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PART 1

1. Introduction

We shall consider here the interaction of the
electron with the phonon field and with the external
electric field.

In this paper we will derive exact equalities
which by applying a suitable approximation proce-
dure can be transformed into equations for the
study of kinetic properties.

The hamiltonian for our dynamic system (S, 3)
of interacting electron (§) and phonon field (%)
may be written in the form:

2
H= -P—+ E(t)r+ 3 ‘hwkb;bk +
Zm (k) (1.7)

+ o3 eao LRl (4t ),
vV ® 2oy

where E_f(t) is the external electric field, multiplied
by the charge e, ; wg,.2(k) are the spherically .
symmetric real functions of the wave vector Kk,
e.g. for the Frshlich polaron

Y =—g—, W, = N
(k) ™ . (1.2)

E being the coupling constant,



In this expression © and P denote the
position and momentum of the electron, V is the
volume of the considered dynamical system, while
by bk are the phonon bose amplitudes corres-
ponding to the vector k. The frequencies wy are
supposed to be essentially positive,

The summation (k) proceeds over the usual
quasi-discrete spectrum of K, becoming continuous
in the limit V »e .

In some situations it will be convenient to
use the notion of an adiabatic switching off the
interactions, et

We may then introduce the factor e (e> 0)
to annihilate the interactions at in the
final result we put e- 0.

Therefore we shall
hamiltonian:

ts —o;

.start by considering the

p2 €t
H =——+e E(t)?+ S o bbb 4
2m k

t (k) k k (:LB)
e‘t 11?'? +
+ —— 3 ( ) f(k)e i (b +b )
Let us now inrtoduce some notation .
So, A(S) will denote a dynamical variable
depending only upon dynamical variables p.T
of 8 and thus commuting with all by, bj .
In the same way A(X) denotes a dynamical

variable depending only upon dynamical Vanables
wbyg...bl ... of £ and thus commuting with P
and r.
The general dynamical variable may be denoted
by A(S,X). These conventions being adopted we
denote:

"Ew)r

i
-~

H(Z)= = tiw, b'b
( ) () k k' k
(1.4)
=HSE=-_——2_. 2o ik ¥ +
( )VV (k)( “’k) (ke (b, +b_ ).
Then (1.3) vields:
H =T, G)+H(3)+ H|S,3). (1.5)

We begin by making use of the Liouville
equation for the statistical operator mt

n 9D
h—— -H D, -D.H, (1.6)

with the initial condition at some time ty far in
the past:

:Dto= pS)YT(Z), (1.7)

where p () is a statistical operator for the system S

)]

and P (2) describes the statistical equilibrium in

the system X alone:
Dz)- Z—le_BH(z) ;. Z=Sp e_BH(E)
[0%) (1.8)
SpD(2)=1.
&)

Therefore one obtains the conventional normaliza-
tion for the statistical operator:

Sp D, = Sp D, =5ppB)SpD(I)=1

1.9
62y 683 ° (s ) (1.9



It will be convenient to introduce the operator

U(t,to)
oU(t,t
i‘lr——-(—-i-)thU(t,tO)
ot
(1.10)
As H, is hermitian we have:
+
oU(t,t +
—i-ri___(.__0_2_.U(t,t0)Ht
ot
+
U(ty,tg) =1

Hence U(t,ty) is the unitary operator:
* -1
Ut ))=U " (t,t,) (1.11)

In terms of these operators the formal solution
of (1.6), (1.7) can be written as:

D, =UC.ty) D, U (k8 ). (1.12)

t

Consider a dynamical variable A. Its average
value at the time t is

<A>t = Sp Ath (1,13)
¢.%)

In virtue of (1.12) one obtains:

<A> =Sp AU(tt)D, U™ (.t )=SpA®D, (1.14)
t (S,E) o] o

where

A)=U(tt )AU(E,t §)=U(tEAUGE ) (1.15)

Aty)=A

This leads to:

<A> =SpAD =SpAW)T, . (1.16)
CRY (s.%)

From (1.15) we see that A(t) is nothing else
than the Heisenberg representation of A.

Note that if the comnutator between A and B
is a ¢ —number:

[A,Bl= AB-BA=c

the same relation holds also for their Heisenberg
representations:

[A(t),B(t)]= U_l(t,to)[A,B lug,ty)=c.

Consider now a dynamical variable of the type ()
and denote by (D(St) its Heisenberg representation,
From (1,16) we get:

Sp (I)(St)th0 =Sp )P, =
(S,%) (s.2)

=Sp ¢@B){spD,}.
(S) )

Therefore in terms of the reduced statistical opera-
tor:

p,®)=SpD, ; Sp p, 8)=1 (1.1?)
&) (8)

this relation yields:

Spd(S,)D, =Sp & (S S .
(sx,)z)(‘ to (S§> (S)p, () (1.18)

In the particular case when

®(S)=F(p)



we can write:

Sp F®)p, 6)= [ F(B)w, (®)dp (1.19)
(8

where
w, (By) (2:) 5(p'-py)p ©) (1.20)

Let p(t) denote the Heisenberg operator of
the electron momentum. Then (1.18) gives:

Sp F(PeND,, = [ F@)w, B)dp. (1.21)
(8,%)

From (1.17), (1.20) it follows:
fw, @)dp =1

and it is easy to see that w, (p) may be inter-

preted as the probability density of momentum at
the time t.

Let us now turn our attention to the dynamic
variable of the type f(8) which does not depend
explicitly . upon time.

Its Heisenberg operator f{(§;) obeys the equa-
tion of motion:

dfSt)
Jat

ih ={ ¢ )H(E)-HE)IES,) (1.22)

where H(t) is the hamiltonian H; expressed in
terms of the Heisenberg operator:

Ht)=T, 5,)+H(Z,)+H"(t). (1.23)

Here:

2 .
r, 8,)= pz;:) s e B @I

+
H(Et)- (E)‘ﬁwk bk(t)bk(t)

, €t 1/2 ike r(
H'(t)=2— % (;—) £xye N (b, ®+b" ®)} =
vV B Eey T (1.2
o€t 1/

2 P D
s @ + ik « r(t)
\/V (k)(zw ) (k)ibk(t)+b_k(t)}e

’

where P(t), r(t), b, (t), by (t) are the Heisenberg
operators obeying the equations of motion:

df(_L B(t)
df;(t) €t > . €t 1 « /2
dt VvV () (2 ) *
> ke
x £wke " o m4v! (1)
(thk(t)'=—iw bk(t)—le /23—{1;._;(”
2ﬁw (1.25)
db:k(t) o, bt ®)+ie 1 ¢ 1 172 ik
—_——= 1w +ie —_ K)(—— -
™ ML e ()(%w) e

k

and the initial conditions:
Substitute (1.23) into (1.22) and remark that
[£6:,), H(Z,)1=0



because

[f(S),H(Z)]=0.

Therefore (1.22) can be written in the form:

916 | T, 6)16,) -6, 6,)

ot it

(1.27)
f(St )H’(t)-ﬂ’(t)t‘(St )
B in
from which it follows:

Sp | af(st) T (8IS )-8y B¢) lfD _

(S,E) ot it
(1.28)

-8 HEOH O-H OIE D,
s,

Remark that in virtue of (1.18) we have:

df(Sy) Ft S HIE )-GO By) }g)

Sp {

(S,E) Jt ih
_spite) 2®)  DOIO- IO E) | )
at it
C)
and thus:
dp ) T, GNE) ~IINE) oy

10

,__l_sp;r(s YH"(t)- H (0)E(S, )},
ih (S

In view of (1.24) this equality vields:

spir@) 228 L®IG) -6, 6)
) gt in

P, B)1 =

- —ieft L 1 y® kA +
ie \/Viif(k)(%mk) Sp1G e b o F,  +

(1.29)

1kr(t)

Ve
Heft\/l £k)( >Sp(bk(t>+b (e 1B )P,

(k) 2'hmk (S

This relation will be studied in the next paragraph.

2. Elimination of the Phonon Field Amplitudes

We now proceed to eliminate the bose amplitudes
by, bt of the phonon field from the relation (1.29),
Our main aim here consists in obtaining the equa-
tion in which only positions and momenta

T(r), D(r) to<rst (2.1)

of the electron enter explicitly,
The equations (1.25) lead to:

b, (®) ~—iB ,()+b,(t); b. (t)=iB  )+D7, ) (2.2)

1



where

1/2 t
B. ()= -1— £k (L d
(0= WG Tare

~ik (T)
-1 _r)+ s ikr
m)k(t €

1/2 4 4o (t=1)+er ~ikrr) (2.3)

BY ()= L L0k (— dre e
—x® 7 (] ( 2“%) tfo r
and
~ —iay (t~to ~ 10 {(t—t )
b (t)=e by . bik(t)-e ol (2.9)

Therefore (1.29) can be put in the form:

dp, 8) N r, ) E)-fE)I, 6)
i

Sp {f(S) p, &)=

(8

V2 TEI0)
et L s (L) s%:f(st)e‘ A
VV (k) ho, (5,2)

x {Ek(t)+"6_+k(t)-i B, (1)+iB 01D, + (2.5)

12 ~ ~
vt Lz ea(t—) " selb 0481 0 -
vV (® oy (5.3 -

ikr(t)

-in(t)ank(t);e f(st)fljto )

Here Bk(t),Btk(t) in fact depend explicitly only
upon 1) (t, srst) but the "free" bose amplitudes
bk(t),btk(t) are still present. _ -

In order to get rid of these by 'b—k we nhow
propose to prove the following lemma:

12

Sp ~bk(t) U, =) @to -

s,%)
1 ~ -
= Spi{b - ‘
j— e Phok (s,gi (D UE 2= UE.DHd O,
Proof:

’ By noticing (1.7) and observing that by commutes
with any operator of the type ®(), we have:

Sp by 1) UG, =)D, =Spb. () US.S
N t <s§)k() 8,2)pE)D(Z) =

=Sp Bk(t){ SpUB.2)p BG)ID(T)
&) (S)

Sp US,2)b. ()P, = 8 b
S )by (£) Dy, (s%)v $.5)5,Mp(8)D(Z) =

=Sp(Sp UG, 2)p®)ib, D (%)

& (3
Denole
Sp US,2)pS)=B(Z).
Then:

Sp Bk(t) Us,2)%, = Sp Sk(t)B(Z)S) ()

Sp U (S,=)b, (t)D, =SpB ()b
S5 k(®) Dy =2 ()b, ®)DE).

13



Let us recall here an important property of the
equilibrium averages in the statistical mechanics.

Consider an isolated dynamical system, cha-
racterized by some time independent hamiltonian H
and two dynamical variables A B, corresponding
to this system, which do not depend explicitly
upon t.

Then, for the equilibrium averages:

<A(t)B>, =SpAMB D,
<BA()>, = SpBA(t) Deq
in which

. i
Ht -y Ht
At)=e" Ae

we have
<AW)B> = J()e ¥ do

<BA(1;)>eq =[e P J(w)e e .

We write these relations in the form:

. i
H(tmtg) ~ F HO=t) oo i (1=
Sp(eT ° Ae ’ Bi)eq)’ [ I(w)e R
i H(t—tg) —-i-H(t—t ) (2'7)
Sp(Be-ﬁ— “Ae T ° =
eq
oo _ —iw(t—t
- Te Py 0

14

Take now as this system our system ¥ and put:
H=H(X), Doq=D(2)
A=b,, B=B(2X).

Note also that in this case:

- —iw, (1=tg) -t yH -4 (-
b (=e Kb —eT o b e Tt
Thus (2.7) lead to:
~ —iwg(t—tg)
Spb, B(Z)D(T)=e °"spb, BE)D(E)-
) o)
= [ Jk(o))e—iw(t-to) do
~ —igy (t—=t ) (2.8)
SpB(2)b ()D(E) =e LN SpB(2)b, D(3) -
) &)
- [e BT 3 (w)e Ty,

These relations show that Jk(w) is proportional to
S(w—wk)t

Jk (w)= Ik 6 (w —wk)
and hence:

-p1

e T (w)=e

B

w

k

I (@)
Therefore from (2.8) we also obtain:

SPB(Z)gk(t)@(E)=e—'BﬂwkSpB t)B()D(T)
) S -

15



Tg’]f}:l the relations (2 9) can be written in terms
o ese equlllbrlum averages of the
of these b b occupation

or, in virtue of (2.6):

Sp‘U(S,E‘fbk(t) Dy, -e_Bm“k Ska(t)n(S,E)g)to
s )

(8.2) (s.2) Spb OUE, £)9, -

{ 3"

which vyields
=(L+N,)Sp {b (t)‘U(s )~ ‘u(s,z)Bk(t);‘JJt
0

sp (b, (HU(S,2)-UE, )b, 01Dy, = Ko %)
8.%)
Sp U (S,= _ (2.112)
- - P )s§b(t>‘11(s DAL o5 b 9, -
(8,&)

=N, Sp { b, (t) UGS, 3)- >
k(s'z) ) UG, ) ‘IJ(S,):)bk(t);g)to

We now see that:

:% -
1-e P9k By replacing here:
+

US,2)> US.T), ko-k

Spb (t)‘U(s 0P, =
<sE)

«Spib (t)‘U(S sH)-UGS, Z)b (O

(8.,%) q
f
~ e—B’ﬁwk ?Vrel xrﬁizcci):::lerlls tletalcnomplex conjugation procedure
Sp U S,x )bk(t) EDtO = ————-—_B:ﬁ—w—-_-—- X
(s.%) 1-e K (2.9) Sp U(s, 2)b+ OF
(s, %)
x Sp b HUE - UG, )b 1D, | (14N )8
- pi US,2 b+ ~bH
5.3 C o) (8,3)bF ©)-br UGS ,5)}19,
nd 1 i d (2.12)
a our lemma is proved, T+ .
Denote (sspzl;_k ) U (S,E)tho =
e—ﬁ‘hmk N s {cu
=N (2.10 =N Spt U@, E)b t)-b*
“Bro, ) ko) NORSHOLTCI LN
1-e
17:

16



We now proceed to use (2,11), (2.12) for the
case when:

UES,2)=0 6, ) (2.13)

Here as always ®(,)denoctes the Heisenberg ope-
rator corresponding to the dynamical variable o (S).
Therefore, because bk,b:k commute with ()

the operators bk(t),b:k(t) must also commute with &(S,)

b (H®E, ) — 26 )b (1)=0
(2.14)
®(S, b ()= b OO, )=0.

By taking into account (2.2) we obtain:
B (D06 )-8, b, H=11B OOE,)-® 6, )B M}
O, TMNOETMOLICH )=i{BT ()0, )-o®,)BY O

In this situation (2.11), (2.12) lead to: (2.15)

spib,®+b* ©10E )P = 1(1+Ny) Sp 1B, OPE, )=
(S,E) (S,E)

~0@E B, M1+ iNk(SSp (B ®)®E -0 EBLMID,

2)

sp @G, ){b +dF, OID =
s.2) 0
=iN, Sp {B

5, 18,006, )-2©,)B, OID, +

k

+1(1+Ny ()SS§){Btk OLICIE ®@,)BY, O S)to

18

from which it follows:

~ T+ .
(:'pé;p(s Q1P ®+b_(©)~iB +iB ©}1D, =

=i SS:pE){NkBk(t)+(1 +N)BL 0106,)D,_ -

( (2.16)

-iSp {(1+N )P B
o K ®,)B, ®)+N, @@ )BT 0ID,

S B ™+ s A .
(S'g)i , O+b ~ ()-iB (©)+iBT ()]0, D, =

=i8p [N, B, )+ (14N )BL,m}1 06D, -

8.%) - (2.17)

—-iS8
1(SE§(1+Nk )OS )B,M+N @S, )BL, 11D,

Put in (2.16)

>

®E, )=, )e Y
(2.16a)
and in (2.17)
iXT()
@S, )me {CHDY (2.172)
17a

Then by using the expressions for B t),B*
from (2.3) one obtains: (OB ®
ikr(t)

Spf (@, )e

65 {bk(t)+bik(t)-in(t)+iBjk(t);g)t0,

19



t —€(t=r) —ia)k(t—'r)

ie€" _}____(__1__)1/233(1()[ dre {Nke +
NAAR2 1 ty

i(t)k(t—r)

1+Ny)e }Sp e
+ (1 +Ng 5.5

_i]?r_zr ) i_l:l?(t)
£(S,)e D, -

—iw (t—r)

(t—=1) (a +Nk)e +

/2 t -t
—ief! -1—(—1—-% (k) f dre
\/V 2’ﬁwk tO

i, (t=1) iRe(t) —iknr) 9 (2.18)
+N, e }Spf S, e

s,2)

to

~ . ke (D) )
Spib©+b ", ©-1B, ®+iB} (e £16,)9,

s,%)

t —€(t—T) —iwy (t=7)
ot L1 _yWRew)fdre {N, e +
t

VvV Aoy )

iy (t=1) —~iRK(T) iKF(Y)
+ (4N e K spe o
.2

()P, -

t - - —l(l)k(t—r)
ot Ly e fare AN e +

\/V 2‘ha)k tO

. - —ikr )
ela)k(t—r) | Sp elﬁ)f'(t) £(S . Ye EDto

20

Substituting these results into (2.5) we find that:

dp (S
szr(S>—§rt_(l+

® 2 2
e E() (ff(S) - £(S) 1) +§? £(S) —f(S)%n—

p, (S)i=
* ih t
2 ) —iwy (t~7)
L2ty w_f dre < IN e Rt
\' (k) 2'n(,_)k tO
(t=1)
+(L+N e KT
-7 s —iRE) iR (2.19)
« Spie iRr( )f(St)elk r(t)_e 1kr(r)e Kl t) f(st)}EDto’“
(s,%)
2 t el —iw, (1) iw, (t=)
cLgrers T b ot T o 9Ky
v (k) 2ﬁ(1)k tO
i i o -
«Sple Ve, )e O —£@, e Y o TR g

0
(s.%)

In this equation the phonon field amplitudes do not
enter explicitly. Indeed here the right-hand side
depends only upon "trajectory” of the electron

i.e. upon (2.1).

It must be stressed however that ?(r), B(r)
depend in a very complicated way upon the initial
values T,p,... b, .. bl*{' . .

Therefore in order to obtain from (2.19) an
explicit equation we must rely on a suitable
approximation procedure.

Consider now the case when we take

f(S)=1(p)

and hence

6, )=1(p()).

21



With all such remarks we find:

We have
; > ®) -
rf(p)- f(p)r=m——£-p——)- _fdpf(p)i-;-—-e”g()_ﬁ_t_(p) |
ap It ap
Thus from (3.19) it follows: aw
3p ) o2 I@) -japie) D@ e G 281, ).
spit(p) 228 et B 2 p )} = ap "
() Jt Ip
) . 2et 1 PP ¢ S -
ot Wi to
5p
It is easy to see that:
> > i (t=7) i—k?(t) .__]:_’
i - - > i 1+N k ikr(r) > > -
ikr f(p)zf(p_nk)elkl‘ + (1 +N, e ¥(SS;)[e e {f(p(t)_nk)_f(p(t))}g]to]
> e (2020)
> ik ik - -
f(p)el e f(p+Tk) +e’2‘t 1 fz(k) t -€(t-7) ~iw ) (t~r)
V(k)—z‘ﬁk_t{)d’e HL+N e +
which yields:
R ikr(y ket = > 0 (t=7)
fip(t)te =€ f{p(t)+nk} +N e } Sp [{E@()~tK) - £(P(t)) e ike(1) —lkr(r) 9, 1
P to
iRT(Y . L iRr®)
e fip(t)t=fi{p(t)~nkie where
D, =p(8)D(2
Because both sums over (k) in the right hand o p(8) D) (2-21)

side of (2.19) are invariant with respect to the : . . .
transformation: This exact relation will be considered in the

s ° next paragraphs as a source for obtaining
.y approximate equations,

this transformation will be performed in the first
of these sums.
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3. Kinetic Equation in the First Approximation
for the Case of Small Interaction

We will examine here the case when the
interactions are small, It is convenient to charac-
terize the coupling constant by a small parameter
which will be denoted by « assuming that £2(k)
is proportional to a.

For example, in the framework of the Frohlich
model of the polaron the standard dimensionless
parameter characterizing the intensity of the
electron-phonon interaction is:

g _m (3.2)
drtiw? Rl
in our notation, ‘
We will also treat external force E as being
formally proportional to the small parameter,
Then, in zero order approximation, when the
interactions are completely neglected, we may
write:

a =

p(t
() =T - —p—;—z—(t -7) (3.2)

Such an approximation will be used in (2.20) only
for terms proportional to a,

Specifically we put (3.2) under the sign of
Spur, using the "zero order approximation" in the
following way:

fkr(r)  —ikr(t) S N
gapp _ Sp el r e ikr [f(p(t) -ﬂk)—f(p(t))]ﬂ)t }app
(8,%) °
_sp oo THY @ 1) -tp©)1D
0

(s,%)

24

&x =1 [f(p(t) -k)-£(p ikr(1) - ikr(r)
app (SSE) (p(v) )—-f(p(t)le e q toiapp
L R = oo 3.3
=(S§)[f(p(t) ~Tk) ~fp(r)) 1TV o TIKI(LD g (3.3)
S,

to ?

where
_;'o(t,r) - () - P%(t _r).

It is to be pointed out that these expressions
are multiplied by £2(k) -proportional to the small
parameter,

We thus expect that the first order terms in a
in the right-hand side of (2.20) are correctly
evaluated., This is the only approximation we need
and all we have to do further is to carry out
the limiting processes V 5 «, tg »—~ and in con-
clusion to put ¢-0. But first let us disentangle
the expressions &, ., &3, sgiven by (3.3). '

Using the commutation properties between
f:omponents of the the wvectors ]’-(t) ,B(t) one
immediately obtains:

- N 2
ik (t—7).
m

(ke (t.0) ke () )=[k e (t) - mt) (t-r) k(1) =

As is well known, if the commutator
[ A B]

IS & ¢ ~number then:

[ a,B]

25



This enables us to write:

> > ik iKp!
eikro , 7) e—ikr(t) _ elzm (t-7) . - g(t)(t r)’
which leads to:
2
=e “" Sp e @) 1) - f(p(t))]fiJ
app (s,2)

Let us go back to the relation:
S ),F(E(t) %, ) =/ F(p)w, () dp (1.21)
5,

valid for arbitrary function ‘F(f)’) of momentum,
Taking here

~i(t~ r)-l—‘-p——
F() =e ™ [f(p -1ik) - f(p)]
we obtain:
) L,
& m [f(p—ﬁk) f(p)]w ®) =
app
(3.4)
e kp
5 i) (Gt D)
=fdpe f(p)w ® +1k) -
2 2
iengg-E
- fdpe (@) w, @
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It is easy to see that é*pp is the complex conjugate

of @app. Therefore:
2 -
hk
(=N G+ 2, N
& =[dpe f ) -
app = e ®w, (B+1k) (3.5)
2 I
~ien) (e - K2
= dpe f)w, ().

Substitute now these expressions into equation
(2.20). Let us then pass to the limit Vs o which
amounts to replace the sums:

Ly
V)

by the corresponding integrals:

[dk ..
(27)3
It is convenient to make the transformation:

K-k

in the integrals containing w, (p) We will also
introduce the new time varlable

t—r=§
instead of ; so that:
t t—tg
Jaro. = [ dé.
In the limit

Lo~ oo

these integrals become
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In such a way we can write the equation of the
first approximation in the form:

I ¢ ) IS ()
t _ E(t) —' —} =
[ apf(p) i P ) =
&' i @ ®, @
- o fdpf(p)fdk2ﬁ A (p.k),
g Wy
where

!Af(i;'i{') :ofodfe—({f ((1+Nk) eiwkf +Nke—iwk f) <

e kp - 4k2 Kp_
HGarn) L €Geta)
x{e w (p+TK) —e w (P} +

+ fd.fe_(g ((1+N )e_ia)kfnuN eiwkg ) x
5 k Kk
02 kp mk2 kp
€t W) Gt
x te w (P+hk) —e wt(p)}.

Because f(f)) is an arbitrary function of 5 this
equation leads to:

» 2 2¢t 2
aw,(p) et _é(t) awt_’(p) _ € [ dK £ (k)!Af(p,k)(3.6)
at dp (2m)3 2w,

Arranging the terms in the expression of :A( (6 N9
we find

A (.B) =1(1+N )w @+1K) -N w @} x
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> 2 -

2
e K" kp o (e kD
% _f —iG T~y o & i€ Gt 9y
x{fe ~e &+ fe e dét+
0 0

+{Nkwt(ﬁ+ﬁk’)—(1+Nk)wt(}>)¥i x

>

ak? kp
1€ ¢ p

oo -ef T m %% ) o0 2m " m T %
x{fe e &+ f e att,
0 0
or else
N e d —ﬁﬂw -
L . w(p+mk)-e kK w (p) 2
A (.K) = - et (T )
— m
1-e ﬁ"hwk
3 v —-Phw hd
w, (p+hk) e Pro - w,(p) k2 o
+ Af( om +'m— +Cl)k) .

1- e—ﬁm’k

where
Ae(z)= f e_‘l'ﬂelfz .
Note also that
. tk?  kp % kp
lim A ( + —7 = R -
;B - Fwy) 2n8(2m * Fog) =
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(+Tk)” P -g,

2 2m k 2 o2 2
P i j=2mms (@AW P T, ),
n 2m m
For this reason:
lim A, G),E) _ 2 iwt(B +1K) -
0 1-e
-Brwy L, G4m0 32
—e w (D)}S((B—L—)———L—‘ﬁw) +
t 2m 2m
- > —ﬁ‘h(/)
+—?§E—hriwt(p+m)e B
1-e k
-W (B)}S((—’Ltn—_,k)_i_ +to _ .i_;_.e_).
t 2m k 2m

Let us now make the last step by putting €0
in equation (3.6).

We then obtain our equation of the first
approximation in the final form:

oW, (p) ﬁ(t) 8wi(p)

at op
(3.7)
22w
_ 2 [ dk B iwt(3+1ﬂ?) -
@ 2w (d-e Y
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Broy L Gank) b

- e w, (p)m(—gm—_——:?,_[-n— -—'hwk) +
2 -

i (21 2l & - (k)/s lw, Getide " -

7 20, (1-¢ it (3.7)

R > 29 -9
-, @ 1o BT g, .
2m 2m k

It is evident that this equation is just the usual
Boltzmann equation, The integral terms in the
rigsht-hand side correspond respectively to one-
phonon emission and absorption, Such Boltzmann
equation was extensively studied for the investi-
gation of the transport properties.

For the steady-state situation, when the electric
field is time independent, (3.7) yields:

22
2mk(1-e"3““’k)

-E dw (p) _ 1 fd}

ap (2m)? W@ ) -
P 7

_ﬁﬁwk . > .9 29
—e 'w(p)i&((p;ﬂk) _ ;
m m

-fiw, )+
(3.8)

0 )
+ 1. (d-l‘( 5w fw Bﬁ- . —ﬁ-‘n’mk_
(2aF ~ﬁmk)

2wk(-1—e

- > 2
~wip)is (p +1ik) _p_
w(p)}d( o +Mk 2m)
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In an interesting case of low temperature, when
the factor:

o~ Pt

can be neglected, the resulting equation was
considered /1/ by J.T.Devreese and R,Evrard
for the Frohlich model of the polaron,

They have found a very complicated behaviour
of the distribution function W(B) suggesting the
existence of an essential singularity occuring
at E=0.

In conclusion let us say a few words about
one oversimplified way of approach to determine
the dependence between the applied electric field
and steady-state average wvelocity Vv of the elec-
tron,

Let us multiply both parts of (3.8) by i; and
integrate over the whole momentum space.

After some trivial transformations one obtains:

P | > fe(k)h;

-E = f dk x
2n° 20, (1- 7%
(‘ﬂk) kp _
2 -
IS S S Oh. y (3.9)

(277)2 %k(eﬁnwk _1)

(‘ﬁk)

xfdpw(p)a( ﬁm ~fo, ) .
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Here, according to the notation of §1:

6N

E = -6, (3.10)
where & denotes the external electric field,

So far it is an exact consequence of the
Boltzmann equation.

We now make a rough approximation by taklng
the drifted maxwellian as a trial function for w(p)

_g P
W) <o, G-n): b @) - (L)¥F e T
2mnm
and substituting it into (3.9).
This leads to:
> 5 £2 g
ecg = 1 f dk () Tk X
(2,.,)2 20)1( (1_e—Bﬁwk )
S Boy Gy o( - (W, Mk k) -
. i 2 .
i (21)2 & — (gﬁ:)k
20 kL
K b (3.11)
TR T . ST S
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Note that:

5 (- (;“;) mep ~fi(w,-kV)) =

(m‘) —P—+ﬁ(w -xv)&

-_.1_. e d¢é
277 - 00
((“k)+-L -ﬁ(wk-H»:
m
k2 -’l_; >
;. i(%;)+T--u(mk—kv))£
= —— fe df
277 -—00
and a 2.0
1 1 kp k) &
—ié -5
pr(?))e dp=e B
2
{_.‘Tikp _ @k &2

fo (Bre ™ ap=e g

Therefore from (3,11) we get:

o Eofae ot ST
¢ —o0 @r )d @ L l—e—Bﬁmk

(3.12)

- _""){-‘ (nk)2‘§2
th(w k P LY, -
( K=Y 2m ( B l{:) nd

e
- )¢ dk . 3.12
Pror 3 (3.12)

This approximate equation was obtained in the
paper’?/ by K.K,Thornberger and R,F,Feynman
for the case of small interaction*, They have
found that the mobility derived from (3.12) in the
weak coupling limit does not agree with the
mobility obtained from the standard Boltzmann
treatment,

We see here that this disagreement is caused
by the use of an inadequate approximation, that
of the drifter maxwellian, in relation (3.9) which
itself is an exact consequence of the Boltzmann
equation.

The connection between formula (3.12) and the
use of the drifted maxwellian as the trial form
for the steady-state distribution function was also
noted by J,T.Devreese (private communication).

*In their system of unities and notation. :

1 1 |2 o2

=1, = (— £k), E=e b

G = g) o
equation (3,12) has the form:

oo o, o iEx- kv
= [déS|C R (e
_{o (k)l ] 1 - e—Bmk

2
_.1(cok—k v)tf - .E_(B_ -ié)

T—_——)e

- that of formula (17) in the mentioned paper.
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4, Formulation of the Linear Model

We wish now to show that the results of the
paper/z/ as well as of the previous paper/3/,
concerning the calculation of the impedance, could
de directly obtained without path-integral methods,

Our starting point resides in the exact equa-
tion (2.20) in which we choose:

£(p)=p (4.1)
Denote the average momentum of the electron by:
B>, =[Bw, @)dp

Use also the notation

ikrer)  —ike(e)
Spe e thoz(I)k(t,r,to) (4.2)
(8,2)
We have
ikr(y) —ikrer) ike(r)  —iRr(t) 4+
Spe e tho- Spie e }tho-
(s,%) (8.%)

=¢k* (t,f ,to).

Therefore (2.20) with (4,1) lead to:

_{_dtp_>r.. et Et)] =

. (4.3)

2 - iy, (t=1)
_l__e.‘aet2 f (k) Kk fdr{elmk
® g (1-e FP™x) G

+
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—iw, (t-r) —-Bn —€ (1=
ewk( eBwk}ec( )

<I;‘(t,r,t0)+
2w K b me(t=r) —icon (b
+_:7e2€t2 (k) - [are €(t '){e iy (1) .
® 20 (t-e ) to
o, (=) —Bﬂmk
+ e e ‘}(I)k*(t,rt )

It is still an exact equation. It is clear,
however, that in order to obtain explicit, though
approximate, expressions for ®; we need to realy
upon a suitable model hamiltonian, which would
lead us to exactly soluble equations. To obtain
a reasonable approach this model hamiltonian
must be chosen so that the behaviour of its F(t)
somehow simulates the behaviour of F(t) correspon-
ding to the exact hamiltonian (1,1),

Consider first the case when there is no
external field

-
E=0 - (4.9)
and draw the attention to the hamiltonian:

H 2 o zn (k)b
L 2m’ T2 (k) v (a.5)

R )21 () (D) (b +b7 )

VvV (&) 2v(k)

where JI(k) are spherically symmetric functions
_of K , v (k) being also spherically symmetric are

. .37



moreover essentially positive:

. 1/2
v(k)> 0. ~ Sty (k)btb 4+ Ao 3 (D Nk)(Ee)b, —
| ot v (k) K k+\/V (k)(2u(k)) (k)(kr)bk

Before the limiting process V-~ , when V s
still finite the number T(V of terms in the sums
over (k) is supposed also to be finite,

Then the corresponding Heisenberg equations: i

YV ® 2v®

172 . 1%
y d)@DbyT + L s
®Oby +y &) 2 XK)

-
r

(

2

)
{HONRION
dt m

and note that in virtue of the spherical symmetry

dp(t N - 1/2 - of J(k),v (k)
L0 )~ L s (2 Famkn,0 0,0
dt VV (x) 2v(k) 2 2
Ly .le@_(ﬁr* 2_,21 s M7 2
dby (t) 1 1 1/ > Vo v (k) V) 3,230
T iv (k)by (t) - :(M)) JI(k) (ke (1)) -
t A v (4.6) For this reason
2
* D e_ Ly (k) 22
db_k(t) + 1 1 1/2 3 HL=—+(C ——E ——
— =iv(k)D_, () +—= JI(k) (ke (t Zm V() g,2 2
T v(k) —k()+\/v(2'fiu(k)) (k) ) ®) 3,2(k)

+ i s JI(k) i 2 JI(K)
> 2, 2 > + + + 2Ny (k)b + —=(kr) ————=}Ib — —(kr) —==.
r(ty)=r; p(ty)=p; b (ty)=b, , BT (t)=b_, () IV () VIR k IV VR

[
constitute a finite linear system of ordinary Therefore, if we choose:
differential equations with constant coefficients and
thus are exactly soluble. Cz_i s N2K) k>
We now proceed to show that by a suitable V &) 82K (4.7)
choice of the constant c¢2 the hamiltonian (4.5) _ ) .
becomes translation-invariant. then HL. becomes invariant with respect to the
Let us .start from the identity: translation group
' Pat4R, b +b, + o @F) LK) 4,8
Shy @b} + 1@ —2 8y - LS8 ). KRR L (0@ ()72 (4.8
(k) vV v(k)vahv(k) vV v(k) vVtiv(k

Such an invariance must_,lead to the existence
of a conserved vector ?




o1

d

=0 - (4.9

o
ol

which may be interpreted as a kind of the "total
momentum", To find the expressions for 7 let us
note that from (4.6) it follows:

d (by ()b} k&)

= —i (R0, )+ () - 2= (=) ity

\/— 2t (k

and hence

a 1 172 by (t)= bIy () »
e =31 k k
d v g (k)(2u(k)) v (k) k

1 1 V2000 +

-Ls

Vi vk v2(k)

But here due to (4.7)

1 ¢ TP®) J]z(k)kz 9~
by —_— — .
v o ( )(kth))k r(t) V(k)3V2(k) cr(t)

Therefore

4 g2y 1 _Jm:)_n_ —b* -
1 B() \/V <§) 5 2V(k)) (bk(t) b? ©)i=0

from which it follows that the conserved vector,
we looked for, is

((“)(T( PNE - "g(” 239 - 2——2-)(kr*(t»1?

5525 1 5 kI® k J1(K)

1/2 +
—\/V TR ) (b=b_ ) (4.10)

Go®
Let us introduce the external field thus replacing
hamiltonian H; by

H = HL +E(t)r (4.11)

5
Because HL commutes with P and because

[? ,ry]-[pB,ry]z—ih(S ; B,y=1,23

B By

we see that now

df?.(t) T
Tande E(t) (4.12)

We may observe that for the hamiltonian (1,1)
when (4.4) holds the translation group becomes:

. —1kR
l'-»r+R, bk—bbke (4.13)

In this situation the total momentum is given by:

9.3 kb b 4,14
& k (4.14)

-

When the external field is switched on then this ¢
also verifies equation (4.12),

Consider the hamiltonian (4,11) and the corres-
ponding Heisenberg equations:

, dr()

T p(t)

(4.15)
dp(t) __ g2 _ i n VR
= crit) 7~ (%)( 2V(k)) 1@k (b 0+

+ b:k(t))—ﬁ (t)
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: dbk(t) 1/2 IO
k)b, (®)— ———( J(k) (kr(t))
n —iv N V(k)) (k) (kr
+ (4.16)
db—k(t) + 1 1 1/2 >
L O =) 71 (k) (¥ ()

g __, - b d . + +
r(t)=r, p (t )=p: bk(to)zb b_k(to)xb_k
from which it follows:
—iv (K)(t-t,) t—i(R)(tT)
byt)=b e Ll (L) aw e fe Eer)ar
VvV 2hv(k) to

¢+ @G-ty ve C k(=T 4

bH(t)=b_, e +—=( ) JI(K) fe (kr ())dr
K AR u( k) to

The substitution of these expressions into eq.(4.15)

yields:
2. (9t : _ s _
—Lg:(t)wz?(t)nlz il (l;)kfdr(li?(r)){ew(k)(t D T
(]

VkRv(k) t

i yn (2 2 —iv(k)t-ty +
“Eemw 1kt "o
=10

Let us perform the integration by parts:

R iv (k)(t—to))_

42

t . ivk)t-7) —iv (k) (t=T)
ifdr(kr(r)){e - }
to
i K)(t—T - i K)(t~T
iv (k)(t )+e iv (k)X 3d=

1 22y d
=—;—(l-5f (kf(f))F{e
to

Er@) o €D g e)(ety )+

"2 v m

v?k) [ ar dr(') ar2r) yeosv (k) (t—r)

and recall that:

T () - 1 M2ak>
2 W = — t)—“ (t)
TV 2 (ki) v (k) 3, 20) ot ¢ o*

1 Jl (k)k > dAr(r) —r) =
V(E) >0 (k P Yeosv (k)(t—r)

JLs S cosV(k)(t—r)A_—”)
RCEERY

We then obtain:

46® 1 farg(t-r)B(r) =—TRE—tg)-

)-

dt m*
t m* i
(4.17)
. 2 —iv(k)(t—=t,) ivk)(t—ty)
i e - 0 + o
- = (= ) Jk((b e +b e
VV &) 2v (k) k —k
-E)
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where
K(t—r)=-‘l,-(2—g—%‘))LCOSV(k)(t")- (4.18)

Consider the averaging of this equation over the
initial statistical operator

Dy, =p ) D(Z) (4,19)

and denote:

m*<V(t)>=<p(t)>=Sp p(t) Dy
(s,%)

<f>= SprD, = Sprp(8)
s,3) o (s)

Because:

<b,>=0, <b ,>=0

eq. (4.17) leads to:

*_d_<_v(t_)_>_ f dr <v(r)> K(t—r)=-<r>K(t—r)—E(t
at & 4,20)
Here <v(t» is the averaged velocity of the
particle,

Let us investigate now the situation when E(t)
is a periodic function of t, multiplied by the
factor &' (¢> 0), corresponding to the disappearance
of the external electric field at t+-«~, and when
we look for the steady-state solution of (4.20) i.e.
the solution represented by the product of the
factor ¢! and of the periodic function. As (4,20)
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ic a linear equation we can restrict ourselves to
the simplest expression:

> > (—iw +e)t
E(t)=E e . (4.21)

Really if E@) would be a sum of such terms with
different @ then the resulting steady-state solution
of (4.20) should be the sum of solutions for the
case (4.21).

We thus will examine the equation:

v t > 5> (—iw+e)t
#3VO> | far < V(r)> R(t-r)==E e .

By substituting here:
(~iw+€)t

> ->
<v(t)>=vwe

one obtains:

oo (iw=-€)t > -
{m*(—iw+€)+of K(t)e dt}vw =—Ew'
Definition (4,18) leads to:
(1w—€)t 1 hi (k)k 1 1
K == 3
f ©e \ k)Gv"(k) c-i(m+v(k))+ e-i(w-v k)
Denote
zmw(v(k) Q)+8(v(+0)} =1(Q) (4.22)
®) 612 k) '
Then:

1(-Q)=1(Q); 1(Q)20

Fx(t)e(iw—e)tdtzi}"l(g) Ly . (4.23)
—00 w+ ie~
45



Therefore:

. '°° dQ 5 i (~iw+e)t
{m*(—l(u+f)+l_£’l(9)m }(V(t))z —Ewe

But in virtue of (3.10)

> >
E = —€ &
) C w

and by the definition of the current:
Jw(t)z—ec <v(t)>
Hence

(—iw+€)t

. T a0 . 2
*(— Q) ————pn— t)=e" & .
fm*( 1(u+e)+1_f°°( )(u+ie— Q }J‘U() ¢ @ (4.24)
Let us now perform the limit V- assuming that
for any real o and positive ¢

10D P —4d9 4,25
_{OI(Q)w+ie-Q _£J(Q)w+ie—9 ( )
Voo

After taking such a limit, put in eq. (4.24) €-» 0.
We then obtain:

. 1 2~ —iwt
i (t) = e“ & e ,
o Tn@ ° e

where

dQ

Z+(w)=—m*i(u+ifJ(Q)m

-0

(4.26)

Taking here electronic charge e, as unity we see
that expression (4.26) represents just the impedance,
corresponding to frequency - w.

As we will see later, because of limiting
processes, all expressions we need, including (4.2),
depend only upon the function J(Q) and not upon
the particular choice of v(k), J(k).

46

Therefore first we will take a. suitable
expression for J@). Let us choose J@) in the
following way:

) J(Q) is an analytic function of the complex
variable regular in the stripe:

[ImQ] < 7,
) J(Q)=J(-Q)

m) (J(e)|<— for IQ[Z“’O i w,,C =const

0’
IV) For real @, J(2)>0. (4.27a)

We then take the expressions for J (k), v (k)
such that*: v(k)>0

1 J2 (k%  Ci .
a1l V(BZ(D EL—?(T)—S‘ - C, =const., :)rt}d%pendent (4.27b)

2 2
1 a @
s LWK | T50)ae, 0<w<a

—\7V(k)<w 6v°(k) O (4.27C)

* One of the possibilities of finding such
expressions for J(k),v(k) is the following one:

We 2take
Ez( nn1,2nn2 ’ 277[13), L3-V
L L L

(n;,n, ,ny; ) being integers both positive and ne-
gative, assuming that

n% +n$ +n240

thus excluding the =zero value k from sums over (k)
Then put:

2 2 83

A7) =27

kP

v(k)=s|kj, J(s]k]),

where s is a positive constant independent of V .
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In the considered situation it is clear that
relation (4,25) holds for any fixed ¢>0 and that
the convergence there is uniform with respect
to @ (=0 <w<eo).

Let us introduce the function of the complex
variable w :

Alw)=i f 1(0) 32

) (4.28)

-—00

We see that it is regular for

| Imw |> 0.

Because of the properties (4.27) it is easy to see
that

A(w)= lim iFI(Q)

V20 ~o0

(4.29)

dQ , Imw#£0

w =]

Here, in virtue of (4.22):

1wk, 1 T
w—v(k) w+r(k) "’

7 dQ
I_LI(Q)W— i 6 2(k)

Hence this function is analytic in the whole comple
plane and its only singularities are poles on the
real axis:

w=2v(k)

The limiting function however has the cut over all
the real axis:

Alw+i10)- A(w-i0)=27J(w)> 0.

So, in fact, we have two analytic functions:

A (w)=iwa(Q)—-d—9—-, for Imw > 0
+ o w—-Q =

(4.30)

for Imwg 0

A_wy=if 3@) 42

w-0Q '
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In view of (IV) these functions are simply
related to each other:

A (w)=-A, (-w), for Imw <0. (4.31)

Therefore we need to examine only one of them,
e.g. A, (W). Denote

Rew=0w, Imw=y>0. (4.32)

Then, for any fixed w1>0 :

A+(w+iy)=i f J(Q)_d_(‘_l__,*i f J(Q)“"Q"1X a0
|Q—w|>w1 +1y= W=, (-0 )2+y2

But
W+ @,
w - Q

f e dQ == [ e dQ =0
—(ufl Q2"’)’2

(1)—-(1)1((1)“9)2"’)]2 -

and thus:

. WOy 1Oy 3
A+(w+1y) =1 f J(Q)w—d;%’:(—l +1 f _—(Q%(i)z(m—())dﬂq.
|Q—(U|>(1J1 (0—(01 ((U-\Q) +y
ff T@Q—2 4o (4.33)
w-w, (w —Q)2 + y2
from which it follows:
A+(w)=1im0A+ (w+iy)=1i | J(Q)E_Q +
(4.34)
1 3)-7
+1i ——L—(ﬁ—) dQ+7J(w)

0w, AEaY)
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So, A (@) is the analytic function also on the real
axis. By using (4.33) it is easy to show that:

t
A (W] < —c%“—sl— (W] > . (4.35)
lw
We further have:

A+((o) =A (o) + 20d(w) = -A+(—m) + 2n)(w) .

In view of condition (I) the function

-—A+(—w) + 2aJ(w)
is analytic for

0>Imw>-17,. (4.36)

As it coincides with A (w)on the real axis, we see
that A (w) previously detined for Imw>0 can be ana-
lytlcally continued in the region (4.36).

So, we may write:

AL (W) =-A (W) + 273(w) , (4.37)

for 0>Imw>—17

It can also be estabhshed that 1nequa11ty (4.35)
holds everywhere for

Imw > -7, . (4.38)
Consider now the impedance function

Z, (w) =-im*w+A, (W)
in the domain (4.38) and note that on the upper

half-plane and on the real axis it can have no
zeroes because in view of (4.33)

ReZ+(w)>0 for Imw >0

Therefore the zeroes of this function in the
considered domain (4.38) if they exist at all must
be confined to region (4.36). But

A, (W) »0, |w| » o

and for this reason the zeroes of Z (w)can be
found only in the bounded region:

|[Rew| < const, 0>Imw>-7,. (4.39)

As is well known, an analytic function can have
only a finite number of zeroes in such a bounded
region. If zero-points are really contained in
(4.30) take a quantity >0 so that -3 is greater
than the imaginary parts of all these points, If on
the other hand the region (4.39) contains no ze-
roes of Z, (w) at all, take 7=74. In any case we
see that by choosing an appropriate value of >0
we can attain the situation when the region

CImw > -7 (4.40)

does not contain any zeroes of the impedance
function Z_(w).
Therefore the admittance function

1
Z (W)

is a regular analytic function in region (4.40).
Its behaviour at infinity is given by

1 1 1 A (w) _
Z(w) -—m*iw+A (W) m*iw m*iw(~m*iw + A (w))
(4.41)
=~ m*1w +0(——) {W| 5 00

In conclusion let us give an example, Take:

k2 1
A (W) =i— 9 1 + b,y>0,Imw>~y,
2 w—uo+iy W+V0+iy (4_.42)
k
A_ (W)=—A+-(—W)=i—~g—{ 1 — + 1 Limw<y.
2 Wt vy ~ly wW- vy -iy
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Then

1 k2 y y But
J(w) = —1{A (0)-A (w)}=—1 + i, N ) o
&n T 2 (cu—vo ¥ y2 (cu+v0)2+)2 3 f°° iwt  dp(t) _ _Bel‘“o —iw [ dte iwt I_;(t) '
(404 ¢ dt to
0

In this example all our conditions are satisfied, 3
The same situation would be attained also in the 4
case when instead of one term (4.42) a finite sum

o0 t N o0 . < N
i t
of such expressions was considered, J dte 'Vt [ drR(t-r)p(r) = | K@e™" a [ e at.

After these rather lengthy discussions of the to to 0 to
analyticity of impedance and admittance function,
let us return to our fundamental equation (4,17) in Therefore:

which we take:

E() - SE e 19 (4.43) 1 imrwa [ R@® e dth [ B e ¥hat -
(CO) @ - m* 0 to
We will try to solve it by the Laplace transform '
method, Thus both parts of (4.17) will be multiplied L dwty | iwty oo iwt . el(w—w) to
by =pe ~TIe fK(t)e dt+ 3 —~—u—— 4
0 (@ ¢ i(w-w)
e'™' | w-Q+ib (4.44)
and integrated over t: 'z b iwtg b+ iwtg
> e e
N + _LE (%E;)‘) Jl(k)k{ k (k)+ —k (k)
pat i o i t 5 W —v W+ v
[ dte'™! ® 1 [ ate™' [arK(t-r)p(r) - VALY
dt m*
to to to

— -1 [ dteivt K(t-t ) -3 Ew [eiw@ ity (4,45)

te (w) to

Here, because of (4.23)

JR®e™ ar-i fml(v) dv

_ 1__ s T )1/2J](k)§{b fdtei(w—v(k))te (k) t, 0 —oo W~ v
yv ® v K to Denote:
~im*w + i | I(y)d_v. A (W) ,
+0% iwrrR)) T (k) tg —~ WV (4.46)
+ b—k [ dte e

i f I(V) dV - A(V)(w) .
g W - v
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We then obtain:

N 5o 2 E) iy 4 32
Tame™ g mBe L aVw p® =P O PO T,
o 7wy AN
I :m*fgo(a,t~t0) —m*Fgl(S,t-tO) ,
5 iwty —iwty
-i2m*E = — ——— 1E) > —iwt,
(@) (w—co)Z(V)(w) (4.47) p (B =—m*(i)wa(co,3,t—t )e (4'49)
o /2ke " D b_ 2(5) ) _ —Am* V2 g -
JV o ® ZVw)  wor®  wer ) Jv & 2®
But, as is well known: It is to be stressed that function (4,48) depends
essentially on V,
1 7 =i, [~ (i2-6) ¢ In virtue of our choice which has led us to
f(t) = — [ e f(t dt {dQ .
® on _o{, ftof ®e } conditions ()<IV) and (4.27) we can perform the
£> 1 limiting process Vsx, Till yet § could be an arbi-
0 trary positive quantity,
For this reason, by using the notation : We now choose:
N e DI 5= 4.50
él_ I e V)O dQ :f(u,a,t—to) , 2 (4.50)
™o (@+i6-1)2V@Q + 1) On the other hand it is easy to see that:
o (O=1D)(t—1t ) : oo (8-ild) (t—1)
1 e o S t—t - 1 e
RN Q- gy@.i-t) ~ (-t ) = L | : :
er o 79X, i5) (4.48) ¥ - Z,0450)
oo (v ; S—i(— 1 A (Q:+id)  (5-iQ)(1—
I S AN is) | (B-ie ‘°)d9=g0(a,a— gx(a"ﬁto)*‘pl(‘“‘o’:‘%“fme( D0) g0 (4 5)
2rm* —< Q-5 (10-8)Z0i8) ; (EIEACES
. (5,6t )2 o i j:o e(a—iﬂ)(t—to)
1 = AV ) G-t ) VOt )+ ly bt ) = ——
o T © =g (,t-t), ¥ = (0.i5-1)Z (@+3)
™ ZVXQ 4+ 1)
v —-» o0
55

from (4.47) we get:




Because of the identity:

1 1 . A(Q +i8)
Z(Q+id) 6-iQ0  (i2-08) Z(Q + i)

and because & is now fixed (4.50) it can also be
shown that the convergence:

|£(v,5, t—-to)—q’)(v, t—t(?l-»O, u!f(u,'o‘,t,-to)—¢(v,n-to)[ >0
Vs oo (4.52)
is uniform with respect to real v, when

|t—t0| <T

T being any constant independent of V.

Let us proceed to study the behaviour of the
limit functions (//0, Y. ,ébd for t-t_ -,

It will be convenient to recall that the functions

A, @+i8), —1
Z_ (Q+i8)
are regular analytic functions of Q in the region
where
ImQ >-6-9=-35.

Therefore the integration occuring in the expres=
sions of (//0, t//1 can be shifted from the real axis
to the axis :

(-8i6 —o0, -3id+ ),
which amounts to the change of the wvariable:
Q50 -38i6 -
For this reason:
A, (Qein) - -iQt-ty) - —1(t-t.).
+ 7 Y e « 0,)

ty-Lf
e el Tam

(-t ) = L [ et “ (=t )

Vo=t S 2% L 2 ,(Q-ip B
oo A, (Q-in) —iQ(t—t ) —n(t—t
_ 1 + n o i o 40e 7 0)-
2 —0 (1]+iQ)Z+(Q.-i1])
because:

oo =i{l(t~t o

[ w0, foroto,
—o0 n + iQ

Therefore by taking into account previously formu-
lated inequalities we get:
W -t sk e

1 0 =1 ) (4.53)
_n(t—r_o) >t 0
[bo -t} <K je
where K, K, are constants,

Let us apply the same procedure to the

expression of &lv,t-t g) . We must only note that in
the region

ImQ +6 >~
the function under the sign of the integral (4.51)
has a pole

Q=v-id,
Hence:
Tty —1(t-t )
by, t-tg) =2 il to 3 dQ =
Z) 2 e (Q+i6-1) Z_(Q ~ip)
(4.54)
—iv(t-t ) =id(t—t ) .
e i e—n(t—to) 00 A, (Q-ine
= -——————+—.
Z+(v) on —o (Q~ig-v)(iQ +1])Z+(Q—i1])
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because

e-iQ(t-t o)

J
— (@ —in-v)(Q - iy)

o0

a2 =0, t>t

Expression (4.54) leads to:
—iv(t—t g)
e
‘¢(V,t"t0) - —— §K2e ,

lvg (v, t-t ) v £
t>tg

Here K, K3 are the constants,
We now return to the initial statistical operator

T, =p® L.

Take a positive number ¢ independent of V and
note that the eigenvalues of the operator

P2+ (4.56)
are

(2n1+1)ch +(2n2 + 1)c‘h+(2n3+ Dch ,

where n, , n, , Nng are non-negative integers,
Let us also take a positive constant K inde-
pendent of V so that

K2 > ch.

We now choose p(S) as a positive operator with
the usual normalization

Spp(S) =1

s
in such a way that its eigenfunctions be orthogo-
nal to all eigenfunctions of (4.56), for which:

(20, + Dchi +(2n, +1)ch + (2, + Deh >K? .
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Denote
1,z>0
0,z<0

We then see:

f(z) =1

SpOK?2 -P2 -c®T®p(S) =1.
(S)

For this reason operator (4.56) can be treated as
a bounded operator

P2 4?2 K?
and thus

-> > K
plek, g KL
Here |...| denotes as usual the norm of the
opeartor,
In view of (4.51), (4,53)
-*(S) - -,
P () »m*ly (t-tPp -y (-t )ri,
Voo (4.57)
> Ky, -nt=t )
| lim p(s)(t)l <m*KiK § + —cl—}e o,
Voo

Note also that the wvector E(E)(t) is an ordinary
c-vector and that in virtue of (4.51), (4.55):

. 2(E) 2 o TNty
[lim p~ "(t) ~m*v(t)] < X |E_|K ,

Voroo @ 2 (4.58)
. E, _
V() = - 3 © g iot
@) Z, (w)

We see that here V() is just the average velo-
city corresponding to the steady—(itate solution,
Consider at last the wvector _[; )(t) and denote

its components by pgz) (), j=123.
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We have:

Sp P, (t)p (r)@ =S p (t)p (r)@ (3.
(8,%) (2)

Here us usual

—Bzhv(k)bkbk
T(=) =conste ® . (4.59)

By using the spherical symmetry of functions J(k),
v(k) we obtain:

%, 00,00 p DO T®=m9%5, L Ft.r,ty) . (4.60)

where

Ft,rt)= 1 s Mg (k)kz{

(k) 2C) B (k)
O
+ ——'—————f(—V(k) 15’ t—to) f(V(k) ’597—1:0) } ’
1~ & PI(®
1' j=j,
o ., =
) 0, j#i°

From (4.22) it now follows:

o n
Ftr,ty) = [ al) ——— 1,8, t-t Ji(+,8,7-t ) +
0 1-e” hv 0

~Brv
+e pr f(—'V,S,t—to)f(V,S,r—to)} .

f(l’(k),asb—to) f(-!/(k) 5-’T"t0)+

Let us take into account (4.27),(4.51), (4.52) and
pass here to the limit:

F(t, r,t.) » deJ(V)
V00 l—e

e—Bﬁv

h;b(v,t to)qb(—v r—t) +

b (v, t=t VBl 1=t )]}

from which because of (4,55) we obtain:

~nt-t ) —Tr—ty
+e

| lim F(t, 7, t ) ~F(t-n)]| < K(e ) . (4.61)

Vo0

K = const
where:

00 —iv(t-r) —Prv+iv(i-r)
CF(t-r)= [ &) —DL {8 +e L (4.62a)
0 -Brw Z,0)Z, (=)

l-e

Because J)=J(-v) this relation can also be written
as:

o0 1 —{v(t-r)
F(t-r) = [ dvI() —= (4.62b)

e 1-eP™ 2 )z, (-)

But:
2eJ(W)=A, W)-A_() =2 sW-2_=2 +v(1/)+vZ +(-—v)
from which it follows:

1 J() 1 Z+(V)+Z+(—V) 1 s 1 1
Z,0Z @) & LWL 2 20 ZW

i,

Because J({v) is real and positive we have:
2nJ(v) = ReZ (v) + ReZ N (=),
0=ImZ (W) +InZ (-v).
+ +
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On the other hand:

z -1 0 4
+ —o0 Q—-V+i0

and thus

ReZ () =nJ() =ReZ ().
+ +

Therefore
Z+ (~v) = Z):_(V) ,
2
Z, (V)Z+(~V) =12, )
and so we can write:

Ft-1) = [ Gb) —___™W( g,
e 1—e_ﬁhv
(4.62c)
G(V)=§:-T—§Zl( IS SV (%)
. V) Z_(V) iZ+(V)]2

It is interesting to point out that the equilibrium
average '

<p.MHp.- = li q
p; ®p; (r)>eq éim;c(sspé)pj (t)pj,(r).Leq(S,Z)

corresponding to hamiltonian (4,5):

-1 —PH -bH
@eq(S,2)=zle’B Li Z=SpeﬁL
(8.2)

is equal to

2
5j,j’ (m*) ‘F(t-f)
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e SR el

e et e

or, otherwise:

< O >, -lin lm Spp(.z)(t)p(jz,) (0, -

J
to—v—-oc Vo0 (2)

= lim lim Spp/()p’..(NT
t »—o0 V—»oc(s'z)'] J t'0
(o]
Consider now the probability density of momentum
distribution of the particle S for the hamiltonian H
of (4.11) and use the general equation (1.21).
Then:

>

—iA -, >
[e lpwt(p)dpr. Sp e
(8.2)

—iAp(t) @
g, .

Because 5(2)(0 ,f)(E)(t) are defined by (4.49) one
obtains:

“ikp 22 S
[e wt(p)dp=Sp{Sp e L x
(s) ()
« e—ix(ﬁ(s)(t)Jr_p’(E)(t))p(s) .

=

From the fact that p; ) () are linear forms in
bose amplitudes it follows:

e ) <x;(2)(m2

. 2

Sp S ORI Y63 P ,
(03]

where

ap P2 - (Szp) Gp P92 ) - M2 AF( Lty -
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We thus have:

>

~ 2 —i/\p . - -
w,W=[e w, (Pdp =

2
= Sp p(S) expl (T
(S 2

(tt.t) - ®w) +p® (1)},

which vyields:

> 1 ap = 2
w (p) = fem w (N =
' (2m® '
—>—>(S —>(E) 2
2mrm* F(t,t,to) (S) 2(m*) F(t,t,to)
The limiting process V-« leads to:
limw (p) =
Voo
- - - (4'63)
1 3 2, 3/2 (-p Dty - pE1))2
=( ) (—)  Spp(Sexpi- b,
2rm* att)  (s) Ra(t,t ) (m*) 2

where:

a(t,to) = lim F(t,t,to) ,

Voo

PO ® = 1mp O,

V 500

e d E g
p( )(t) = lim p(E)(t).

oo
Voo

f.

Therefore from (4,57), (4.58), (4.61), (4.62c) it now
follows:

1 )3/2 expl- G-m*v()) 2 L
2m F(0) 2(m*)2.F(0)

(4.64)

. 1,3
lim w (p) - (;*—) (

Voo

t—-t - o

0

FO) = [ GO) —Y @,
—o0 1- ¢ MBY

We thus see that after the limit Voo has been
carried out the momentum distribution function
exhibits irreversible behaviour and tends to a
steady-state form when t-t, se
In the particular case when E=0 this form
corresponds to the equilibrium distribution
RGN L S (4.65)
m 22 F(0) Am*)* F(0) :
which has a 'quasi-maxwellian" behaviour. We say
"quasi" because instead of the temperature module

6 = % in (4.65) there stands

m* [C) ——dv.
e 1—e—B T
We may also nhote that the general steady-state
distribution function is obtained from the equilibrium
function (4.65) by introducing the drift velocity V(t) .
When

-5

E(f) = E = const

this wvelocity is also constant:

v---E ___E | (4.66)
Z+(0) 7J(0)
Let us now pass to our main aim - to evaluate
expression (4.2) in our model, based on the hamil-
tonian H, .
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We first note that in our model Heisenberg's
equations are linear and it is easy to see that
the commutators

[rj(t), r M; j,j"=123
are C -numbers,
For this reason:

eikr(r) e—ikl'(t) e-ik(l’(t) -xr)) exp [kr(r),kr(t)_] _

2
t »
kf (f) ds ) -
r m [kr(n), kr(t) ]
=e exp
2
which leads to:
¢ 7, ty) =
St o(E
r m* [kr(7), kr(t)]
={e —_ X
(4.67)
(E) *(s)
> (S)
ik f —*——ds —ik f —Tn"*_
x Spe TE)Spe p(S)
(6] )]

To disentangle the commutators let us note that:

[rj(t) ,rj,(()] =[rj ", r. (r)—rj,(t)]=—

m 7
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We further have:

[rj(t).pj, (s)]z[rj(t)—rj(s),pj,(s)]Jr ith,j' .
. 1 !
= 0y ;- + e sf [Dj (0),pj, (s)ldo

and therefore

t
[r.@).r. () 1=-i05. . D (L F fasfIp (@), ()do =
) ] 1} * m* 7 s J J

m
- —ins, - %Q- )fdsfdo[p( ) (o), p(,)(s)] (4.68)
2t | g
—([—117) f dsfda[p(s)(a) p( )(s)].

Because the considered commutators are ¢ -numbers
we may write, in virtue of (4.60):

Sp [p@)(a) p<>3>(s)m(z)—
(E)
5, - PP (0,8.0)-F(s,0.60)1,

(™), p& ()] -

On the other hand (4.49) yields:

L [p(s)(a) p(s) (s)1= its

(m*)g J,J.f{go(B,U—to)gl(b‘,s—tO)_

‘go(b‘ ,S_to)gl(b‘,a'—to)§

We thus obtain:

(@), Grionl- —ime2lD)

m
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t t
+ sz dsfdo{F‘(s,o,to)-—F(o,s,to) +
T s

(4.69)
+fﬁ{go(5,8~to)g1(5,o—to)—go(B,o—to)gl(a s—t)l.
It is also - easy to see that:
e t_[;(z) (S) ds
—-ik f_____;_-
s T k2 t t
pe = exp{—?rf dsrfdoF‘(s,o,tO)}. (4.70)

)

Relations (4.69), (4.70) are to be substituted into
expression (4.67),

By taking the limit V-+~ and computing the
asymptotic part of (4.67) for t;»—we obtain:

(Dk (t , 7 ,—oo) =
t-»-»
—if(kv(s))ds
T

=€ exp k°{ i —=" +
2m*

t
[ ds [do(F (0-8)= F (s-0))
T 8

l\’)lr—n

1 ¢ t
- 2—de fdoF(s—-o0)}.

But, because of (4.62c)

1 ¢t t oo
?f ds fdoF(s—0o)= [ G(v)-A¥ 1-cosy(t-r) q,,
T T - 14
=00 1—-e v
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Y
1

g T

P

- S

F(o-s)—F(s—o0) =wa(u)nve—iV(

- 00

s) 00
dv=—1i [G)twsinv(o-s)dv

siny(t~7)

t o
[ ds ftdoi F(o-s)-F(s—0)} = i [GW){ - (t—-n)idv

T s

Thus we are led to:

q)k(t,f,—m)z

t
—1[(Kv(s))ds - .
—e 7 exp{it kz(g—:': + 51— [ G o) (S _t—n)ld)-

m —o0 v

(4.70)

1—cosv(t-r) 4 vl

_ 2 hv
1ik*[ G(v) e 5

—o0

1-e

This expression is to be substituted into equation
(4.3) in which also the limits:

1)V—»oo, 2) t,»+—0, 3)6—»0

0

must be carried out.
In such a way we obtain the general equation

from which the results of mentioned papers/2.3/

could be obtained, Note that there m*-m and the

function (4.42) is used with y»0, We may also

note that by substituting f(p) =p> into (2.20)

the equation for the rate of change of the electron

kinetic energy will be obtained. Such an equation

can be disentangled just as previously by using
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the linear model, and be applied to verify the
results following from (4.3) with (4.71).

Acknowledgements

I would like to thank Prof., J,T.Devreese for
stimulating discussions,

[ also wish to thank Prof, V.A.Meshcheryakov's
group at the Laboratory of Theoretical Physics
and the Publishing Department of JINR for the their
help in preparing the manuscript for printing,

References

1. Devreese J,T. and Evrard R, p,91, Linear
and Nonlinear Transport in Solids, Plenum
Press , 1976,

2. Thornber K,K. and Feynmann R,P. Phys. Rev,,
1970, B1, p.4099,

3. Feynmann R,P., Hellwarth R., Iddings C.,
Platzmann P, Phys,Rev., 1962, 127, p.1004.

Received by Publishing Department
on August 2, 1978,

70



