour
lattice J7% isomorphic to J will be called
general colour lattice. The lattice J is an

abelian group and it can be expressed as
a direct product of 1 -dimensional lat-
tices:

j:fﬂ ® jg@..pjd ,
where all 5&(1-1,2“",d) are infinite cyclic
groups. Now we formulate four group-theore-
tical lemmas which are standard statements
in the theory of abelian groups (Fuchs/w ).
Ll: Let a lattice J* be a d-dimensional
subgroup of J. Then there exist basis
a4,85,...8q of the group J and by, by,..., by
of the group J* respectively, such that
b.:miai (i=12,...,d), (4)

1
where allnH are integers.

. o ®
L2: 1f §=0d, g G,® ... d,
and (* is an invariant subgroup of (; ,
i=1,2,...,f , then for some subgroup H of §
there 1is

Hzly o G 5. o0

and
G/ =(4;/8)) o(d,/035) ® .8 (G /G} ).

L3: Every finite abelian group Q is a di-
rect product of groups

G§=610Gy @ ... ® Gy, (5)

where eachgi is cyclic of prime power order
As

A;
p;! A >0 The,orders_pi1 are called

invariants and the groups §, are called
prime components of the decomposition (5).
Two finite abelian groups are isomorphic
if and only if they have the same set of
elementary divisors.

L4: A direct product




Hye Hye .. ®Hq (6)
of cyclic groups, whose orders are powers
of distinct primes, is cyclic.

A metho% of constructing general colour
lattices J for a given lattice J will be j
based on the following theorem:

T1:
A P P
T =9 e FoPe e gl (7)
where
o)
T, Y29 (i=1,2,...,d)
and
,‘Pfol ® P, ...Md , (8)

where each P, is cyclic group of order m; -
ﬁ m, =n.
i=1 1
is the group formed by all powers of (p ,a;)
where p;, is a generating element of z » ay
is a basis vector of ji-
This result follows immediately from the
isomorphism theorem, L1 and L2. Since J
is abelian, any subgroup J*of J is normal.
The factor group J/J* ever exists and it
is also abelian. Thus the group ¥ of J
is an abelian group. In the l-dimensional
case the group j}/j; is a cyclic group
of order m;, so is the group 9, .
Thus, to derive all colour lattices J
for a given lattice J and number n, one needs
to .find all nonisomorphic abelian groups ¥ ‘
of ordern expressed as all possible decom-
positions (8) . We use now L3. Let in the

The lattice ji?i (i=12,...,d)

10

decomposition (11) of the group § cyclic
groups be related to the distinct primes

Py /Pp +ecs Py Let the number of prime
components related to a prime pi(izlﬁ,””k)
is equal to q; and the prime components are
of orders

A A A
Sl p 2 S N (9)

1 1

P

where numbers A are arranged as follows

MoxAy 2 zA o)

S - Coi Cim
?Aj r,s 1,2, T 1,2, ..., k.

One obtains in this way from L3 that all
nonisomorphic abelian groups of given order

r1 l'2 1'[7
n= p1 P, <o Py can be found by

considering all partitions (10) of numbers
r; (i=1,2,..,k) with arbitrary numbers q; .
Here we are interested in the decompositions
of an abelian groups of order n into d cyc-
lic components with admitted trivial compo-
nents, i.e., cyclic groups of order 1. It
is clear from L3, L4 and Egq. (10) that such
decompositions can be found, if numbers qQ;
are limited to be not larger than d .

A partition of r expressing r as a sum
of at most d positive integers is called
d ~ary partition. The number of d-ary par-
titions of 1 will be denote by y(r). all
possible decompositions (8) can be then ex-
pressed by all d-~-ary partitions of numbers
I; . The number y(r) can be calculated as
a coefficient of x' in the formal power

series expansion of

1



o) = 11 (1-x)7'= 3, (0x'
j=1 r=0

where ®(x) is the Euler generating function
(Hall’8’ ). Thus, we have the following final
result:

T2: The number of n -colour d-dimensional
lattices for

. 1'1 l’2 l’g

L=p, P, -~-PE ) (11)
where all numbers p; are distinct primes,
is equal to

ya))y @, )y (ry ),
where y(ri) can be expressed as:

E[_ll___ +7)2(ri+1)+.§_] for d=4 and . odd;

(r.
44 !

3
E[1144 t@; + 5" =3@,— Dilfor d=4 and r, even; (19)

E[l—(ri+3)2 +%] for d =3;

E[-l-é-r.+1] for d=2; 1 for d=1.

1

Here E[x] denotes the integer part of Xx;
i=1,2,..., €.

A colour lattice j? will be represented
by basis vectors a; 4, 85,...,28y each vector
being paired with an appropriate generating

element Py of fﬂ (i=1,2,...,d). The symbols
(py) (pg) (pg) )
{ 31 y3'2 y sey ad } or Slmply {ml,mz,...,md¥

where m; is the order of ?i (i=1,2,...,4d)

12

are used for denoting the j?. The number m;

will be also called an order of the vector

;) m, (¢))
aj since [a; ' 1 1axbp, , where b, =m, a,

is a classical vector of J

The method of constructing all colour-
d -dimensional lattices for given number of
colours n will then be as follows.

Start with the decomposition (11) of n
and find all d-ary partitions of numbers
Ly i=1,2,...,¢ Every set of numbers

A

P Ci=12,, 5 1gijgd (14)
determines the decomposition of the group ?
into cyclic components. For every set of
orders (l14) one multiplies relatively prime
components according to L4. It can be shown
that thus obtained orders m; of cyclic groups
P, have the property that myy divides
m;, 1gig<s=-1. We may use this property
in establishing the way of associating ob-
tained cyclic groups to the basis vectors
aqg, ag , ..., ag4 , where s<d. If s<d,
then with vectors aHl,aym,”” a4 there are
associated cyclic groups of order 1.

As an example, we see that there are
two nonequivalent 4-coloured triclinic lat-
tices {a?),a%”,ay)} and {ag)ﬁglag)}but onlg
one 6-coloured triclinic lattice{a%QaéQaé ]
Further examples of colour lattices of lo-
west n and d=3 are given in Table 1.

It should be pointed out that numbers
m; in Eg. (4) of L1 need not be finite.
Then the groups Ti are infinite cyclic
groups. In general, the invariants of an
abelian group are prime powers and . We
will use this fact in the next section.

13



4. SPIN TRANSLATION GROUPS

Examples of colour groups of physical
importance are spin groups. In this inter-
pretation, the function f(r) is meant as
a spin density function &§(r) describing the
distribution of magnetic moments in a magne-
tically ordered crystal. The function &(r) is
an axial vector function defined on the set
Gry which forms a crystal. The symmetry

group G of such a system can be found to
be a subgroup of the group

@S

G =2 e G, (15)

where $=0 ® 1’ is the group of all rotations
and axial inversion in the "spin space”™ and
6 is the crystallographic group acting on
vectors in the "physical space". The group
éﬁ is called a spin group (Naish/m/,for
5 review see Litvin and Opechowski/“/). As
previously, we are interested in spin groups
isomorphic to §, i.e., junior (nontrivial)
spin groups, called further spin groups.
The problem of deriving spin groups is
simplified if one knows appropriate abstréct
colour groups. For a given colour group §
one needs o ly to find its isomorphic spin

1mages Q} . where SLSQ,. are subgroups
of S1 @52
Next, one finds among 91 » 32 »+»  noONn-

equivalent groups using Eqgs. (1)-(3), where
?=0e 1" As an illustration, we shall de-
rive here spin translation groups (STG's)
with no symmetry conditions on basis vectors.
STG's were first tabulated by Litvin/10/. Let
Q be assumed to be a lattice J generated

by basis vectors a; , i=12,..,4d. First, we
find abelian subgroups of O ® I’ which are

L

point groups of three categories (we use
the International notation):

l) 1; 27 3; 4,-.., o8

2) 172, 261, 301,4", 4 g1%..., = ® 1°; (16)
3) 2 2 2,222, 2298 1",

Thus, a STG is generated by vectors 2, and
proper and improper rotations R; =R(a;),
i=1,2, . Next, for a given colour lattice
57 we flnd all spin lattices jl l,jggn.and

divide them into equivalence classes. The
method is explained here by few examples
(Table 1). In Table 2, representative STG's
of nonequivalent classes of STG's of tri-
clinic system are given. A STG is denoted

by (Ry,Ry,R35). Symbol N denotes a rotation
Ry through an angle 2nq/N, where N and q
are relatively prime integers and q< N.

The rotations 27¢/N are generators of a cyc-
lic group of order N. A rotationR; through
an angle 27/Z, where 2 is an irrational
number, is denoted by Z. The rotation Z is

a generator of a cyclic group of infinite
order. Symbols N’ and Z° are used for denoting
generators of the groups of 2nd category
(16) in the case of both even and odd N's,
for simplicity. In the symbol (Rq,R», Rg )

all R; denote rotations about a single
arbltrarily oriented axis, despite rota-
tions belonging to the groups of 3rd cate-
gory (16). For these groups, subscripts have
been added in Table 2 to indicate the mutual
orientations of the twofold axes.

The results presented in Table 2 differ
from the Litvin's/1%results given in Table 1
of his work (in the part concerning the tri-
clinic system), as equivalent classes of

15



sTG's are omitted here. For example, the STG
denoted by (Ny,N,Nj3), where corresponding
N's are relatively prime, can be found in
the class of STG's denoted by (N,1,1), where
N =N Np N3 . The same concerns the groups
(NyN,,2) and (N,2,1), whereN;.Ny ,N are odd
integers. The discussion of the problem
based on very simple number-theoretic con-
siderations is given in the Appendix.

In conclusion, two remarks are made.
(i) We can see from an example in Table 1
that not all colour lattices have their spin
interpretation; this is not seen in the
case of 2-colour and magnetic groups. (ii)
One can get another physical interpretation
of colour groups by considering a direct pro-
duct extension of the group P in Eq. (15)
by the group ! of inversion of polar vector;
one arrives in this way at the so-called

. . /
magnetoelectric groups (Koptsik and Kotsev/g)
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APPENDIX

We discuss here in some detail the prob-
lem of the change of the basis of a general
colour lattice. For simplicity, we consider
the case of 2-dimensional lattice. We shall
use the symbol D(X,Y) for denoting the grea-
test common division of two numbers X and Y.
Then DX,Y)=1 will denote that two numbers
X and Y are relatively prime.

16

Let j? be a colour lattice generated by
basis vectors a, and azand cyclic elements
(N;) and(N,) paired with a, and a,, respectively.
The lattice TF is denoted by{NPNé,Now let
D%NI,NQ). We shall prove that in this case
g can be denoted by {N,1}, where N =N;N, .
This means that inJ’ new basis vectors 3,
and a5 can be chosen with ordersNand 1 ,respec-

tively. The new basis vectors can be found
as

a; =Xja, + X 5a

(A.1)

32=N131+ ‘\1232 ,

where coefficients XjandX,; are integers deter-
mined by the equation

X X
Det ! 2 =+ 1. (A.2)

It is clear that the order of a, is equal to
1. The order of a; will be equal to NyN, if

D(X,,N;)=1 and D(X,,N,)=1. (A.3)

This is immediate consequence of the fol-
lowing property of cyclic groups:

Let € be a cyclic group of order k. If C
is generated by g then C is also generated
by every g , where D(k, { )=1.

We can see that any solution X, ,Xp
of eq. (A2) has the property (A3). Suppose,
for example, that D(XI,N1)=01>1. Thus it
follows from eq. (A2)

1
Y,N, _X2M1=E-<l

17



what leads to contradiction, as all consi-
dered numbers are integers.

The method for solving eq. (A2) is based
on an Euclidean algorithm for finding D(X,Y)

/2 .
(Davenport ). Let us consider the equation
NXg =N, X =21, (A4)
The first step is to express Ny/N, as a con-
tinued fraction

N1y
Ne q, + 1
2 q. + (A5)
3 .
1
1
qm—f 1
m

Next one calculates numbers called Euler
brackets

X, =
1 [ql ng,...,q ]

m—1

(a6)

X, =
2 [qz,q3,...,qm_1]
by means of the recurrent formulas

[ql’qz""'qj]'q1[Q2,Q3,-n.qj] +

+lag,q, g 1,
30 9, q; |

18

The general solution of eq. (A4) is given
by the expressions:

8 —

X, =(~1) X1 +N1t ,
S = (A7)

X2=(-1) X2 + N2t ,
where t is any integer, 8=m for +1 in the
right-hand side of eq. (A4), §=m-1 for -1,
respectively. The solution (A7) exists if and
only if Nyjand Npare relatively prime.
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