СООБЩЕНИЯ ОБЪЕАИНЕННОГО ИНСТИТУТА ЯАЕРНЫХ ИССАЕАОВАНИЙ

АУБНА

E17-11771

$$
4937 / 2-78
$$

E.Kolley, W.Kolley

ON THE SPIN WAVE THEORY
OF DISORDERED ITINERANT-ELECTRON
FERROMAGNETS

E17-11771

E.Kolley, W.Kolley

ON THE SPIN WAVE THEORY
OF DISORDERED ITINERANT-ELECTRON FERROMAGNETS

КоплеА Е., Колле月̆ В.

> O спнн-волновой теории неупорядоченных ферромагнетиков с деловалнзованнымя электронами

Ферромагнитныа спнновые волны в неупорядоченных сплавах получены прн нулевои температуре на основе михроскопического ферми-жндхостного описания делокализованных электронов. Козффыинент жесткости спиновых волн перенормирован в рамкак мопелн Хаббарда со случайным парамөтра мн с ислольаованием когерентного локального лөстничного приближения а канале пастица-частиша. Рассмотрены тождества Уорде, условне устой чивостн и аатухания магновов. Настоящий подход справедлив дли систем с снльной хоррелиией зпехтронов н малсй кониедтреиией носитепеи.

Работа вылолнена в Пабораторнн теоретнчесхой фнавкн ОМЯИ.

Cообщенве Объеднвенвого института ядерных исследованви. Дубна 1878

Kolley E., Kolley W.
E17-11771

On the Spin Wave Theory of Disordered Itinerant-Electron Ferromagnets

Ferromagnetic spin waves in disordered alloys are derived at zero temperature from a microscopic Fermi liquid description of itinerant electrons. The spin wave stiffness constant is renomalized within the random Hubbard madel bysing the coherent local ladder approximation in the particle-particle channel. Ward identities, the stability condition, and magnon damping are investigated. The present scheme is valid for systems with strong electron correlations and small carrier concentrations.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joins Institute for Nuelear Ressarch. Dubna 1978

1. INTRODUCTION

The apin wave excitations in ferromagnetic tranaition metala and their alloys are affected by the degree of itinerancy of the d-electron byetem. Such a problem can be described by the flubbard Hamiltonian /1/ being rotationaliy invariant in the apin epace. Hence in the long-wavelength region one can extract, in principle from the "broken symetry" /2/, a gapless spectrum $\omega_{q}=D_{q}{ }^{2}$ ($q_{\text {: }}$ wave vector, D_{i} spin wave stiffness constant) while single-particle (Stoner) excitatione remain finite in energy. In particuiar, D ia connected with the tability of the ferromegnetic ground atate egaingt the low-iying collective moder.

Correlation offects onter into the tiffness conntant D, An explicit expreasion for D in terna of the traneverse apin-current autocorrelation function wal given by Bdwarde and Pioher $/ 3 /$.

Approrimation for deriving the magnon epectron of itineranteleotrion ferromagneta have been perforned in the following directions:
(1) For pure eyntems the bala work $/ 4 /$ wan done in the rundonphase approximation (RPA). The apin wave theorien beyond
the RPA involve, e.g., perturbative corrections to the RPA spectrum /5/, the T-matrix approximation $/ 6,7 /$, and diagram analyais guided by the Ward relations $/ 8,9 /$; compare also $/ 10 /$ and the sum-rule approach /11/.
(ii) For disordered ayatems the configurational average can be carried out within the coherent potential approximetion (CPA) /12/. The CPA-RPA troatments $/ 13$ to $17 /$ (without CPA aee (18/) of eubstitutionaliy disordered alloys are based on the Hartree-Fock (HF) approximation which completely neglects spin fluctuations. A RPA decoupling acheme was given in /19/.

In the present paper we choose a microscopic Fermi liquid approach at zero temperature (cf. /20,21/) to derive the apin wave onergy of disordered alloye in the random Hubbard model. The etiffness constant D is renormalized by the coherent ladder approximetion /22/, i.e., the self-consistent combination of the CPA and the local ladder approximation (JLA) /23/.
2. SPIN WAVE STIPYNESS COMSTANT AND BETHE-SALPETRR EQUATION

The itinarant-electron ayatem in disordered $A_{c} B_{1-c}$ alloys can be desoribed by the random Hubbard Hamiltonian (cf. /1/)

$$
\begin{equation*}
H^{[\nu]}=\sum_{\substack{i j \sigma \\(i+j)}} t_{i j} c_{i \sigma}^{+} c_{j \sigma}+\sum_{i \sigma} \varepsilon_{i}^{\nu} n_{i \sigma}+\sum_{i} U_{i}^{\nu} n_{i \uparrow} n_{i 4}=H_{\Delta}^{\{\nu\}}+H_{U}^{\{\nu\}}, \tag{2.1}
\end{equation*}
$$

where $c_{1 \sigma}^{+}\left(o_{1 \sigma}\right)$ is the creation (annihilation) operator for a opin σ electron in the Wannier etate at lattice aite 1, and $n_{i \sigma}=c_{1 \sigma}^{+} c_{i \sigma}$. Within the whole configuretion $\{\nu\}$ the stomio onergy E_{i}^{ν} and the intra-atomic Coulomb ropulaion $U_{i}^{\prime \nu}$ take the random
velues ε^{ν} and $\sigma^{\nu}(\nu=A, B)$, respectively, eccording to whether an A - or B-atom occupies the aite 1 . The hopping integrals $t_{i j}$ are assumed to be independent of the atomio arrangement. The model (2.1) belongs to the clabs of exchange Hamiltoniang, because $H^{[\nu]}$ commutes with the total epin. Por the interaction part, this rotational invariance in the epin space can be expresead by $H_{U}^{\{\nu]}=\sum_{i} U_{i}^{2 \prime} n_{1 \dagger} n_{i \downarrow}=\frac{1}{2} \sum_{i \sigma} U_{i}^{2 \nu} n_{1 \sigma}-\frac{2}{3} \sum_{i} U_{i}^{\nu} \vec{S}_{i} \cdot \vec{s}_{i} \quad\left(\vec{S}_{i}:\right.$ 10cal apin. density operator). Such a form refers to the posaibility of collective modes.

Let us introduce the transverse susceptibility (causal spindensity responge function) at zero temperature as

$$
\begin{equation*}
X^{+-\{\nu \mid}(\vec{q}, \omega)=-\left\langle\left\langle S_{q}^{+}, S_{-\vec{q}}^{-}\right\rangle\right\rangle_{\omega}^{\{\nu\}}=i \int d t e^{i \omega t}\left\langle T S_{q}^{+}(t) S_{q}^{-}(0)\right\rangle^{\{\nu \mid}, \tag{2.2}
\end{equation*}
$$

where $S_{\vec{q}}^{+}=\frac{1}{\sqrt{N}} \sum_{i} c_{i+1}^{+} c_{1} e^{-i \vec{q} \vec{R}_{i}}$ and $S_{-\vec{q}}^{-}=\left(S_{\vec{q}}^{+}\right)^{+}, \vec{R}_{i}$ is the position vector of site 1 , and $\langle\ldots\rangle^{\{\nu]}$ means the ground- state expectation value \quad ithin $\{\nu\}$. Here $\chi^{+-\{\nu\}}(\vec{q}, \omega)$ reflects the linear reaponse to an external rotating magnetic field (rf) $H_{i}^{+}=H_{i}^{X}(t)$ $+1 H_{i}^{y}(t)=H^{+}(\vec{q}, \omega) e^{i\left(\vec{q} \vec{R}_{i}-\omega t\right)}$ applied perpendicular to the direction of epontaneous magnetizetion (s-axis); 1.0 ., the net transverse magnetization is given by $\left\langle\mathbf{u}^{+}(\vec{q}, \omega)\right\rangle^{\{\nu\}}=\chi^{+-\{\nu\}}(\vec{q}, \omega\} H^{+}(\underline{q}, \omega)$, where $\Psi_{Q}^{+}=2 \mu_{B} S_{\text {de }}^{+}$. Note that the factor $2 \mu_{B}^{2} \quad\left(\mu_{B}\right.$ Bohr magneton) is omitted in (2.2). By exploiting the time-reversal invariance, one finde from the equation of motion that
$\left.\left.\omega^{2} \chi^{+-\{\nu\}}(\vec{q}, \omega)=-\left[\omega \frac{1}{N} \sum_{i} 2\left\langle S_{i}^{z}\right\rangle^{\{\nu\}}+\left\langle\left[S_{\vec{q}}^{+}, q J_{\vec{q}}^{-}\right]\right\rangle^{\{\nu]}+\langle q]_{\vec{q}}^{+}, q J_{-q}^{-}\right\rangle\right\rangle_{\omega}^{[\nu]}\right]$,

Where $S_{i}^{\text {E }}-\frac{1}{2}\left(n_{1+}-n_{1 \downarrow}\right)$, and the tranevere epin current opermtor $J_{\vec{q}}^{+}$(or $\left.J_{-q}^{-}-\left(J_{\mathbb{q}}^{+}\right)^{+}\right)$takes the nonrendom form

$$
\begin{align*}
q J_{\vec{q}}^{+}=\left[S_{\vec{q}}^{+}, H^{[\nu j}\right] & =\frac{1}{\sqrt{N}} \sum_{i j} t_{i j}\left(e^{-\vec{q} \vec{r}_{i}}-e^{-i \vec{q} \vec{k}_{i}}\right) c_{i+}^{+} c_{j+} \tag{2.4}\\
& =\frac{1}{\sqrt{N}} \sum_{\vec{k}}\left(\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}\right) c_{\vec{k} t}^{+} c_{\vec{k}+\vec{q}+}
\end{align*}
$$

In the limit $q \rightarrow 0$ the "ronquasiparticie" contribution $/ 24 /$ to $\chi^{+\infty}|\nu|(\vec{q}, \omega)$ is identically zero, because s_{q}^{+}is a quasiintegral of motion.

The definition of the apin wave stiffnese constant D requires en explicit pole aneats $\chi_{\text {pole }}^{+\infty}(\vec{q}, \omega)=\frac{\left.-2\left\langle S_{i}^{2}\right\rangle^{(\nu)}\right\rangle_{c}}{\omega-D q^{2}}$, being valid for amall ω and q (here the imaginary part of the cauasl respones is suppressed). $\chi_{\text {pole }}^{+-}(\vec{q}, \omega)$ is a pole part of $\chi^{+-}(\vec{q}, \omega)$ $=\left\langle\chi^{+-\{0\}^{*}}(\dot{q}, \omega)\right\rangle_{c}$, where $\langle\ldots\rangle_{c}$ denotes the configuration average. Hote that $\left\langle\left\langle S_{1}^{2}\right\rangle^{\{\nu\}}\right\rangle_{c}$ is Independent of site 1 . Thus, one cen extract D via the preacrigtion

$$
\begin{align*}
D & =-\frac{1}{2\left\{\left\langle S_{i}^{2}\right)^{[\mid]}\right\rangle_{c}} \lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0}\left[\frac{\omega^{2}}{q^{2}}\left(\chi^{+-}(\vec{q}, \omega)+\frac{\left.2\left\langle S_{i}^{2}\right\rangle^{[\nu]}\right)_{c}}{\omega}\right)\right] \tag{2.5}\\
& \left.=\frac{1}{2\left\langle\left\langle S_{i}^{2}\right\rangle^{[\nu]}\right\rangle_{c}}\left[\lim _{q \rightarrow 0} \frac{1}{q^{2}}\left\langle\left[S_{\vec{q}}^{+}, q J_{\vec{q}}^{-}\right]\right\rangle^{[\nu]}\right\rangle_{c}-\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} \chi_{J}^{+-}(\vec{q}, \omega)\right],
\end{align*}
$$

where $2\left\langle\left\langle S_{1}^{B}\right\rangle^{\{\mu\}}\right\rangle_{c}=\left(n_{\uparrow}-n_{\downarrow}\right)$ is the magnetization per eite (n_{0} : everage number of σ electrons per site) and $X_{J}^{+-}(\vec{q}, \omega)=$
 tion function. Such a relation between D and $\chi_{J}^{+\quad}$ was derived in $/ 3 /$ for pure aytioms, and applied to alloys by Eill and Edwarde /14/. Whereas D followe exactly from $\chi \underset{\text { pole }}{+-}(\vec{q}, \omega)$, the pole ansats involves indeed an approximation; for i.vetance a generalized RPA leade to $\chi^{+\cdots}(\vec{q}, \omega)=Z(\vec{q}, \omega) / \Delta(\vec{q}, \omega)$, where Ho $\Delta\left(\vec{q}, \omega_{q}\right)=0$ gives the mpin wave mpeotrum $\omega_{q}=D q^{2}$.

Bxplioitly, the oomatator in (2.5) beoomen

$$
\begin{align*}
& \left.=\frac{1}{N} \sum_{\vec{k}}\left\{\left(\varepsilon_{\vec{k} \cdot \vec{q}}-\varepsilon_{\vec{k}}\right)\left(n_{\vec{k}+\dagger}\right\rangle^{|v|}\right\rangle_{c}+\left(\varepsilon_{\vec{k}-\vec{q}}-\varepsilon_{\vec{k}}\right)\left\langle\left(n_{\vec{k}+\downarrow}\right)^{[v]}\right\rangle_{C}\right\} \text {. } \tag{2.6}
\end{align*}
$$

By employing the cubic symmetry hereafter one obtains

$$
\begin{equation*}
\left.\lim _{q \rightarrow 0} \frac{C_{\vec{q}}}{q^{2}}=-\frac{1}{6 N} \sum_{i j \sigma} t_{i j}\left(\vec{R}_{i}-\vec{R}_{j}\right)^{2}\left(c_{i \sigma}^{+} c_{j \sigma}\right)^{\{\nu\}}\right\rangle_{C}=\frac{1}{6 N} \sum_{\vec{k} \sigma}\left(\nabla_{k}^{2} \varepsilon_{k}\right)\left\langle\left\langle n_{\vec{k} \sigma}\right\rangle^{\{\nu\}}\right\rangle_{C} \tag{2.7}
\end{equation*}
$$

since no term to order q contributes to $C_{\vec{q}}$ in (2.6) due to timereversal invariance. The limiting procedure in
leads to

$$
\begin{align*}
& \lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} X_{0}^{+-}(\vec{q}, \omega)=-\frac{1}{3 N} \sum_{i ; \frac{j}{m}} \vec{i}_{i i} \cdot \vec{j}_{m n}\left\langle\left\langle\left\langle c_{i+}^{+} c_{j+}, c_{m+}^{+} c_{n+}\right\rangle\right\rangle_{\omega+0}^{|n\rangle}\right\rangle_{c} \tag{2.9}
\end{align*}
$$

Now we give a way of attacking the correlation problem by means of the Bethe-Salpeter (BS) equation. Let us express the spin current-apin current response (2.8) in terms of the causal twoparticle correlation function $L^{\{\nu\}}$ through

$$
\begin{equation*}
\left\langle\left\langle c_{i \uparrow}^{+} c_{j \psi\rangle} c_{m \psi}^{+} c_{n+}\right\rangle_{\omega}^{\{\nu\}}=i \int \frac{d E d E^{\prime}}{(2 \pi)^{2}} L_{j \nmid j \uparrow+\psi}^{\{n i m}\left(E, E^{\prime} ; E-\omega, E^{\prime}+\omega\right)\right. \tag{2.10}
\end{equation*}
$$

According to /20/, $L^{\{\nu\}}$ satiefios a BS-type equation

$$
\begin{align*}
& \left.-\sum_{c} G_{j l t}^{\{\nu]}(E) G_{l i t}^{\{\nu\}}(E-\omega)\right] \frac{d \bar{E}}{2 \pi} i I_{l+1 t}^{\{\nu\}}(E, E-\omega ;-\omega) L_{\substack{l+f(j)}}^{\{\nu\}}\left(\bar{E}, E_{i}^{\prime},-\omega\right), \tag{2,11}
\end{align*}
$$

where the energy trangfor ω is abbreviated by, e.g. : $L^{[2]}\left(E_{2} E^{\prime}\right.$; $\left.E-\omega, E^{\prime}+\omega\right)=L^{(\gamma)}\left(E, E^{\prime} ;-Q^{\prime}\right)$. Note that only the spin-disgonal one-particle (causal) Green functions $G^{\{\nu\}}$ are taken into account in (2.10) and (2.11); correspondingly, the mean value of the traneverge apin current vanishes. The ebsential asaumption in (2,11) consiate in retaining only aite-diagonal elements of the irreducible particle-hole vertex $I_{f_{\uparrow+\downarrow}}^{\{\sim\}}$; for instance a local ladder approximation fits to this acheme. The choice of the kernel for the spin-flip response in (2.11) involves only spin-tranaverae componente of $I_{1}^{\{\mu\}}$ on account of the Pauli principle.

Analogouely, we have

$$
\begin{equation*}
\chi^{+-\{\nu)}(\vec{q}, \omega)=-\frac{i}{N} \sum_{i j} \int \frac{d E d E^{\prime}}{(2 \pi)^{\prime 2}}{ }_{i j+i j}^{(\nu)}\left(E, E^{\prime} ; E-\omega, E^{\prime}+\omega\right) e^{-i \vec{i}\left(\vec{R}_{i}-\vec{R}_{j}\right)} . \tag{2,12}
\end{equation*}
$$

Since the ferromagnetic state is apecified by $\sum_{i} \sum_{i}\left\langle s_{1}^{5}\right\rangle^{\{\nu\}} \neq 0$, (2.12) inplies that $\left\langle s_{1}^{ \pm+}\right\rangle^{\{\nu \mid}=\left\langle c_{\substack{1 \uparrow \\(t)}}^{c_{(\uparrow)}}\right\rangle^{(\nu)}=0$.
3. EVALUATION OF THE TRARSVERSE SPIE CURRENI-SPIN CURRENT RESPONSE

Hoxt wo diacuse within local approxination the renorialisetion of the atiffness constant D in the prasence of disorder. Let ue introduce the trandveree upin ourrent vortex $\vec{\Lambda}_{\downarrow}^{\{2\}}$ by (oompare

$$
\begin{align*}
& (2.8) \text { and }(2.9)) \\
& \left.X_{j}^{+-}(\vec{q}=0, \omega)=\frac{i}{3 N} \int \frac{d E}{2 \pi}\left\langle\operatorname{tr}\left\{\vec{j} G_{\uparrow}^{[\omega]}(E+\omega) \vec{\Lambda}_{\downarrow p}^{[\nu\}}(E+\omega, E) G_{\uparrow}^{\{\omega]}(E)\right\}\right\rangle_{C}\right) \tag{3.1}
\end{align*}
$$

Where the trace means the summation (Without spin) over one-particle states; \vec{j} and $\vec{\Lambda}_{\nmid \uparrow}^{\{\sim\}}$ are understood to form a scalar product. On combining (2.9), (2.10), (2.11) and (3.1) one derives the integral equation for the effective spin-filp current as

$$
\begin{equation*}
\vec{\Lambda}_{i j}^{[\nu]}(E+\omega, E)=\vec{j}_{i j}-\delta_{i j} i \int \frac{d E}{2 \pi} I_{i+t \downarrow}^{\{\nu i}(E+\omega, \bar{E} ;-\omega) \sum G_{m \pi}^{\{\nu\}}(E+\omega) \overrightarrow{\Lambda_{i n t}^{i \nu]}}(\bar{E}+\omega, E) G_{i \uparrow}^{[\nu]}(\vec{E}) \tag{3,2}
\end{equation*}
$$

Separating diagonal and off-diagonal elements of $\vec{\Lambda}_{\downarrow t}^{(\nu)}$ in (3.1) we get

$$
\begin{equation*}
\gamma_{3}^{+-}(\vec{q}=0, \omega)=\frac{i}{3 N} \int \frac{d E}{2 \pi}\left\langle t_{r}\left\{\vec{j} G_{\downarrow}^{\{\nu\}}(E+\omega) \vec{j} G_{\uparrow}^{\{\omega\}}(E)\right\}\right\rangle_{C}+\tilde{\chi}_{J}^{+-}(\vec{q}=0, \omega) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\chi}_{J}^{+-}(\vec{q}=0, \omega)=\frac{i}{3 N}\left[\frac{d E}{2 \pi}\left\langle\sum_{i} \vec{K}_{i i}^{\{\nu\}}(E, E+\omega) \cdot \vec{\Lambda}_{i i}^{\{\nu\}}(E+\omega, E)\right\rangle_{c},\right. \tag{3.4}\\
& \vec{K}_{\substack{i i}}^{\{p]}(E, E+\omega)=\sum_{m n} G_{i m i}^{\{\nu\}}(E) \vec{j}_{m n} G_{n i i}^{\{\nu\}}(E+\omega) \tag{3.5}
\end{align*}
$$

As it was argued in $/ 20 /$, the problem of averaging configure tionally in (3.4) ia beyond the CPA; therefore, we proceed with the factorization $\left\langle\vec{K}^{\{\nu]} \vec{\Lambda}^{[\nu\}}\right\rangle_{e}=\left\langle\vec{K}^{\{\nu\}}\right\rangle_{c}\left\langle\vec{\Lambda}^{\{\nu\}}\right\rangle_{e}$ - From (3.5) we obtain the cPa result

$$
\begin{gather*}
\vec{K}_{+\downarrow}\left(z_{1}, z_{2}\right)=\left\langle G_{\uparrow}^{\{v\}}\left(z_{1}\right) \vec{j} G_{l}^{\{v]}\left(z_{2}\right)\right\rangle_{c i i}=\frac{1}{N} \sum_{\vec{k}} \varphi_{\vec{i} i}\left(z_{4}\right) \varphi_{\vec{k} t}\left(z_{2}\right) \nabla_{k} \varepsilon_{i=}=0 \tag{3.6}\\
\tilde{\chi}_{\mathrm{j}}^{+-}(\vec{q}=0, \omega)=0
\end{gather*}
$$

that tende to sero due to time-reversal eymatry /12/. The subacript " ${ }^{1 i n}$ means taking the aite-diagonal slement aftor averaging. $\mathscr{y}_{\vec{k} \sigma}(z)$ denotes the CPA averaged Green function renormalized by correlations (see below). For the ordered case a similar proof yields immediately $\tilde{\chi}_{J}^{+-}(\vec{q}=0, \omega)$. Honct, in the local approximation, $X_{J}^{+-}(\vec{q}=0, \omega)$ ia equal to its irreducible part (cf., for a gas with short-range interactiona/5/).

Going over from the causal Green functions in (3.3) to the advenced n^{-n} and retarded $n^{r^{n}}$ ones and subutituting ihe CPA result for diagonal disorder $\left\langle t r\left\{\vec{j} G_{+}^{[p]}\left(z_{1}\right) \vec{j} G_{\uparrow}^{|n|}\left(z_{2}\right)\right\}\right\rangle_{0}=\sum_{\vec{k}} \varphi_{\vec{k}} \vec{k}^{2}\left(z_{1}\right)$ $\varphi_{\vec{k} f}\left(z_{2}\right)\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}$ we can write
$X_{J}^{+-(\vec{q}=0, \omega)}=\frac{i}{3 N} \sum_{\vec{k}}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)_{-\infty}^{2} \int_{-\infty}^{\infty} \frac{d E}{2 \pi}\left[f(E+\omega) \varphi_{\vec{k} t}^{a}(E+\omega) \varphi_{\vec{k} t}^{a}(E)-f(E) \varphi_{\vec{k} t}^{r}(E+\omega) \varphi_{y_{\vec{k}}}^{r}(E)\right.$

$$
\begin{equation*}
\left.+(f(E)-f(E+\omega)) \varphi_{\vec{k} t}^{T}(E+\omega) \xi_{\vec{k} t}^{\alpha}(E)\right], \omega \geq 0 \tag{3.7}
\end{equation*}
$$

where $f(E)=\theta(\mu-E)$ is the Permi function with μ being the chemical potential. The limit $\omega \rightarrow 0$ in (3.7) yiolds
$\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} X_{J}^{+-}(\vec{q}, \omega)=\frac{2}{3 N_{\vec{k}}} \sum_{\vec{k}}\left(\nabla_{\vec{k}} \epsilon_{\vec{k}}\right)^{2} \int_{-\infty}^{\mu} \frac{d E}{2 \pi} \operatorname{Im}\left\{\zeta_{\vec{k} t}^{r}(E) \zeta_{\vec{k},}^{r}(E)\right\}$.
From (2.7), it follows the averaged expreseion

$$
\begin{equation*}
\lim _{q \rightarrow 0} \frac{C_{\vec{q}}}{q^{2}}=-\frac{1}{6 \pi N} \sum_{\vec{k} \in}\left(\nabla_{\vec{k}}^{2} \varepsilon_{\vec{k}}\right)_{-\infty}^{\mu} d E I_{m} \zeta_{\vec{k} \sigma}^{r}(E), \tag{3.9}
\end{equation*}
$$

which can bo rewrititen by $\sum_{\vec{k}} \varphi_{\vec{E} \sigma}(z)\left(\nabla \vec{k} \varepsilon_{\vec{k}}\right)=-\sum_{k} \varphi_{\vec{k} \sigma}^{2}(z)\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}$ provided that $\mathcal{Y}_{\vec{k} \sigma}(\varepsilon)$ depande on \vec{k} only via $E(\vec{k})$ (see section 4).

Pinally, by insorting (3.9) and (3.8) into (2.5) we arrive at

$$
\begin{equation*}
D=\frac{1}{6 \pi\left(n_{t}-n\right)} I_{-} \int_{-\infty}^{\mu} d E \frac{1}{N} \sum_{\vec{k}}\left(\zeta_{\vec{k} t}(E, i 0)-\zeta_{\vec{k} t}(E+i 0)\right)^{2}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2} . \tag{3.10}
\end{equation*}
$$

This result agrees formally with D obtained in the GPA-RPA scheme $/ 13.14,17 /$ based on the HP approximation. However, in contrast to $/ 13,14,17 /$. $\mathscr{G}_{\mathbf{F}_{\sigma}}(2)$ is dressed velf-consiatently in the framework of the coherent LLA, as will be outlined in the following.
4. COHERENT LOCAL LADDER APPROXTMATION

Assume a local approximation for the multiple scatterings in the particle-particle channel given in tex me of conditionally averaged causal functions by $/ 21,22 /$

$$
\begin{align*}
& \sum_{U_{i i \sigma}}^{\nu}(E)=\int \frac{d E^{\prime}}{2 \pi i} G_{i i-\alpha}^{\nu}\left(E^{\prime}\right) T_{i}^{\nu}\left(E+E^{\prime}\right), \tag{4.1}\\
& T_{i}^{\nu}(E)=\frac{(\nu=A, B)}{1+U_{i}^{\nu} \int \frac{d E^{\prime}}{2 \pi i} \frac{U_{i}^{\nu}}{G_{i i \sigma}^{\nu}}\left(E^{\prime}\right) G_{i i-\sigma}^{\nu}\left(E-E^{\prime}\right)}, \tag{4.2}
\end{align*}
$$

where $T_{i}^{\prime \prime}=T_{i-\sigma \sigma-g}^{\nu}$ is the effective two-particle rertex. The local Green function $G_{i j \sigma}^{\sim}(x)$ written es resolvent is renormalized by

$$
\begin{align*}
& G_{i i \sigma}^{p}(z)=\frac{F_{\sigma}(z)}{1-\left(\tilde{E}_{i \sigma}^{p}(z)-\Sigma_{\sigma}(z)\right) F_{\sigma}} \overline{(z)}, \tag{4.3}\\
& \tilde{\varepsilon}_{i \sigma}^{v}(z)=\varepsilon_{i}^{\nu}+\Sigma_{U i i \sigma}^{\nu}(z) \tag{4,4}
\end{align*}
$$

$$
\begin{align*}
& F_{\sigma}(z)=\frac{1}{N} \sum_{\vec{k}} \varphi_{\vec{k} \sigma}(z) \tag{4.5}\\
& \varphi_{\vec{k} \sigma}(z)=\left(z-\varepsilon_{\vec{k}}-\sum_{\sigma}(z)\right)^{-1} \tag{4.6}
\end{align*}
$$

$$
\begin{equation*}
\sum_{\sigma}(z)=c \tilde{\varepsilon}_{\sigma}^{A}(z)+(1-c) \tilde{\varepsilon}_{\sigma}^{B}(z)-\left[\tilde{\varepsilon}_{\sigma}^{A}(z)-\sum_{\sigma}(z)\right] F_{\sigma}(z)\left[\tilde{\varepsilon}_{\sigma}^{B}(z)-\sum_{\sigma}(z)\right] \tag{4.7}
\end{equation*}
$$

Here Σ_{σ} is the coherent potential atisfying the single-site CPA condition (4.7), $\varphi \vec{k} \sigma$ is the totally averaged Green function entering into the stiffneas formula (3.10). Contrary to the raval CPA $/ 12 /$, the atomic potential $\widetilde{\varepsilon}_{i \sigma}^{p}(s)$ (i is dropped in (4.7)) becomes onergy-dependent through the self-onergy $\sum_{\text {Uidf }}^{\nu}(s)$ caused by correlations. The et of aelf-consiatent equations is closed by

$$
\begin{equation*}
n=\sum_{\sigma} n_{\sigma}=-\frac{1}{\pi} \sum_{\sigma} \int_{-\infty}^{\mu} d E \operatorname{Im} F_{\sigma}(E+i 0) \tag{4.8}
\end{equation*}
$$

where n is the average number of electrons per aite. Note that n_{σ} in (3.10) is calculated from (4.8).

For a pure syitem (1.0 ., $\sum_{\text {Uiio }^{D} \overrightarrow{c \rightarrow 0}} \sum_{U \sigma}$) we get

$$
\begin{equation*}
G_{i i \sigma}(z) \equiv F_{\sigma}(z)=\frac{1}{N} \sum_{\vec{k}}\left[z-\varepsilon_{\vec{k}}-\sum_{U \sigma}(z)\right]^{-1}, \tag{4.9}
\end{equation*}
$$

and the correlation problem must be now solved from (4.1), (4.2), (4.8), and (4.9).

In the Hartree-Fock approximation only the CPA problem from (4.3) to (4.8) is retained whioh is complated by the contant self-energy $\sum_{\text {Uif }}^{\nu}=U_{i}^{\nu} n_{i-\sigma}^{\nu}$, where $n_{1 \sigma}^{\nu}$ is the everage eleotron number with apin σ at ν sites given by

$$
\begin{equation*}
n_{i \sigma}^{\nu}=-\frac{1}{\pi} \int_{-\infty}^{\mu} d E \operatorname{Im} G_{i i \sigma}^{\nu}(E+i 0) \tag{4.10}
\end{equation*}
$$

5. EFFFBGTIVE VERTICES AND WARD IDEETITIES

In proof of the gauge invariance of transverse ausceptibilities In the ferromagnetic phase we are looking for the Ward identities compatible with the continuity equation. Working within an arbitrary configuration $\{\because\}$ we derive relations between effective epinflip vertices. The special case of the ordered system is involved, too.

Prom (2.2) and (2.12) one can define (of. (3.1)) the effective vortices $\Lambda_{o}^{[\nu]}$ of the apin-flip denalty by

$$
\begin{align*}
& \chi^{+-\{\nu\rangle}(\vec{q}, \omega)=-\left\langle S_{\vec{q}}^{+}, S_{-\vec{q}}^{-}\right\rangle_{\omega}^{\{p]}=\frac{i}{N} \int \frac{d E}{2 \pi} \operatorname{tr}\left\{\lambda_{0}(\vec{q}) G_{\psi}^{\{\nu\}}(E+\omega) M_{\alpha d r}^{\{\nu]}(E+\omega, E ;-\vec{q}) G_{\psi}^{\{p\}}(E)\right\} \\
& =\frac{i}{N} \int \frac{d E}{2 \pi} \operatorname{tr}\left\{\Lambda_{\text {oft }}^{[\nu\}}(E, E+\omega ; \vec{q}] G_{\psi}^{\{\nu\}}(E+\omega) \lambda_{0}(-\vec{q}) G_{\uparrow}^{\{\nu\}}(E)\right\}, \tag{5.1}\\
& \left.\lambda_{0 i j}(\vec{q})=\lambda_{0 i}(\vec{q}) \delta_{i j}=e^{-i \vec{q} \vec{R}_{i}} \delta_{i j}\right)
\end{align*}
$$

Where in getting the eecond line we have used the bymetry relation

$$
\begin{equation*}
L_{\substack{n i+j}}^{[\nu]}\left(E, E_{;}^{\prime}-\omega\right)=L_{\substack{n j \\ i j_{i \uparrow}^{m i}}}^{[\nu]}\left(E^{\prime}, E_{;} ; \omega\right) \tag{5.2}
\end{equation*}
$$

By comparing the gs equation (2.19) with the analogua for $L_{f+4 \uparrow}^{[2]}$
 Hote thet (2.12) with (5.2) leade, in term of onual frnotiona, to $\chi^{+\infty\{\sim\}}(\vec{q}, \omega)=\chi^{-+\{p\}}\left(-\vec{q}_{0}-\omega\right)$.

Now we introduce on the basis of (2.4) and (5.2) the effective spin-flip current $\Lambda_{1}^{\{\rho\}}$ through

$$
\begin{align*}
& \lambda_{i i j}(\vec{q})=t_{i j}\left(e^{-i \vec{q} \vec{R}_{i}}-e^{-i \not \vec{q}_{j}}\right) . \tag{5.3}
\end{align*}
$$

Another version of (5.3) mediated by the time-reversal symmetry is

In place of (2.8) w ne finds with (2.10) and (5.2) the oxpressions

$$
\begin{align*}
& =-\frac{i}{N} \int \frac{d E_{t}}{2 \pi} \operatorname{tr}_{r}\left\{\Lambda_{1+\alpha}^{[\mu]}(E, E+\omega ; \eta) G_{i}^{[2]}(E+\omega] \lambda_{1}\left(-\vec{q} \mid G_{4}^{[2]}(E)\right\} .\right. \tag{5.5}
\end{align*}
$$

The definitions of the effective vertices $\Lambda_{o c h t}^{\{\nu \zeta\}}$ and $\Lambda_{\alpha \uparrow \psi}^{\{r\}}$ ($\alpha=0.1$), respectively, involved into (5.1), (5.3), (5.4) and (5.5) ere quoted as
and

By inserting (5.6) into (2.11) one verifies that

$$
\begin{align*}
& \Lambda_{\alpha \dot{a j}}^{i n i}(E+\omega, E ;-\vec{q})=\lambda_{a i j}(-\vec{q}) \tag{5.8}
\end{align*}
$$

At $\vec{q}=0$ eq. (5.8) for $\alpha=1$ and the firgt ling of (5.5) after avaraging are in agraement with (3.2) and (3.1), respectivaly. Cn the other hand, the BS equation for $L_{\{\downarrow \downarrow \uparrow}^{\{\mu\}}(c f .(2.11!)$ and (5.7) give pire to
$\Lambda_{\alpha i j}^{[\nu]}\left(E_{1} E+\omega ; \vec{q}\right)=\lambda_{\alpha i j}(\vec{q})$

Formally, (5.9) goes over into (5.8) by replacing $\omega \rightarrow-\omega$, $\vec{q} \rightarrow \vec{q}$, and $\uparrow \downarrow \rightarrow \downarrow \uparrow$.

The lattioenapace description in (5.8) and (5.9) was chosen aince the tranalationel invariance is broken within $\{2\}$, and only the onerey, but not the momentum is conserved in the scattem ring process ($0 . \mathrm{B} .$, roflected by $I_{i}{ }^{[2]}(\mathrm{E}+\omega, \overline{\mathrm{E}} ; \mathrm{E}, \mathrm{E}+\omega$)). Until this point, no apecific assumptions have been made about the BS intoraction kernel $I^{\{2]}$ except for its zero range (locality). To get confiatoncy with the LLA in the completely random varaion (cf. the partially averagef form (4.1), (4.2), and the orderad cass/23/)

$$
\begin{align*}
& \sum_{U i i \sigma}^{\{\nu\}}(E)=\int \frac{d E^{\prime}}{2 \pi i} G_{i i-\sigma}^{\{\nu\}}\left(E^{\prime}\right) T_{i}^{\{\nu\}}\left(E+E^{\prime}\right), \tag{5,10}\\
& \left.T_{i}^{\{\nu\}}(E)=\frac{U_{i}^{\nu}}{1+U_{i}^{p p} \frac{d E^{\prime}}{2 \pi i} G_{i i \sigma}^{\{\nu\}}\left(E^{\prime} \mid G_{i i-\sigma}^{[\nu\}}\left(E-E^{\prime}\right)\right.}\right) \tag{5,11}
\end{align*}
$$

we bave to put for the imeducible perticle-hole vertex

$$
\begin{equation*}
I_{i+\uparrow \psi}^{\{\nu\}}(E+\omega, \bar{E} ;-\omega)=-T_{i \nmid i \downarrow \downarrow}^{\{\rho\}}(E+\bar{E}+\omega) \equiv-T_{i}^{i \mu\}}(E+\bar{E}+\omega) \tag{5.12}
\end{equation*}
$$

In (5.12) the contribution of $O\left(T_{i}^{[2] 2}\right.$) ia neplected ($O f$. the Beheme given in $/ 21 /$). By aubstituting the approximated $I^{\{p\}}$ from (5.12) into (5.B), and using (5.10) and the Dyson equation (aee (5.15)), we find

$$
\begin{array}{r}
\sum_{m n} G_{i m t}^{\{\nu\}}(E+\omega)\left[\omega \Lambda_{o m \uparrow}^{\{\nu\}}\left(E+\omega, E_{i}-\vec{q}\right) \delta_{m n}+\Lambda_{i m n}^{\{\nu\}}\left(E+\omega, E_{j}-\vec{q}\right)\right] G_{\pi j \uparrow}^{\{\nu\}}(E) \\
=e^{i \vec{q} \vec{R}_{i} G_{i j \uparrow}^{\{\nu\}}(E)-G_{i j t}^{\{\nu]}(E+\omega) e^{i \vec{q} \vec{R}_{j}}}, \tag{5.13a}
\end{array}
$$

or

 $-\vec{q}) \delta_{m n}$ has been taken into account.

An analogous procedure can be performed on the basia of (5.9) yielding

$$
\begin{align*}
& \sum_{m n} G_{i m 4}^{\{\nu\}}(E)\left[\omega \Lambda_{\substack{ \\
\uparrow \downarrow}}^{\{\nu]}\left(E, E+\omega ; \vec{q} \mid \delta_{m n}-\Lambda_{\substack{m n \\
i \downarrow}}^{\{\nu\}}(E, E+\omega ; \vec{q}]\right] G_{n j \downarrow}^{\{\nu\}}(E+\omega)\right. \\
&=G_{i j \downarrow}^{\{\nu\}}(E) e^{-i \vec{q} \vec{R}_{j}}-e^{-i \vec{q} \vec{R}_{i}} G_{i j \downarrow}^{\{\nu\}}(E+\omega) \tag{5.14a}
\end{align*}
$$

or

(5.14b)

The Dyeon equation used in (5.13) and (5.14) reade

$$
\begin{equation*}
\left(G^{|\nu|-1} \mid \cdot E\right)_{i j \sigma}=\left(E-\varepsilon_{i}^{\nu}\right) \delta_{i j}-t_{i j}-\sum_{U i i \sigma}^{|\nu|}(E) \delta_{i j}, \tag{5.15}
\end{equation*}
$$

From (5.13b) and (5.15), we heve
$\omega \Lambda_{0<-\hat{i}}^{\{\nu\}}\left(E+\omega_{i} E_{i}-\vec{q}\right)+\Lambda_{i ; i}^{\{\nu\}}\left(E+\omega_{i} E_{j}-\vec{q}\right)=\left[\omega+\sum_{U i i f}^{\{\nu\}}(E)-\sum_{U i i t}^{\{\nu\}}(E+\omega)\right] e^{i \psi \overrightarrow{R_{i}}}$,

$$
\begin{equation*}
\Lambda_{1 i j}^{\{\mu\}}\left(E+w, E_{j}-\vec{q}\right)=\lambda_{1 i j}(-\vec{q}), \quad(i \neq j) \tag{5.16}
\end{equation*}
$$

where λ_{1} is defined in (5.3),
Likowise, (5.14b) with (5.15) can be regritton as

$$
\begin{align*}
& \Lambda_{\substack{1 i j \\
i \downarrow}}^{\{p\}}(E+w, E ; \vec{q})=\lambda_{1 i j}(\vec{q}), \quad(i \neq j) . \tag{5.17}
\end{align*}
$$

The equations (5.13), (5.14), (5.16), and (5.17) are random modifications of the generalized Werd (or Werd-Tekahash1) identitios (cf., o.g., /25/). Note that the ecalar product $\vec{q} \cdot \vec{\Lambda}{ }_{1}(\vec{q})$ could almo be used instead of the present $\Lambda_{1}(\mathbb{q})$. Althougin these fard relations bave been derived within a local acheme, (5.13) and (5.14) remain valid oven genoraliy (compare /8/), whereas (5.16) and (5.17) are explicitiy ratricted to the lical epproximation. Hore it has been provid that the random LiN satisfies the Ward relationt eapecially, (5.16) and (5.17) impose constrainte on the partially averaged vertioes, too.

Ae a ooneequence of (5.13a), (5.1), and (5.4) (or (5.14a), (5.1),
and (5.3)) the first moment equation hecomes

$$
\begin{equation*}
\omega \chi^{+} \cdot\{\mu\}_{(\vec{q}, \omega\}}-\chi_{1}^{+-\{n\}}(q, \omega)=\frac{1}{N} \sum_{i}\left(n_{i \downarrow}^{\{\nu\}}-n_{1}^{\{v\}}\right), \tag{5.18}
\end{equation*}
$$

where the average number of apin σ electrong at aite j ie given by $n_{j \sigma}^{\{\mu\}}=\left\{\frac{d E}{2 \pi I} G_{11 \sigma}^{\{\nu\}}(E)\right.$ within $\left.\{2\}\right\}$. When the r.h.a. of (5.18) does not vanish. $\chi^{+-\{\nu\}}$ and $\chi_{1}^{+-\{2\}}$ (notice the usual form $\vec{q} \cdot \vec{\chi}_{1}$) muat have aingular parta in the limit $\omega \rightarrow 0, \vec{q} \rightarrow 0$, refering to coldstone-type modes.

The Ward relation (5.13a) with (5.3) and (5.5) (or (5.14a) with (5.4) and (5.5)) leade to the second moment equation
$\omega \chi_{:}^{+\quad\{\nu\}}(\vec{q}, \omega)-q^{2} X_{j}^{+-\{\nu\}}(\vec{q}, \omega)$

$$
\begin{equation*}
=\frac{i}{N}\left\{\frac{d E}{2 \pi} \sum_{i j} t_{i j}\left\{\left(e^{-i \underline{q}\left(\vec{R}_{i}-\vec{R}_{j}\right)}-1\right) G_{j i \uparrow}^{\{\nu]}(E)+\left(e^{i \vec{q}^{\left(\vec{R}_{i}-\vec{R}_{j}\right)}} 1\right) G_{j i i}^{\{\nu\}}(E+\omega)\right\}=-C_{\vec{q}}^{\{\nu\}},\right. \tag{5.19}
\end{equation*}
$$

where the abbreviation $c_{\vec{q}}^{\{p\}}=\left\langle\left[S_{\vec{q}}^{+}, q_{-\vec{q}}^{-}\right]\right\rangle^{\{\sim\}}$ follows from (2.6). Then the combination of (5.1B) and (5.19) gives (2.3).
6. STABILITY CONDITION. DAMPING OF THE SPIN WAVES,

The ferromagnetic ground atate can be unstable againgt both the collective excitations (epin waves) and the individual (Stoner) excitations. In the long-wavelength region, especielly, we muat bring out the connection between the stability of the ground state and apin waves.

At sero temperature, the apectral representation of the transverse ousceptibility $X^{+=\{ }\{2 \gamma(\vec{q}, \omega)$ is given by

$$
I_{S_{\vec{q}-\vec{q}}^{\prime+}}^{\{\nu\rangle}|\omega|= \begin{cases}\left.2 \pi \sum_{m}\left|\left\langle_{m}\right| S_{\vec{q}}^{+}\right| 0\right\rangle\left.^{\{\nu\}}\right|^{2} \delta\left(\omega_{m 0}^{(\nu)}+\omega\right), & \omega<0 \tag{6.2}\\ \left.2 i r \sum_{m}\left|\langle 0| S_{\vec{q}}^{+}\right| m\right\rangle\left.^{\{\nu\}}\right|^{2} \delta\left(\omega_{m 0}^{\{\nu]}-\omega\right), & \omega>0 .\end{cases}
$$

Here $\omega_{m 0}^{\{p\}}$ is the oxcitation onergy of the m-the oigenstate of $s^{i r]}$, and $\langle J| S_{\vec{q}}^{+}|m\rangle^{\{\nu]}$ is the traneition element of $S_{\vec{q}}^{+}$betwean the ground (0) and math atate. Insertion of (6.2) into (6.1) yielda

$$
\begin{equation*}
\chi^{+\sim\{\nu \mid}(\vec{q}, \omega)=-\sum_{m}\left\{\frac{\left.\left|\langle 0| S_{\vec{i}}^{+}\right| m\right)\left.^{\{\nu]}\right|^{2}}{\omega-\omega_{m 0}^{[\nu]}+i \varepsilon}-\frac{\left.\left|\langle m| S_{t}^{+}\right| 0\right\rangle\left.^{(\nu]}\right|^{2}}{\omega+\omega_{m 0}^{[\nu]}-i \varepsilon}\right\} . \tag{6.3}
\end{equation*}
$$

$\chi^{+-\{\nu\}}(\vec{q}, \omega)$ in (6.3) involves both nquesiparticlen (quasiboson) and nnonquasiparticien contribut lons, 1.f., pole aingularities from the atates with $\lim _{q \rightarrow 0} \omega_{m o}^{\{\nu\}}=0$ and cut aingularitiea from
 In othwr worde, the magnon pole which we wre interented in must be now separated from the Stonar continum. Since $S_{d=0}^{+}$in a conserved quantity (of. (2.4)), the Stoner oxoitations heve vaniehing epeotral woight for $\overrightarrow{\mathrm{c}} \rightarrow 0 / \mathrm{B/}$. Thus, we can pick up from (6.3) the spin weve for amall q and ω es

$$
\begin{equation*}
X_{\text {pole }}^{+-\{\nu\}}(\vec{q}, \omega)=-\frac{\frac{1}{N} \sum_{i} 2\left\langle S_{i}^{2}\right\rangle^{\{\nu\}}}{\omega-D^{\{\nu\}} q^{2}+i \varepsilon \operatorname{sigm} D^{[\nu]}}, \tag{6.4}
\end{equation*}
$$

where the damping was neglected. The reaidue in (6.4) is written down only in the lowest order of q.

The stability conaition of the ground etate can bs expressed by $\omega_{\text {mo }}^{\{\nu\}}>0$. Consequently, the spectral representation (6.1) With (6.2) yields $\operatorname{Im} \chi^{+-\{\nu\}}(\vec{q}, \omega)=\frac{1}{2} I_{S_{\vec{q}}^{+}}^{\left\{\nu S_{-\vec{q}}^{-}\right.}(\omega)>0$. To achie$v e$ the stability criterion we notice from (6.4) that In χ pole $=\frac{2 \pi}{N} \sum_{i}\left\langle s_{i}^{2}\right\rangle^{\{\nu\}}$ aign $D^{\{\nu]} \delta\left(\omega-D^{\{\nu\}} q^{2}\right)$. Then by comparing $\chi^{+-\{\nu\}}$ and $\chi^{+\cdots}+\underset{\text { pole }}{+\infty}$, one concludes that the condition

$$
\left.\hat{D}^{\{p\}}=\lim _{q \rightarrow 0} \frac{1}{q^{2}}\left\langle\left[S_{\vec{q}, q}^{+},\right]_{-\vec{q}}^{-}\right]\right\rangle^{[\nu]}-\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} \chi_{J}^{+-\{p]}(\vec{q}, \omega\}>0,
$$

with

$$
D^{\{\nu]}=\frac{\hat{D}^{\{\nu\}}}{\frac{1}{N} \sum_{i} 2\left\langle S_{i}^{2}\right\rangle}{ }^{[\nu]},
$$

ensures the atability of the ferromagratic ground atate, while $\hat{\mathrm{D}}^{\text {[p] }}<0$ signifies instabilities induced by the spin waves. Note that the explicit form of $\hat{D}^{[\mu]}$ in (6.5) was derived in (2.5). By
 $=\frac{4 \pi}{N}\left|\sum_{i}\left\langle s_{i}^{s}\right\rangle^{[2]}\right| \delta\left(\omega-D^{(\nu)} q^{2}\right)$ beaed on the condition (6.5) one recovere imediately (6.4). Another formulation of (6.4) with aign $D^{\{p\}}$ raplacod by aign ω oan also be ohosen to get (6.5).

The configuration avarege of the retarded aumeeptibility an be written in apectral reprenentation as

$$
\begin{equation*}
X^{+-r}(\vec{q}, \omega)=-\left\langle\left\langle S_{\vec{q}}^{+}, S_{-q}^{-}\right\rangle_{\omega}^{r\{\omega\}}\right\rangle_{C}=-\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{sign} \omega^{\prime}}{\omega-\omega^{\prime}+i \varepsilon} I_{\vec{q}-S_{-}^{-}}\left(\omega^{\prime}\right) . \tag{6.6}
\end{equation*}
$$

Especially, the epin-wave pole

$$
\begin{equation*}
X_{\text {pole }}^{+-r}(\vec{q}, \omega)=-\frac{2\left\langle\left\langle S_{i}^{z}\right\rangle^{|\nu|}\right\rangle_{c}}{\omega-D q^{2}+i \varepsilon} \tag{6.7}
\end{equation*}
$$

involves the average magnotimation per aite $2\left\langle\left\langle s_{1}^{2}\right\rangle_{c}^{\{n\}}\right\rangle_{c}$ and the atiffneas constant D introduced into (2.5). Fotice that (6.7)
 are then led to a eomparison betweon $I m \chi^{+F}(\vec{q}, \omega)=\frac{1}{2} \operatorname{sign} \omega$ $I_{S_{\rightarrow+}^{+} S_{-q}^{-}}(\omega)$ and $\left.I_{m} \chi_{\text {pold }}^{+\infty}(\vec{q}, \omega)=2 \pi\left\langle s_{i}^{s}\right\rangle^{(\nu\rangle}\right\rangle_{e} \delta\left(\omega=D q^{2}\right)$. It holds $I_{S_{\vec{q}}^{+} S_{-\vec{t}}^{-}}(\omega)=0$ as a postulate for an averaged effective medium, too. Areuming $\left.\left\langle s_{1}^{8}\right\rangle^{(2)}\right\rangle_{c}>0$ we obtain for $\left.\omega\right\rangle 0$ the inequality $D>0$ (for $\omega<0$ we are left with the trivial result $\left.I_{S_{i}^{+}} S_{-i}^{-}(\omega)=0\right)$; putting $\left\langle\left\langle S_{i}^{B}\right\rangle^{\{\nu\}}\right\rangle_{c}<0$ we find $D<0$ for $\omega<0$ (for ${ }^{-q} \omega>0$ it reaults $I_{s_{\dot{q}}^{+} s_{-q}^{-}}(\omega)=0$). Thus the atability condition is exprenced by

$$
\begin{equation*}
\hat{D}=\lim _{q \rightarrow 0} \frac{C \bar{q}}{q^{2}}-\lim _{\omega \rightarrow 0} \lim _{q \rightarrow 0} x_{J}^{+-}(\vec{q}, \omega)>0, \quad D=\frac{\hat{D}}{\left.2\left\langle S_{i}^{2}\right\rangle^{[p]}\right\rangle_{C}}, \tag{6,8a}
\end{equation*}
$$

Or, in the approximated form (3.10), an

$$
\begin{equation*}
\hat{D}=\frac{1}{6 \pi} I m \int_{-\infty}^{\mu} d E \frac{1}{N} \sum_{\vec{k}}\left(\xi_{\overrightarrow{k t}}(E+i 0)-\xi_{\vec{k} t}(E+i 0)\right)^{2}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}>0 . \tag{6.8b}
\end{equation*}
$$

Bq. (6.8e) aan alao be obtained directly from (6.5) by averaging contigurationally.

In generalising the undamped case (6.7) Te introduce the damping γ_{q} of the collective mode by

$$
\begin{equation*}
\chi_{\text {pole }}^{+-r}(\vec{q}, \omega)=-\frac{2\left\langle\left\langle S_{i}^{2}\right\rangle^{\{v\}}\right\rangle_{c}}{\omega-\omega_{q}+i \gamma_{q}^{2}}, \tag{6.9}
\end{equation*}
$$

where $\omega_{q}=D_{q}{ }^{2}$ denotes the spin wave anergy. To determine γ_{q} we separate the real and imaginary parts in (2.3), and hence

Where it can be proved that $C_{\vec{q}}$ defined in (2.6) is a real queantits, Here mall damping $\left(\gamma_{q} \ll \omega{ }_{q}\right)$ is considered; γ_{q}^{-1} dencribes the lifetime of the spin waves. In the second part of (6.10) we have used the relation $\left.\left.\left.\operatorname{Im}\left\langle 《 q J_{\mathbb{q}}^{+}, q J_{-q}^{-}\right\rangle\right\rangle\right\rangle_{c}^{r\{2]_{c}}\right\rangle_{c}-$-ign ω In $\left\langle\left\langle q_{\vec{q}}^{+}, q J_{-q}^{-q}\right\rangle_{\omega}^{\{\nu j}\right\rangle_{c}(\omega$ being real) and the definition (2.8). A similar analysis aa proposed in handing (3.1) can be carried out for the imaginary part of $\chi_{J}^{+-}(\vec{q}, w)$. This means that vertex corrections due to electron correlations will not appear (compare the arguments leading from (3.3) to (3.6)), so that

$$
\begin{equation*}
\left.\cdot q^{2} X_{J}^{+-}(\vec{q}, \omega)=-\frac{i}{N} \int \frac{d E}{2 \pi}\left\langle t r\left\{\lambda_{1}(\vec{q}) G_{\downarrow}^{\{\mu\}}(E+\omega) \lambda_{1}(-\vec{q}) G_{A}^{\{\omega]}(E)\right\}\right\rangle_{c}\right) \tag{6.11}
\end{equation*}
$$

which retains only the irreducible part of $\chi_{J}^{+-}(\vec{q}, \omega)$ from (5.5) with (5.9). In the lowent order of q, eq. (6.11) can be reduce vie (3.3) without CPA vortex eorreotionis to

$$
\begin{equation*}
X_{J}^{+-}(\vec{q}=0, \omega)=\frac{i}{3 N} \sum_{\vec{k}}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2}\left(\frac{d E}{2 \pi} \varphi_{\vec{k} t}(E+\omega) \varphi_{\vec{k}+}(E),\right. \tag{6.12}
\end{equation*}
$$

Where $\mathscr{Y} \boldsymbol{z} \sigma$ represents the causal coherent Green function. From (3.7) (and it analogue for $\omega<0$) it result

$$
\begin{equation*}
\operatorname{Im} X_{J}^{+-}(\vec{q}=0, \omega)=\frac{1}{3 \pi N} \sum_{\vec{k}}\left(\nabla_{\vec{k}} E_{k}\right)^{2} \operatorname{sign} \omega \int_{\mu-\omega}^{\mu} d E I_{m} G_{\vec{k}+}^{T}(E+\omega) I_{m} G_{\vec{k}\}}^{T}(E) \tag{6.13}
\end{equation*}
$$

By expanding (6.13) to firat order of ω we find

$$
\begin{equation*}
\operatorname{Im} \chi_{J}^{+-}(\vec{q}=0, \omega)=\frac{1}{3 \pi N} \sum_{\vec{k}}\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2} \omega \operatorname{sign} \omega \operatorname{Im} \varphi_{\vec{k} t}^{r}(\mu) I_{m} \varphi_{\vec{k} t}^{r}(\mu) \tag{6.14}
\end{equation*}
$$

The combination of (6.10) and (6.13) piovidea the lowfat order deacription of the damping

$$
\begin{equation*}
\gamma_{q}=\frac{1}{3 \pi\left(n_{4}-n_{\downarrow}\right)} D q^{4} \frac{1}{N} \sum_{\vec{k}} \operatorname{Im} \Psi_{\vec{k}+}^{r}(\mu) \operatorname{Im} \varphi_{\vec{k}+1}^{r}(\mu)\left(\nabla_{\vec{k}} \varepsilon_{\vec{k}}\right)^{2} . \tag{6.15}
\end{equation*}
$$

The same expression was found in the CPA-RPA by Fukuyama /15/. The
 here electron-electron sostteringe as a generalization of the treatment /15/. It holda γ_{q}. 0 in the etable cage (6.8); especially γ_{q} vanishes for anturated ferromgegnets in $0\left(q^{4}\right)$.

7. COMCLUSTOM

The prosent derivation of a renornalized epin wave spectrum of disordered alloys asamen the looelity of the offective four-leg vertex originated by the random intra-atomio interaction. The phyaicel content is confirmed by a otability oriterion, amall damping, and the fulfillment of Ward identities. According to the horisontal ladder approximation the reault for the atiffnaas constant oan be justified for etrong correlations and small electron (or hole) censitien if it may therefore be applied, e.ge, to Hi and aome Fi -based alloym. The present acheme in appropriate to numerioal oalculations, at will be shown in teubaequent paper.
 atimulating disomesions and Prof.J. Czerwonko for useful remark.

REFERENGES

1. Hubbard J. Proc.Roy.Soc., 1963, A276, p.238.
2. Wagner H. Z. Physik, 1966, 195, p. 273.
3. Edwarde D. M., Fisher B. J. Physique, 1971, 32, p.C1-597.
4. Iquyama T., Kim D.J., Kubo R. J. Phys.Soc.Japan, 4963. 18.p. 1025.
5. Ma S., Béal-Konod M.T., Predkin D. R. Phys. Rev., 1968, 174, P. 227.
6. Young W., Callaway J. J. Phye.Chem. Solide, 1970, 31, p.865.
7. Brandt U. Z. Physik, 1971, 244, p.217.
B. Hertz J.A., Edwarde D.M. Phyo.Rev, Latters, 1972, 28, p.1334.
8. Miatsumoto H., et al. Phys. Rev., 1978, B17, p. 2276.
9. Lіишкин Л.А. ТТТ, I978, ZO, с. 740.
10. Izuyama T. Phys.Rev., 1972, B5, p. 190.
11. Velický B., Kirkpatrick S., Ehrenreich H. Phys.Rev. : 1968, 175, p.747; Velický B. Phys.Rev., 1969, 184, p.614.
12. Fukuyama H. AIP Conf. Proc., 1973, 10, p. 1127.
13. Hill D.J., Edwarde D.M. J. Phybe, 1973, F3, p. L162.
14. Fukuyama H. J. Physique, 1974, 35, p.C4-141.
15. Riedinger R., Nauciel-Bloch H. J. Phyt., 1975, P5, p.732.
16. Edwarde D. M.. , Hill D.J. J. Phys. , 1976, F6, p. 607.
17. Yamada H. , Shimizu M. J. Phys. Soc. Japan, 197C, 28, p. 327.
18. Jezierski A. Acta Phys. Pol., 1977, A51, p.839.
19. Kolley E., Kolley W. Commun. JIFR, E17-10921, Dubna, 1977.
20. Kolley E., Kolloy W. phys, atat.eol. (b). 1978, 86. p. 397.
21. Kolley E., Kolioy W. phys.atat. Bol. (b), 1977, 81. p.735. 23. Babanor $Y u_{e} A_{\text {, }}$ et al. phys. stat.sol. (b), 1973. 56.pKB7.
22. Leggett A.J. Ann. Phys. (N. Y.), 1968, 46, p.76.
23. Schriaffer J.R. Theory of Superconduotivity, Benjamin, How York, 1964.

> Received by Publishing Depertment on July 18,1978 .

