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On the Spin Wave Theory of Disordered
Itinerant-Electron Ferromagnets

Ferromagnetic spin waves in disordered alloys are derived at
zero temperature from a microscopic Fermi liquid description of iti-
nerant electrons, The spin wave stiffness constant is renormalized
within the random Hubbard model s using the coherent local ladder
approximation in the particle-particle channel, Ward identities, the
stability condition, and magnon damping are investigated. The pre-
sent scheme is valid for systems with strong eleciron correlations
and small carrier concentrations,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. INTRODUCTION

The spin wave excitations in ferromagnetic transition metals
and their alloys are affected by the degres of itinerancy of the
d-glectron system, Such a problem can be described by the Hub-
bard Hamiltonian n/ being rotationally invariant in the apin
space, Hence in the long-wavelength region one can extract, in
pr:lnciple from the "broken symmetry" 2/ ,» 8 gapless spectrum
wq = qu (§: wave vector, D: spin wave stiffness constant) while
single-particle (Stoner) excitations remain finite in energy. In
particuiar, D is connected with the stability of the ferromagne-
tic ground state against the low=lying collective modes.

Correlation effects enter into the stiffness constant D, An
explicit expression for D in terms of the traunsverse spin-current
autocorrelation function was given by Edwards and Fisher /3/ ..

Approximations for deriving the magnon spectrum of itinerant-
electron fcm;n@ct- have been performed in the following di-
rectionss

(1) Por pure systems the basis work /4/ was done in the rendom-
phase approximation (RPA). The spin wave theories beyond
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the RPA involve, e.g., perturbative corrections to the RPA
gpectrum 5/ s the T-matrix approximation s s and diagran

78,9/ 3 compare also

analysis guided by the Ward relations

110/ and the sum-rule approach v/ .
(11) Por disordered systems the configurational average can be

carried out within the coherent potential approximation

tcea) 712/, e cPA-RPA treatments /12 ¥ 17/ (witnout cpa

see /18,) of substitutionally disordered alloys are based on

the Hartree;Fock (HF) approximation which completely neglects

spin fluctuations, A RPA decoupling scheme wam given in 119/ o

In the present paper we choose a microscopic Fermi liguid ap-

proach at zero temperature (cf. 120,21/ ) to derive the apin wave
energy of disordered alloys in the random Hubbard model. The stiff-
ness constant D is renormalized by the coherent ladder approxima-
tion 122/ s 1.0, the self-consistent combination of the CPA and

the local ladder approximation (LLA) 123/,

2, SPIN WAVE STIPFNESS CONSTANT AND BETHE-SALPETER EQUATION

The itinersnt-electron aystem in disordered AcB1 - alloys can
be desoribed by the random Hubbard Hamiltonian (of. /1/)

) * » P ) i}
H = i);:qtiiciﬂc}ﬂ’+ )‘.:qﬁa Uy «;ZUi nong, = H+ H, (2.1)
(it

where OIO' (o4 ) is the creation (annihilatiow) operator for a

spin ¢ electron in the Wannier state at lattice site 1, and

N, = 0150y » Within the whole configuration {1} the stomic ener-
&y €. and the intra-atomic Coulomb repuleion U; take the random



values £° and U” (» = A,B), respectively, according to whether
an A- or B-atom occupies the site i. The hopping integrals tij

are assumed to be independent of the atomic arrangement, The mo-
del (2,1) belongs to the claBs of exchange Hamiltoniens, because
kg

H commutes with the total spin. Por the interaction part, this

rotational invariance in the spin space can be expreesed by
wi 2 1 » 2 » 2 7. "
By 2 Ugngyny, =3 LU n,-52 U 55 (5: local spin
density operator). Such a form refers to the posaibility of col-
lective moden.
Let us introduce the transverse susceptibility (causal spin-

density response function) at zero temperature as

- )
i e gy, oo

where Sﬁ -r_.z cifc“ :liﬁ:»' and S:q - (Sal)"', ﬁi is the posi-
tion vector of site 1, and <... )M means the ground- state ex-
pectation value within {»], Here *"”5(3,&) ) reflects the linear
reaponse to an external rotuting magnetic field (rf) H"' - Hi(t)

+ 1H](t) = H'(§, @) oL (@F=©t) 4 n1i0q perpendicular to the di-
rection of spontaneous magnetization (g-axis); 1,e,, the net trans-
ig® X {”"fﬁ,w}H"’('ﬁ,u) ,
where M « 2ug 3. Fote that the factor 2«“3 ( pps Bonr

q
magneton) is omitted in (2.2). By exploiting the time-reversal

verse magnetization is given by <l+(q,r.:)}

invariance, one finds from the equation of motion that

mzx+-(v}(q.’w)=—{ ZZ(S) ([5q,‘]3 ]> (q:'w‘i‘j » ]7 (2

where s: - % (n;, = n;,), and the traneveras spin ourrent opera-
tor J<'I+' (or 725 = (J&)*)tnkes the nonrandom form



+ + W 1 . «i"ﬁi e
q3q.=[é'§,,H‘ ,]=ﬁ-‘§t{i(e : “i’)c‘,c

(2.4)
={—§)%(£ g &2 )c s Caege
In the limit q -+ O the "nanquaaiparticle®™ contribution /247 to

+'M(q.m) is identically zero, because Stis a quasiintegral
X q

of motion,
The definition of the spin wave stiffness constunt D requires

an explicit pole anmatz Xpole(q"") '—2—(@-‘%)3 , being valid
for small < and q (here the imaginary part of the causal res-
pones is suppressed), X Pol'(q,o) is a pole part of % *7(g,w)
= <’x +- [“}(E{,m )>c' where (.,.) , denotes the configuration avera-
{!
ge. Fote that (S} )h’)c is independent of site i, Thus, ons can
extract D via the prescription
v
2685 )5)]
W

D- —_‘9:;) lim 11m [";"L:’('X+.(q,u)) +
(2.5)

1 i . &)
= ——wn L im 774[S , g lim lim X (G}
sy Ll €07, D72 wmx il
fas}
where 2<(S; ”)c = (n, - n,) ia the mgmtintion per site (n
everage number of 0 electrons per site) and 7( (o) =
1G]
-{£ Jq -3> ) 18 the transverse spin-current autocorrsls-
tion function, Such a relation between D and 7( g Was derivad
in /3/ for pure systems, and applied to alloys by Eill and Ed-
wards /1‘/. Whereas D follows exsctly from X pole(q'w ), the
pole ansatz involves indeed an approximation; for iistance a ge-
neralired RPA leads to X *7(3,w) = 2(§,0)/ A (F, ), where
Re A (J, q) = 0 gives the wpin wave mpectrun 3 = Dg?.
Bxplicitly, the commutator in (2,5) becomes



v o N (i‘rn, oy o4 (f-‘R, il
e~ «[5;;‘1‘]3])( A ‘%.Zg{q{ O R AARRL O >>}
};{(E 'E \(n )1)6*(3—:_;- E;)«"?&)M)c }

(2.6)

By employing the cubic symmetry hereafter one obteine

) - 1 2 {2}

lin q ‘,NZ{13(R R)(cc y ) - L) (ng,) L, @D
gince no term to order q contributes to C&' in (2.6) due to time~
reversal inveriance. The limiting procedure in

i S ity (it AR \d
1, rq,w)=-;;—z,]~)it 6T e T, €7 e, ), ).

(2.8)
~-at (e ze e, (N )M}
PN ®3 ) k’ q¢) wq‘
leads to
. R [k
};‘1"0 lql:"(]Xa (‘] wl= SNZEQ 1’m1\< CaCior micnf>>w_,o>c’
(2.9)

__1 il Y (B’
= N Ve, V&, v,eldc c:‘,c:,‘cm)iﬁo)c) J’ij=—1ti}(Ri-R})'

k

Now we give a way of attacking the correlation problem by means
of the Bethe~Salpeter (BS) equation, Let us express the spin
current-apin current response (2.8) in terms of the causel two-

particle correlation function Lw, through

i} | (dEdE’ T
(ORS ;H'C'"‘G">m=1' (anP Lanm(E ESE-w,Evw). (2.10)

According to ’20/. L(vjsatiefies a BS-type equation



{vl

(E,£-c) = -2m8(E-E*- co)G'"' (E)G

gmm 'm.‘r
FRald

) (2,11)
"G (E1G,, (E- g 11 (EE i w)xi' LB,

where the energy tranefer « 1is abbreviated by, e.g., L NE,E ;
E-w,B'+w) = lekE,E'; ~ &), Note thal only the spin-diagonal
one~-particle (causal) Grean functions ¢! are taken into mccount
in (2,10) and (2.11); correspondingly, the mean value of the trans-
verse gpin current vanishes. The essentisl assumption in (2,11)
congista in retaining only site~diagonal elements of the irredu-

cible particle~hole vertex Ii""
u

; for instance & local ladder
approximation fits to thizs echeme, The choice of the kernel for
the spin-flip response in (2.11) involves only spin-traneverse
components nf I{v’ on account of the Pauli principle,

Amalogously, we have

1- » i8] '(ﬁi-i-] P
g Z ("ZE:)E,,LT,(E - 200 Pk (2.12)

Since the ferromagnetic state is specified by {Z <S‘> + 0,

(2.12) implies that (si'> - (e}, cu>M
) )

3. EVALUATION OF THE TRANSVERSE SPIN CURRENT-SPIN CURRENT
RESPONSE

Next we discuss within a local approximation the renormaligation
of the stiffness constent D in the presence of disorder. Let us

b )
introduce the iransverse wpin current vertex A:’; by (compare



(2.8) and (2.9) )

Xy G =00 = 5 [Se(tr{F e A 06l te ), | (.1

"where the trace meana the summation (without epin) over one-par-
ticle states; ? and /_(1'1’.‘ are understood to form a acalar pro-
duet, On combining (2,9), (2.10), (2.11) and (3.1) one derives
the integral squation for the effective spin-flip current as

A (E'mEl “Fi8qifoe E1P (Eru ;-G E wW"(EwEJG E)L 3:2)

H'

Separating diagonal and off-diagonal elements of A::) in (3.1)

we get

T @-0w)= 5 j & {76 e w6 e T G- 0,0), (3.3)
where

X @=0,w= 55 ZE<ZK"”(E E+w): A"”(Em EV (3.4)
K‘“’(E Era)= ZG“” E)F Gt (v (3.5)

Ag it was argued in /201, the problem of averaging configura-
tionally in (3.4) ie beyond the CPA; therefore, we proceed with
b g =g s }
the factorization (X™ZAM) = <K‘”})c</\”)c. From (3.5) we

obtain the CPA result

Rtz €6 26 §2 4, =0 (2078~ 0,
.. £ (3.6)
x;] ((i-O,w) = 0 »
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that tends to gero due to time-reversal symmetry na/ « The 8sub-
script "ii"™ means taking the site~diagonsl slement after avera-
ging. ‘g i:'d(’) denotes the CPA averaged Green function renormalized
by correlations (see below). For the ordered case a similar proof
yields immediately ‘}Z;’(E-O.w). Hence, in the local approxima-
tion, ’X'S'(E-O,w) ia squal to its irreducible part (cf,, for
a gas with short-range interactions /57,

Going over from the causel Green functions in (3,3) to the ad-
venced .;‘n and retarded ,."" ones and substituting the CPA result
for disgonal disordsr <tr {JGM(z ) jt‘rM(z2 Z ‘S 2 (29)
gkf('z) (vp e *) we can write

X; g0~ 52 %5 T fe 0 0 O Eulg e
i (3.7)
+(f(E)'f(E*m))‘g;:‘(E*-w)‘g;,(E)} ) mz[))

where f(E) = B(P. ~E) is the Permi function with (@ Dbeing the
chemical potential, The 1limit w3 — O in (3.7) ylelds

i tim X 7,00 35207, e Im{‘gk KGLANG) (3.8)

w~0 q-*

Prom (2,7), it follows the averaged expression

Cq
qlmq% - quNZ(V 3 )fdefmg GH (3.9)

which can bg rewritten by Z‘g (%) ('73 Eg)= ’Z‘ﬁiam(v* .,)
provided that ‘g £,(¢) depende on K only via E(k) (ses
aection &),

Pinally, by inserting (3.9) and {3.8) inlo (2.5) we srrive at

10



i — Imde 15(¢% (£+:0)-4, (£+:i0) (7,¢) (3.10)
rinom) STONT FAA ﬁ?& t PR

This result agrees formally with D obtained in the CPA-RPA scheme
/13'"’17/baaed on the HP approximation, However, in contrast

to /13'“'17/, ‘gi’d(z) ia dressed self-consistently in the frame-
work of the coherent LIA, aBs will be outlined in the following.

4, COHERENT LOCAL LADDER APPROXIMATION

Assume & local approximation for the multiple scatterings in

the particle-particle channel given in terme of conditionally

averaged ceusal functions by /21,22/
» B d_E’ v , » WE .
2 o E1= | 5 G EN T (EXED (1>=4,B)  (4.1)
THE) = STAE “§ = -, (4.2)
1 Ui IZ"f‘i Gﬁc(E', Gﬁ-u(E-E)

where T;l T;_’ is the effective two-particle rertex. The local

o-vo-g
Green functicn Gi”iu(s) written &s resolvent is renormalized by

. R (z)
7 (2) = (4.3)

Biet2) =7 “E-r) R >

~ _ »

5{‘;(1) = 5:_’ + Zuua(z)’ (4.4)

n



-4 (4.5)
Bzl =g %Lgﬁa(Z)

giu(2)= (z*‘a:“ Zd(z) Y , (4.6)

2 D =cghzr+(-c) E:lz)-[E;(z)-Zc’(z)]fy(z.)[E:(zﬁ -2 (2). (4.7

Here > , 1is the coherent potential satisfying the single-site CPA
condition (4,7), ‘g 2o is the totelly averaged Green function
entering into the stiffness formula (3.10). Contrary to the usual
cea 712/ the atomio potential E7,(8) (1 is dropped in (4.7) )
becomes energy-dependent through the self-energy }:U:io(:) caused
by correlations, The set of self-consistent equations is clomsed by

A
n=Zn, =~ 23 dE bn £ (E+30), (4.8)

where n is the average mumber of electrons per site, Note that n,
in (3.10) is calculmted from (4.8),

For a pure system (i.e., ZULG 5572y ) we get

Gy, (2= Fo(z)=—:‘-z;_[z-a;— Zud(z)],_: 4.9)

and the correlation problem must be now solved from (4.1), (4.2),
(4.8), ana (4,9),

In the Hartree~Fock approximation only the CPA problem from
(4.3) to (4.8) is retained which is complated by the constant
self-energy Z‘;’gd- U;’ n:_a. where ni"o, is the average electron

pumber with apin o at » wsites given by

12



A .
ny =~ 2 [dE In 6 (E+<0). (4.10)

— o0

5. EFPECTIVE VERTICES AND WARD IDENTITIES

In proof of the gauge invariance of tmn_averse pusceptibilities
in the ferromagnetic phase we are looking for the Ward identities
compatible with the continulty equation, Working within en srbitra-
ry configuration {-] we derive relations between effective spin-
flip vertices, The special case of the ordered system is involved,
too,

Prom (2.,2) and (2,12) one can define {cf, (3.1)) the effective
vertices A‘:’ of the apin-flip density by

X MGu=-€5,5:) - & [$Etr{p @16 e Myl 6

= ﬁ'jz_lr‘h—{ M(E E*m,zﬂGiﬂ(Em)la(‘q] 6 ivi(E‘i , (5.1)

Poi (@) = 2,:(§)8;; = ""‘6%,

where in getting the second line we have used the symmetry relation

Lot (E,E5-w) = L “1” (EYE;w). (5.2)
e

By comparing the B3 eguation (2.11) with the analogue for Lm,

one concluies that (5.2) implies IP (B,B'j-w) = Ii’ (B',Bjw ),
T

Note that (2,92) with (5.2) leads, in terms of causal functions,

to XM @,0) eyt (G, -w).

13



Kow we introduce on the basis of (2.4) and (5.2) the effective

spin-flip current A[:, through
- = + -\ s (dE PR (vl il
X~ PG al=—qT S [ e, G100 Ter it -6 )
L ¥ R (vl
=§)’§—§{rf/\:’}(s,£wﬂ)6‘ YE+w)2 316, (E)}) (5.3)

- &t %
11&(91 {-‘\}( qR q })~

Another version of (5.3) mediated by the time-reversal symmetry is

V) + N 4 P v 3]
X )(q,wF‘«-S:'.,qJ_:'.)); ] R N g N N g )

(5.4)
= £ [E{h B ugl6) el 67 O,
In place of (2,8) une finds with (2.10) and (5.2) the ex-
pressions
PSR “”_‘ Ty {4
04, 9% )= kit b B A e 6 )
(5.5)

[ul4

- Jﬂ‘ftr{A‘”‘ze EruGEn (F6T1E))

The definitions of the effective vertices A{::f and Aaﬂ
(o = 0,1), respectively, involved into (5.1), (5.3), (5.4) and

(5.5) are guoted ms

z G‘”‘(E)Aj;‘“(se uRE =T [ L (€8 -ala £, @01)(5.6)
HIY
and
13 (- wt,., 3 (5.7)
OB - [3R L (€0 2, .

14



By inperting (5.6) into (2.11) one verifies that

4
A

J(E+m,E',-q')= A

-4)

-8, % 1IM(E+mE m)Zﬁ{:{,(Em)A(,'m(EwE §67E)

ll‘\).
(5.8)

At @ = 0 eq, (5.8) for o = 1 and the first lins of (5.5) afier
averaging are in agreement with (3.2) and (3.1), respectivsly. Un
the other hand, the BS aquution for LNM‘ (ef, (2.11}) and (5.7)

give riee io

A‘QIE Etw; )= Ay ()
(5.9)

6,4 11‘ e el 6

il 2e (EE+wi )Gm‘(E+m)

lmn

Pormally, (5.9) goes over into (5.8) by replecing w— -w ,
g ~» ~g, and T4 =>4t

The lattice-ampace description in (5.8) and (5.9) was chosen
eirnce the translationel invariance is broken within {v} , and
only the energy, but not the momentum ia conserved in the scatte~
ring process (o.z., reflected by Ii(v‘(E«o-w,ﬁ; E, E+w)). Until
this point, no specific assumpiions have been made about the BS
interaction kernel I{”‘ except for its zero range {locality), To

get consistency with the LLA in the completely random varaion (cf,

the partially averaged form (4.1), (4.2), and the orderad caaa/23/)
i) _ {v\ .
Iy B= 6" e e, (5.10)
U‘l’
T{M(E]- (5.11)

1+ U% [ 6162 ()

1i

we bave to put for the irrsducible particle-hole vertex



IV e, Eprwl == TN E+E+ @)= -TPHE+Erw). (5.12)
N it
In (5.12) ihe contribution of O(T,*?) 1s neglected (cf. the
scheme given in /21/). By substituting the approximated 1% from
(5.12) into (5.8), and using (5.10) and the Dyson equation (see
(5.15)), we Tind

%G{‘:i(Bw)[w/\“ (E+w,E1-§)8, 2 (E+w,E) q')]G"” (E)
> (5.13a)
tiTR‘ ) 1} igR;
G‘a*( E)- (31,3.“(F.'ft.1]e'i Y
or
1] Fox R >
WAL (Eruf; 65 A,‘;(E wf;4) =60, (we‘— 4 6”’ (5.130)
o

{1}
where the site-diagonality of Ah;}mn(E+m,E;-&’) 8 N onlB+ @ ,Ej
“t
-q) & o, hae been taken into account, i
An anelogous procedure can be performed on the basis of (5.9)

ylelding

m}:ﬂaf;‘,(e)[m{% (€,E+u ;ql&m;A’,':;:(E,Ew-,q!]G P Erw)

(5.14a)
v, -1 3 -1 i\. »,
=6hee T - 6 e,
or
A (EE w,q)5 A (EE+ mc')‘ 1q’R‘Gm | (Er)- Gl (E}e:"ﬁﬁ?'
s (5.14b)

16



The Dyson squation uged in (5.13) and (5.14) reads

(6™ el = (E-e5)6, 1y - 1,17 (EIS; (5.15)

where the site-dlagonsl self-energy .. utid(E) obeys (5.,10).
From (5.13b) and (5.15), we have

ISR DWW RS RES SO Ea
L

(5.16)
. u . o
A1i-(E+w,E;—ql=ﬁ,{i(—q), (i#gl,
where A q 18 defined in (5.3),
Likewise, (5.14b) with (5.15) can be rewritten as

fv} -1 ﬁ{,

A‘ o e q)-Am(E Evud)= [t Liias (E)- b Esalle
(5.17)

Aﬂ”é(w,s-,qh R @, (g,

The equations {5.13), (5.14), (5.16), and (5.17) are random
modifications of the generalized Werd (or Ward-Tekehashl) identi~
ties (cf., e.2., /25/). Note that the scelar product gq -}{ 1(3)
could almo be used instead of the present /\ 1('q‘). Althougn
these Ward relations have been derived within a local acheme,
(5.13) and (5.14) remain valid evan generally {compare /8/), whe-
reas (5,16) and (5.17) are explicitly reatricted to the local ap-
proximation, Here it has been provsd that the randiom LLA satis-
fies the Ward relations; especielly, (5.16) and (5.17) impose
constraints on the partially averaged verticea, too.

As & oonsequence of (5.13a), (5.1), and (5.4) (or (5.14a), (5.1),

17



and (5,3)) the first moment equation hecomes

wx’ 1»; X:_{r}@"’)‘ﬁ‘%{ ey 4’:)) (5.18)

where the average number of Bpin O electrons at aite i is given
by niy e [y ¢V (E) within {3 . When the r.h.e. of (5.18)
doee not vanish, X += B and Y ;"{';! (notice the usual form
(i' -7[1) must have singular parts in the 1limit w — O, E—» 0, re-
fering to Goldstone~type modes.

The Ward reletion (5.13a) with (5.3} and (5.5) (or (5.14a)

with (5.,4) and (5,5)) lecds to the second moment equation

+—{»}

wt! g -g 1 G
R b T o (5.19)
_1 / gy A v 1q(Ry ! . _rle
-N[Z"%t{ Nogele e L NG E vl =~ Cy

- (-}
where the abbreviation CM ([ sh .2 qJ_a-]> follows from (2.6).
Then the combination of (5.18) and (5.19) gives (2.3).

6. STABILITY CONDITION., DAMPING OF THE SPIN WAVES,

The ferromagnetic ground astate can bs unstable against both
the collective excitations (epin waves) and the individual (Sto-
ner) excitations, In the long-wavelength region, especially, we
muat bring out the connection between the stability of the ground
state and spin waves,

At zero tempsrature, the spectiral representation of the trans-
verse susceptibility X += (qd,w) is given by

18
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"
i
¢
I
3
J

Mg ) = - =J_w _ﬁ“__‘*’__ ) (6.1)
(q wl= <S_,7 230y AT du w-w't 1ESgmw’ 1515'w

where the spectral density I"’;_ (w) within {»] takes the form
?

zw£1<mx5;|o>‘”’t25(m::+ ,  w<0
IM (m‘.‘= (6.2)

2rLIK0Is; 3" SW-0)  wa0.

Here m{ ”} 1y the excitation energy of the m-th eigenstate of
a7, lnd <ol 83 n)”! is the traneition element of s‘r bet~
ween the ground (0) and m-th state. Insertion of (6.2) into

(6.1) ylelds

2

(6.3)

51 101551 1F 1<miSE |o>‘”’f3}

4~ Vo -
A fq,u) mi m—ufn"oh e W +m:g— i€

X = ""}(a,w) in (6.3) involves both ,quesiparticle™ {(quasiboson;

and ynonquasiparticle™ contribntlons, i.2,, pole singularities

fron the states with lin w

(ﬂ

= 0 and cut singularities from
the atetes with @ ., > 0 in the limit q->0, respectively.
In other words, the magnon pole which we are interested in must -
be now separated from the Stoner continuum, Since S}_o is &
consarved quantity (of., (2.4)), the Stoner excitations have va-
nishing spectral weight for g— 0 /%, Thus, we can pick up from

(6.3) the spin wave for small q and W a8
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w -DMqZ+ iesign DB

,x+-(vl T o= -

- (q,m (6.4)

where the damping was neglected, The remidue in (6.4) is written
down only in the lowest order of q.

The stability condition of the ground etate can bs expreased
)

by ® o > 0. Consequently, the spectral representation {6.1)
oo

with (6.2) ytelds Im % *~™g,w) -3 Ioess

~q _f
ve the stability criterion we notice from (6.4) thet Im X ;01‘:3

(w) > 0, To achie-

]
- 2T 2. {s%) eign DM Slw- DMqE). Then by comparing += 0
N T i X

1
and X ;;]f:‘ , one concludes that the condition

A {}

D™ b 7 (OFTET b >0,
with A ] (6.5)

Di”}: 5 D = ,
~ %Z (&% )=t
ensures the stabllity of the ferromagratic ground state, while
$™ 0 asignifies instabilities induced by the spin wavea, Note
that the explicit form of D™ 1n (6.5) was derived in (2.5). By
irserting into (6.1) the spectral weight funmction 2Im X ;;J(_:](a.m)
- 1{5—[}:_ <3: >M | S(w - p™4%) based on the condition (6.5)
one recovers immediately (6.4). Another formulation of (6.4) with
8ign p®
The configuration average of the retarded susceptibility can

replaced by sign @ oan alac be chosen to get (6.5).

be written in speciral representation as

oq
_—r + am frd _ 1 Y a]’
x* (q,u\=‘<<$‘.‘. )S_;)w e 2w jdd Z%Is;s_f‘“"- (6.6)
%0 73



Especially, the spin-wave pole

pora 2458
X e (g0} =~ ;:’73;7::‘— 6.7)

)
involves the aversge magnetimation per site 2 { Si )u ) and the
atiffneas constant D introduced into (2.5). Notice that (6.7)

{
satisfies the sum rule [ 4L 1 pote(@iw) = 2 (s} )”’ o Wo
are then led to a comparison between In ,x_-'—r (f,w) = ! nign w

sfs-(w) and Im X Wl.(c‘i,m) - 2«.1((3') ) 8 (e - Dg?). It
holds I.s’ -(w) » 0 as a postulate for an averagad effective me-
{2
dium, too. Auuning <( S') ‘) >0 we obtain for w > O the ine-
quality D> 0 (for w < 0 we are left with the trivial result
{
I5 s; (w) » 0); putting s‘)P}c< 0 we £ind D <0 for ;<0
(roz- w>0 it results I + 53 (w ) = 0)., Thus the atability con-
dition is expremsed by )

A

P 5 TR +=rs __ D
D"qu },1_%]:_1:,’)(3 {q,w)>0) D-Z«STﬂ)c) (6.8a)

or, in the approximated form (3.10), as

M
n= -‘; ;[) -3-k;(ﬁm(ﬁio)—‘gm{E'*iO))z(V'_‘, s,i,)z > 0. (G.Bbl)
Bq, (6.8a) can also be obtained directly from (6,5) by averaging
configurationally.

ﬁ generalising the undamped case (6.7) we introduce the damping
3"‘1 of the collective mode by

»}
2455 y de

x (" ):- P wq+1-r-q

) (6.9)
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whers e " qu denotes the apin wave anergy. To determine T q
we neparate the real and imaginary parts in (2,3), and hence

1 + —\rishy 2 +— 6
T = v a3 -10)
Tq 2«517_')(\-\) I‘m<<q3 ﬂj_-q»u ﬂ z«sﬂt.i)&?uwlm 7.,3 (q,u)
c v =W, ,
=0, 1
where it can be proved that Ca defined in (2.6) is a real quan-
-1
tity, Hers small damping ( Taq < W q) is considered; Tq den-
cribes the lifetime of the spin waves. In the mecond part of (6.10)
we have used t‘h: relation Im ( & an'. qJ:a »“r{vi)c = sign « Im
+ - »
<« Wi a9y ), ) ¢ (wbeing real) and the definition (2.8).
A similar analysis as proposed in handling (3.1) can be carried
out for the imaginary part of X 3'(&’,&)). This means that vertex
corrections due to electron correlations will not appear (compare

the arguments leading from (3.3) to (3.6)), so that

QG w) = [2E (e @6 a6 e ) (6.11)

e )

which retains only the ,irreducidle” part of X J7(,w) from
(5.5) with (5.9). In the lowest o:der of q, eq. (6.11) can be re-
duced via (3.3) without CPA vertex correotions to

-2 =1 2(dE
X5 (= 0w= 35 :;(vi,a;) fz'w ’g?‘(Emﬂ“gﬁ(E)) (6.12)

where (g'k'a rcpn—nntl the causal coherent (reen function, From
{3.7) (and its analogue for W< 0) it Tesults

m
(- ,___1__ z . T . s .
Iy (q-O,w)—“N%(Vi,t;)s?ua:‘[:E Im‘jm(f ‘“‘I"‘gg,(ﬂ' (6.13)
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By expanding (6.13) to firat order of W we find

Im ’Xg_(q =0wl= Z(V E)mSAﬂrn.wImﬂg ([J.llmﬁ (P.] (6.14)

The combination of (6.10) and (6.13) providea the low'gat order

description of the damping

(Ll err(n nJ)DqHNZI““g (H)Im‘g ([L)(VE) (6.15)

The same expression was found in the CPA-RPA by Fukuyama 715/ « The
damping is caused by impurity scattering (Im‘g Eu(‘u }60) including
here electron~-electron scatterings as & generalization of the treat-
ment /15/ It holds ’xqio in the stable cass (6.8); espscially Tq

venishes for saturated ferromagnets in O(q‘).

7. CONCLUSION

The present derivation of a renormalized spin wave spectrum of
disordered alloys assumes the locality of the effective four-leg ver-
tex originated by the random intra-atomio interaction. The phyaical
content is confirmed by a stablility criterion, amall demping, and
the fulfillment of Ward identities., According to the horisontal lad-
der spproximation the result for the etiffness constant can be ju-
stified for strong correlations and small electron (or hole) aena.i-
ties; it may therefore be applied, e.g., to Ni and some Ni-based al-
loys. The present scheme is appropriate to nmumeriocal calculations,

as will be shown in & subsequent paper.
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