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UBeTHbie peweTKH H cnHHOBbiC rpancnSIUHOHHLie rpynnbl. 
06IUHA cny'laA 

B pa6ore npHBOJliiTCSI MeTOJl nony'leHHSI UBeTHbiX d -MepHbiX KpKCTanno­
rpacjlH'IeCKKX pemeTOK 6e3 HanolKeHHSI ycnOBHii CIIMMeTpKH HQ 6e3HCHbiC 
eeKTopa. Hallueno 'lncno neaKBI!BanenrHbiX n -ueeTHbtX pemeTOK nns d:;; 4 
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Tp8HCnSIUHOHHbiX rpynn CP8BHHB810TCSI C. peaynbTQT8MI1 nKTBHH8 / 101 • 
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Colour Lattices and Spin Transition Groups. 
General Case 

A method of derivation of colour d -dimensional 
crystallographic lattices with no symmetry conditions 
on basis vectors is given. A number of nonequivalent 
n -colour lattices is evaluated for d::;_4 and any finite n. 

An application of colour lattices for obtaining spin 
translation groups is presented. The results for tri­
clinic spin translation groups are compared with those 
of Litvin 1 101 . 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubno 1978 

1. INTRODUCTION 

Colour groups in crystallography are de­
fined as extensions of classical crystal­
lographic groups. The idea started in works 
of Belov and Tarkhova 111, Indebom 171, Niggli 1131 

and others preceded by an idea of antisym­
metry (2-colour symmetry) of Heesch and 
Shubnikov. Colour groups are of interest 
in the theory of symmetry of compound sys­
tems (magnetic crystals, alloys, defect 
crystals, etc.). It is well known that mag­
netic groups have appeared in physics as an 
interpretation of 2-colour groups. The ge­
neralized magnetic groups, called spin 
groups,have been recently introduced as rea­
lizations of many-coloured groups. 

The different types of colour groups, 
their properties and bibliography have been 
reviewed by Shubnikov and Koptsik1151 and 
Opechowski 114~0nly P-type colour groups 

(called further colour groups) will 
be considered here, as usually discussed 
in connection with magnetic symmetry. Colour 
point groups have been derived by Koptsik 
and Kotsev 181 and Harker/4/. Zamorzaev1181 and 
Shubnikov and Koptsik' 151 have listed 2-, 
3-, 4- and 6-colour 3-dimensional lattices. 
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Only very limited classes of colour space 
groups are known (Zamorzaev 118~Koptsik and 

/19) /5/ Kuzhukeev .Harker has recently proposed 
a method of derivation of colour lattices 
with symmetry conditions on basis vectors. 
He has listed also triclinic colour lat­
tices for n ~16. 

In this paper an algebraic method of 
derivation of colour d -dimensional lattices 
in general case, i.e., no symmetry condi­
tions are imposed on basis vectors of a lat­
tice, is presented. The exact formulas for 
a number of nonequivalent n -colour lattices 
are given for d_s4 and any finite n. The 
results are used for deriving spin transla­
tion groups of triclinic system. Prelimina­
ry definitions and basic properties of co­
lour groups are briefly presented in Sec. 2. 
In Sec. 3, after formulation of four group­
theoretical lemmas, we develop a method of 
obtaining n-colour lattices; the main re­
sult is given here. The spin translation 
groups, abbreviated by STG's, are derived and 
tabulated in Sec. 4. The examples in Table l 
show the distribution of STG's over their 
isomorphic colour images of lowest n. In 
Table 2 the symbols of nonequivalent clas­
ses of triclinic STG's are given. A specific 
discussion on the change of basis vectors 
of a colour lattice is given in the Appen­
dix. 

2. COLOUR GROUPS 

For a given group ~ and a discrete set 
of points ~=!r1 ,r2 , ... I let us consider an orbit 
5:2 in ~ relative to §: 

5:2 "" ~ r 1 ·-1 r. I r. "' g. r 1 , g. c;;; §I. 
1 1 1 1 
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Table l 

Examples of colour lattices (CL) and iso­
morphic to them spin translation groups (STG) 

n 

l 
2 
3 
4 

5 
6 
7 
8 

36 

CL 
--

! 1111 
! 2111 
!3111 
!4111 
!2 211 

!5111 
{6111 
17111 
{8111 
!4 211 
!2 2 21 

{36,1,1)1 
!18, 2, ll 
{12 , 3 , 11 
! 6,6,11 

STG 

lll 
(211), (2'11), (l'll) 

( 311) 
(411), (4'11) 

(21'1), (2x2yl), 
( 2 'x 2 y l) 

(511) 
(611), (6'11), (3'11) 

( 711) 
(811), (8'11) 

(41'1) 
(2x2yl') 

(36,1,1), (36~1,1) 
(18,1,1) 

Let f(r) be an arbitrary function defined on 
~r 1 . Any value fi of function f(r) is called 
a ~-o_l.Q...'ll'. An ordered pair [t(ri), ri] is called 
a colour point. Let ~=If j I be a set of all n 
distinct values of a function f(r) and P= 
=!Pi I be a transitive group on~. In parti­
cular, P can be thought as any subgroup 
of the group sn of all permutations of in­
dices of colours f k. Next, we consider or-
dered pairs (pk ,gi ), where pkc;;;p and 
gi ~ ~ , and define their action on colour 
points [fi ,rjl. We may assume that elements 
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Table 2 

Spin translation groups of triclinic system 

( N 1 1 ) 

(~' 1 1) 

(~ 1'1)* 

(2x2y 1) 

(2 ~ 2y 1) 

(2x2y 1) 

* N even. 

(Z N 1')* 

( Z N 1) 

(Z' N 1) 

(Z N' 1) 

(Z' N' 1) 

(Z 1 Z
2

N) 

(Z~Z 2 N) 

(Z i Z 2 N) 

(Z 1 Z 2 N') 

(Z' Z N') 
1 2 

(Z!Z2N') 

(Z1Z2Z3) 

cz;z2z3) 
(Z' Z' Z ) 

1 2 3 
(z, z, z, ) 

1 2 3 

of P act independently relative to e 1 emen ts 
of~: 

( p k' g i ) [ f e' r j ] "' [ pk f e' g i r j ] == [ f q' r s] 

fe, fq~~; rj, r
8

r;;. 5!2. 

,_...J 

Any subgroup of the group ~p=P ® Q , where® 
denotes direct product of groups, is called 
the colour group ( P -type colour group ) , 
(van der Waerden and B~ckhardt/16~ Zamorza­
ev117l The colour group §P is called senior 
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colour group . Us~ally we are interested in 
those subgroups ~ of P fli ~ which are iso­
morphic to ~~ 

~":.~ps;Pfli~. 
The subgroups ~p are called junior or ~ 
trivial colour groups. The set of classical 
elements ( e,g

1
), e ~ P , g 1 ~ ~ , forms a subgroup 

H1 of a colour group, called classical 
subgroup of a colour group. The symmetry 
group of a system of colour points K is the 
colour group leaving K invariant. A system 
of colour points with the junior colour 
group as the symmetry group has selected 
"colour properties". In particular: (i) 
A function f(r) is single-valued, i.e., only 
one colour le is paired with each point 
r. (ii) The numbers of colour points [to ,r.] 

i {. 1 
for each colour f t of ~ are the same; they 
are equal to the order of the classical sub-
group H1 of ~p. p 

Only junior colour groups ~ will be 
discussed in the n~x: sections. p 

A method of der1v1ng all subgroups ~ 
of P ®~ is based on an "isomorphism theorem" 
(Zamorzaev 1171 ). 

A se~ of all elements p 1 of P in a junior 
group ~ constitutes a group P isomorphic 
to a factor group ~/H. The elements p 1 of P 
are paired with elements gk of~ by a homo­
morphism 

g -+ ~!H ~ p. 

We need yet the concept of the equiva­
lence of two colour groups. 

We have said that two colour groups ~p 
and §' are equivalent if they are conjugate 
subgroups of a group n ""Ia. I: 

J 
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~ p,. ai 
@p -1 
CJ a i ' ai ~ n ( l) 

and 

u 1 u 1 -1 
J' •aiJ' ai ' ( 2 ) 

1 
whe;'pe J{ is the maximal classical subgro·-1p 
of~ and "§P. In the following, only crystal­
lographic groups will be taken as groups ~ 
and the equivalence of colour groups will 
be determined by a group 

n-P ®ct+ 

where P is either an abstract group or 
a concrete group of transformations, ct+ 

( 3) 

is the proper subgroup of the affine groupd. 

3. COLOUR LATTICES 

Let § be a d -dimensional crystallographic 
lattice denoted by :f: 

d 
:f"" I t; t ,. L n. a. , n. - integers I, 

ix1 1 1 1 

where a1, a2 , . .. , ad are d linearly inde-
pendent vectors in d-dimensional Euclidean 
space. Vectors a 1 , a2 , ... , ad form a basis 
of :f. Here we assume that no symmetry con­
ditions are imposed on basis vectors, i.e., 
any set of d linearly independent vectors 
of :f stands for the basis of :f. The colour 
lattice :rP isomorphic to :f will be calle~ 
general colour lattice. The lattice :f is an 
abelian group and it can be expressed as 
a direct "product of 1 -dimensional lat-
tices: 
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:f=:f1 ®:f2®··~:rd 
where all :f1 (i .. 1,2, ... ,d) are infinite cyclic 
groups. Now we formulate four group-theore­
tical lemmas which are standard statements 
in the theory of abel ian groups (Fuchs 131 

) • 

Ll: Let a lattice :f* be a d-dimensional 
subgroup of :f. Then there exist basis 
a 1 • a 2 , .... ad of the group :f and b1 , b 2 , ... , bd 

of the group :f*, respectively, such that 

b i "" m i a i ( i "" 1 ,2 , ... , d ) , 

where all m 1 are integers. 

L2: If f'j~C11 ®(12® ... ®(_jf 

( 4) 

and d:" is 
1 

i :1,2, ... ,£ 
an invariant subgroup of Cf 1 

then for some subgroup J{ of § 
there is 

:H ~ a1 ® a~ ® ••• ® C1£ 

and 

G;:H:: <ct 1;ctil ® <ct 2 ;ct2 > ® ... ® <ctf ;ctt >. 

L3: Every finite abelian group§ is a di­
rect product of groups 

§=-§1®§2 ® ... ® §k. ( 5) 

where each§ i is eye l ic of prime power order 
,\. ,\. 

P1
1 ,A 1>0. The.orders p 1

1 are called 
invariants and the groups § 1 are called 
prime components of the decomposition (5). 
Two finite abelian groups are isomorphic 
if and only if they have the same set of 
elementary divisors. 

L4: A direct product 
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}{1® J{2® ... ®J{ 
q 

of cyclic groups, whose orders are powers 
of distinct primes, is cyclic. 

( 6) 

A metho~ of constructing general colour 
lattices j" for a given lattice J will be 
based on the following theorem: 

Tl: 

crP q·p1 
.J '"' J 1 ® 

where 

and 

p. 
J 1 = 'I 

i - . i 

qp2 
J2 ® 

® J p d 
d 

(i "'1 ,2 ' ... ' d ) 

p "" p 1 ® p 2 ® ••• ® p d • 

( 7) 

( 8) 

where each P. is cyclic group of order m. 
1 I 

d n m. xn. 
is 1 1 

The lattice J.P. 
1 1 

( i ""1 ,2 ' ... ' d ) 

is the group formed by all powers of (pi, ai 
where Pi is a generating element of P1 , ai 
is a basis vector of Ji. 

This result follows immediately from the 
isomorphism theorem, Ll and L2. Since J 
is abelian, any subgroup 5"* of J is normal. 
The factor group J;J* ever exists and it 
is also abelian. Thus the group P of JP 
is an abelian group. In the 1-dimensional 
case the group 5"1 ;Jt is a cyclic group 
of order mi, so is the group Pi . p 

Thus, to derive all colour lattices J 
for a given lattice J and number n, one needs 
to .find all nonisomorphic abelian groups P 
of ordern expressed as all possible decom­
positions (8). We use now L3. Let in the 
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decomposition (11) of the group ~ cyclic 
groups be related to the distinct primes 
P 1 ,p2 , ... , Pk . Let the number of prime 
components related to a prime p. (i,.1,2, ... ,k) 

1 
is equal to ~ and the prime components are 
of orders 

At A2 
pi ' pi 

A 
' ... ,p. Qj 

1 

where numbers A are arranged as follows 

A 1 >-. A 2 2 ... 2 A qi 

~A j • r. ; j ,.,1, 2 , 
j 1 

... ,qi; i-1,2, ... ,k. 

( 9) 

(10) 

One obtains in this way from L3 that all 
nonisomorphic abelian groups of given order 

r 1 r2 re 
n,., P1 P 2 . . . Pf can be found by 
considering all partitions (10) of numbers 
ri (i,.1,2, ... ,k) with arbitrary numbers qi. 
Here we are interested in the decompositions 
of an abelian groups of order n into d cyc­
lic components with admitted trivial compo­
nents, i.e., cyclic groups of order 1. It 
is clear from L3, L4 and Eq. (10) that such 
decompositions can be found, if numbers qi 
are limited to be not larger than d. 

A partition of r expressing r as a sum 
of at most d positive integers is called 

d -ary partition. The number of d -ary par­
titions of r will be denote by y(r). All 
possible decompositions (8) can be then ex­
pressed by all d-ary partitions of numbers 
ri. The number y(r) can be calculated as 
a coefficient of xr in the formal power 
series expansion of 
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d . -1 "" 
<I>(x) .. n (1-xJ) ,;; ~y (r)xr. 

J• t r,.O 

where <l>(x) is the Euler generating function 
(Hall16 1 ) • Thus, we have the following final 
result: 

T2: The number of n -colour d -dimensional 
lattices for 

r t 
n ·.., Pt 

r2 
p2 ... p r e 

e 
( 11) 

where all numbers p 1 are distinct primes, 
is equal to 

y(rt)y(r2 ) ... y(re ). 

where y (r. ) can be expressed as: 
1 

1 2 2 E[ --(r 1 + 7) (r
1 

+1) + -] for dx4 and r. 
144 9 1 

E [-1- I (r. + 5)
3 

-3(r.- 7)1] for d=4 and r. 
144 1 1 1 

E [ l
2 

(; 1 +3 )2 + ! ] for d ,.3 ; 

E [ .L r. + 1] for d =2 ; 1 for d = 1. 2 1 

odd; 

even; 

denotes the integer part of x; 

( 12) 

Here E[x] 
iz1,2 ..... f. 

A colour lattice ~p will be represented 
by basis vectors at , a 2 , ... , ad each vector 
being paired with an appropriate generating 
element P1 of P1 (i ... 1,2, ... ,d ). The symbols 

(Pt) (p2) (pd) 
!at ,a 2 , ... ,ad I 
where m1 is the order 
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or simply lmt,m2, ... ,mdl 
of Pi (i=1,2, ... ,d) 

are used for denoting the ~ p. The number m i 
will be also called an order of the vector 

(pi ) ffi. (1) 
ai since (ai ] 1

zb1· 'where b. xm.a. p I 1 I 
is a classical vector of ~ 

The method of constructing all colour-
d -dimensional lattices for given number of 
colours n will then be as follows. 

Start with the decomposition (11) of n 
and find all d-ary partitions of numbers 
r i i "'1,2, ... , e Every set of numbers 

,\. 
p J j ""1 2 , ' ... , 1::;j:;;d ( 14) 

determines the decomposition of the group P 
into cyclic components. For every set of 
orders (14) one multiplies relatively prime 
components according to L4. It can be shown 
that thus obtained orders rni of cyclic groups 
P1 have the property that rn i+l divides 
m i , 1.::; i :::;. s -1 . We may use this property 
in establishing the way of associating ob­
tained cyclic groups to the basis vectors 
a1, a2, ... , a 8 , where s-s:,d. If s<d, 
then with vector s a j+ 1 , a j+2 , ... , ad there are 
associated cyclic groups of order l. 

As an example, we see that there are 
two nonequivalent 4-coloured triclinic lat­
tices {a<{),a~l),af1 )! and {a~2>,a<:>,a~)l but ?nl:?) 
one 6-coloured triclinic lattice lat6 ),a~ ~aJ I. 
Further examples of colour lattices of lo­
west n and d=3 are given in Table l. 

It should be pointed out that numbers 
rn 1 in Eq. (4) of Ll need not be finite. 
Then the groups Pi are i nf i ni te eye l ic 
groups. In general, the invariants of an 
abelian group are prime powers and oo. We 
will use this fact in the next section. 
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4. SPIN TRANSLATION GROUPS 

Examples of colour groups of physical 
importance are spin groups. In this inter­
pretation, the function f(r) is meant as 
a spin density function S( r) describing the 
distribution of magnetic moments in a magne­
tically ordered crystal. The functionS~~ is 
an axial vector function defined on the set 
~It which forms a crystal. The symmetry 
group '£fS of such a system can be found to 
be a subgroup of the group 

........., 

~s , P @ ·~ • 
( 15) 

where P%a ® 1' is the group of all rotations 
and axial inversion in the "spin space" and 
~ is the crystallographic group acting on 
vectors in the "physical space". The group 
~ is called a spin group (Naish1121, for 
a review see Litvin and Opechowski 1111 ). As 
previously, we are interested in spin groups 
isomorphic to~. i.e., junior (nontrivial) 
spin groups, called further spin groups. 

The problem of deriving spin groups is 
simplified if one knows appropriate abstr~ct 
colour groups. For a given colour group ~ 
one needs ogly to find its isomorphic spin 
images ~·1s 1 .~ 2 2, ... , where S1,S 2 , ... are subgroups 
of a ® '. s 1 s2 

Next, one finds among ~ 1 . ~ 2 , ... non­
equivalent groups using Eqs. (1)-(3), where 
P .a® 1'. As an illustration, we shall de­
rive here spin translation groups (STG's) 
with no symmetry conditions on basis vectors. 
STG's were first tabulated by Litvin 1101. Let 
~ be assumed to be a lattice ~ generated 
by b a s i s v e c tor s a i , i = 1 ,2, ... , d . F i r s t , we 
find abelian subgroups of a® 1, which are 
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point groups of three categories (we use 
the International notation) 

1)1,2,3,4, ... ,oe; 

2 ) 1 ', 2 ', 2 ® 1 ', 3 ® 1 ', 4 , ' 4 ® 1 ', ... ' 00 ® 1,; 

3) 2 2 2, 2'2'2, 222 ® 1'. 

( 16) 

Thus, a STG is generated by vectors a
1 

and 
proper and improper rotations Ri - R(a

1
), 

i-1,2, ... ,d. Next, for a given colour lattice 
~ p we f i n d a 11 spin 1 a t tic e s j" 

1 
S 1 , j" :~.. . and 

divide them into equivalence classes. The 
method is explained here by few examples 
(Table 1). In Table 2, representative STG's 
of nonequivalent classes of STG's of tri-
clinic system are given. A STG is denoted 
by (R 1 ,R2 ,R 3 ). Symbol N denotes a rotation 
Ri through an angle 2rrq/N , where N and q 
are relatively prime integers and q< N. 
The rotations 2rrq/N are generators of a cyc­
lic group of order N. A rotation R 1 through 
an angle 2rr/Z, wher•e Z is an irrational 
number, is denoted by Z. The rotation Z is 
a generator of a cyclic group of infinite 
order. Symbols N' and Z' are used for denoting 
generators of the groups of 2nd category 
(16) in the case of both even and odd N's, 
for simplicity. In the symbol (R1 ,R2 ,R3 ) 
all R1 denote rotations about a single 
arbitrarily oriented axis, despite rota-
tions belonging to the groups of 3rd cate­
gory (16). For these groups, subscripts have 
been added in Table 2 to indicate the mutual 
orientations of the twofold axes. 

The results presented in Table 2 differ 
from the Litvin' s 1101results given in Table 1 
of his work (in the part concerning the tri­
clinic system), as equivalent classes of 
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STG's are omitted here. For example, the STG 
denoted by (Nt, N 2 ,N 3 ), where cor re spending 
N's are relatively prime, can be found in 
the class of STG's denoted by (N,1,1), where 
N '"'NtN2 N 3 . The same concerns the groups 

(N t ,N 2 , 2) and ( N , 2 , 1 ) , where N 1 , N 2 , N are odd 
integers. The discussion of the problem 
based on very simple number-theoretic con­
siderations is given in the Appendix. 

In conclusion, two remarks are made. 
(i) we can see from an example in Table l 
that not all colour lattices have their spin 
interpretation; this is not seen in the 
case of 2-colour and magnetic groups. (ii) 
One can get another physical interpretation 
of colour groups by considering a direct pro­
duct extension of the group P in Eq. (15) 

by the group f of inversion of polar vector; 
one arrives in this way at the so-called 
magnetoelectric groups (Koptsik and Kotsev

191
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APPENDIX 

We discuss here in some detail the prob­
lem of the change of the basis of a general 
colour lattice. For simplicity, we consider 
the case of 2-dimensional lattice. We shall 
use the symbol D(X,Y) for denoting the grea­
test common division of two numbers X and Y. 
Then D(X,Y):1 will denote that two numbers 
X and Yare relatively prime. 
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Let ~p be a colour lattice generated by 
basis vectors at and a 2 and cyclic elements 
(N 1 ) and(N 2) paired with at and al?,respectively. 
The lattice TP is denoted by!N 1,N 2}. Now let 
D~T\J 1 ,N 2 ). We shall prove that in this case 
~ can be denoted byiN,1l, where N2N 1 N 2 . 
This means that in 1P new basis vectors a 1 
and a2 can be chosen with orders Nand 1 , respec­
tively. The new basis vectors can be found 
as 

a1 .. xla1+ X 2a2 ' 
(A. l) 

a2 =N1a1 + N2a2 

where coefficients X 1 andX2 are integers deter­
mined by the equation 

(A. 2) 
xt x2 

= ± 1. Det 

N 1 N2 

It is clear that the order of a 2 is equal to 
l. The order of a1 will be equal to N 1N 2 if 

D(X 1 ,N 1 )=1 and D (X 2 , N 2 ) = 1 . (A. 3) 

This is immediate consequence of the fol­
lowing property of cyclic groups: 

Let (' be a cyclic group of order k. If (' 
is generated by ~ then e is also generated 
by every gp, where D(k, f ),.,1. 

We can see that any solution X1 ,X2 
of eq. (A2) has the property (A3). Suppose, 
for example, that D(X 1 ,N 1 ),c > 1. Thus it 
follows from eq. (A2) 

1 
YlN2 -X2M1""c<1 
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what leads to contradiction, as all consi­
dered numbers are integers. 

The method for solving eq. (A2) is based 
on an Euclidean algorithm for finding D(X,Y) 
(Davenport

121 
) • Let us consider the equation 

N 1X 2 - N2 X 1 = ± 1. (A4) 

The first step is to express N 1 /N2 
tinued fraction 

as a con-

N1 __ , 1 q1+ 
N2 

q2 + 
q3 + 

1 

1 ·---
1 q +­

m-1 q 
m 

Next one calculates numbers called Euler 
brackets 

x1 .. [q .q ..... q 1] 
1 i? m-

X .. [q ,q , ... ,q 1] 
2 2 3 m-

by means of the recurrent formulas 

[q1,q2 , ... ,qj 

where 

[qi] ,..qi' 

18 

] .. q 1[ q 2 ' q 3 ' ... ' q j ] + 

+[q3,q4 , ... ,qj ], 

] .. 1 , q 
1 

= E [ N 
1 

IN 
2 

] . 

(A 5) 

(A6) 

The general solution of eq. (A4) is given 
by the expressions: 

0 -x 1 :(-1) X 
1 

+ N 
1 

t 

0 -x
2 

.. (-1) x 2 + N2 t 

(A 7) 

where t is any integer, o=m for +1 in the 
right-hand side of eq. (A4), o .. m-1 for -1, 
respectively. The solution (A7) exists if and 
only ifN 1 andN 2 are relatively prime. 
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