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1. INTRODUCTION 

In our previous paper /1/ we have proposed a further 
extension of )he :;tpproximating Hamiltonian method of Bo­
golubov, Jr. 2 • 3/ , which permits the asymptotically exact 
(i.e., exact in the thermodynamic limit) investigation of 
a general class of model systems with a nonpolynomial 
interaction term. The interaction is a function of the space 
average of some quasilocal operator (observable, see 
Haag / 4/ and the Appendix). Thus it is a function of an 
intensive observable of the system. In the case under 
consideration, the N-body Hamiltonian, defined in a re­
gion A c ~ v (v = dim R v) with a finite volume· IA! , 
acts ,pn the Hilbert space of states ~ A and has the 
form 

HA=TA -hlAl,AA-IAl¢(A,A). (1.1) 

Here h ~ R \ TA and .A A are S(!lf,-adjoint operators sa-
tisfying the following conditions: . 

(i) AA is an intensive observable generated by the 
space averaging of some uniformly bounded in ~A self­
adjoint quasilocal opera tor, i.e., there exists M > o such 
that for all Ac R 1,: _with !Al <oo 

11:AAll~A ~M; 

* For other types of nonpolynomial models (generalized 
Dicke-type models) see ref. /5/. 
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(ii) the operator TA which generally defines as exten­
sive observable of the system ,-is· such that there exists 
K '>0 satisfying 

ll[TA ,AAJ_ll.fl....., :::,K' 

for all ACRI/ with !Al<oo; 
(iii) the operator-valued function ¢(AA) can be defi­

ned by the spectral representation 

M+O 
c/JM A)= f dE,\ (AA)cp(,\), 

-M 

where ¢ (,\) is- a twice differentiable function on I =[-M,M] 
(¢ (,\) '= C 2 (H)) such that there exists K > 0 and the 

following inequality holds: 

1¢''(,\) I :::. K , 

without loss of generality we further assume cp (0) =cp '(0) =0 
(see (1.1)); 

(iv) the operator TA generates the Gibbs semigroup 
lexp(-,BT A) I ,a> 0 i.e., exp(-,BTA) '= Trace-class for 
all ,B >0; 

(v) by virtue of conditions (i) and (iv) the operator 

1 A (x) = TA - xlA}A A , x ~ R 1 (1.2) 

also generates the Gibbs semigroup; we require the exis-
tence of the thermodynamic limit t-lim(-h=1im · ( .) 

IAI/N=v N--,jAl-­
(where IAl ➔ oo in the sense of Fisher /s/) for the free 
energy density · 

1 C 

.FA (x) =...(,BIA!)- lnTrexp(-/:WA (x)), (1.3) 

namely, for all x c;; R 1 , ,B>0 , v>0 there exists function 
such that 

4 

t-litn.FA(x) =-F(x), FA(x) c;;C
00

(R 1
); 

(vi) define the approximating Hamiltonian 

H0 A (a) = r A (h + ¢'(a)) + IA! (a.cp'(a) -¢(a)) 
' 

(1.4) 

(1.5) 

I 
! 

which depends on the real parameter atel; for the system 
with Hamiltonian (1.5) and all ,B>0 and v>0 the fol-
lowing clustering property must hold: 

t-lirnl<AX>tt c) -<:A >~ <i )1,.,0, (1.6) 
o,A aA o,A A 

where a A is determined from the equation 

min f A [ H i a) ] = f A [ H A ( aA ) ], 
at; SA 0, 0, 

SA "" I a~ R 
1

: a"' <:AA> I. 
(1. 7) 

H A ( a) 
0, 

Here the use has been made of the notations 

< • > H -= Tri ( •) exp (-,BH) I / Tr exp (-,BH) , 

-1 
~ [ .] '"'-(,8 IAI) ln Tr exp 1-,B(,)I, 

for. the ther;nal average and the free energy density, res-
pectively. ' 

Rem ark 1.1. The clustering condition (1.6) corresponds 
to certain restrictions on the magnitude of the fluctuations 
of the intensive observable :A A in the system described 
by the approximating Hamiltonian (for further details 
see the Appendix). 

Proposition 1.1.111 Let the Hamiltonian of the system 
be given by. Eq. (1.1) and let conditions (i)-(vi) be satis­
fied, then 

t-limlfA [HA]- min fA [H
0

,A(a)]l ,.,O, (1.8) 
a~A 

where H0 _ACa) has been defined by Eq. (1.5). 
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Rem ark 1.2. As we have shown in paper hi 

min fA[H A (a)]= min max rA[J{ (a,b)], (1.9) 
r o, o,A 

a""SA ai;;Rlb,;;Rl 

where 

J< 0 A(a,b)"' r 0 A (h +ll>'(a) +ll>'(b))+IAlla«I>'(a) - (1.10) 
, , 1 2 1 

Here 
- II> (a)+ bll>'(b) - II> (b) I. 

1 2 2 

II> 1 ( a) "" j ( a) + ! L a 2 , 

(1.11) 
m 1 2 
'1-' 2 (b) = - -Lb , (L > 3K) , 

2 

and the function ¢(a) ,;; C 2 (R 1 ) is a tw.ice differentiable 
extension of cp(a) i;;c 2 (1) to R 1 , which satisfies condition 
(iii). 

In the general case (this means that approximating 
Hamiltonian (1.5) is not to be one-particle operator) the 
direct calculation of the thermodynamic limit 
t-lim I min f A[ H O A (a) ll is hardly practicable because 

ai:;;SA ' 

of the absence of an explicit expression for f A[ HO A<a) ] 
at large but finite values N and IAI as well as because 
of the lack of explicit information about the structure of 
the set SA for IAI ➔ 00 • In the present paper it will be 
shown ~ow to avoid these difficulties provided the limit 
function (see (v)) 

t-lirnfA[J{ A (a,b)]==.F(h+ll>'(a)-Lb)-
0, l 

(1.12) 

- .!.. Lb 2 + all> ' ( a) - II> 
1 

( a) 
2 1 

is known. 
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Rem ark 1.3. Simultaneously with our work /1/ the same 
problem has been studied by den Ouden, Capel and Perk/7/ 

They have considered the same Hamiltonian as (1.1) but 
containing an analytic function of a finite number of in­
tensive (normalized /7/ ) self-adjoint operators .A it , 
i = 1,2, ... , n, under stronger than (i)-(vi) restrictions 
on the operators 'I A , !A Ai) and the function ¢ (.) (see 
below remark 1.4). In the recent preprint /s/ the same 
authors have given a convex-envelope formulation of the 
problem in the fixed-magnetization ensemble*. 

This paper presents a further development of the ap­
proach proposed in /1/ for systems with nonpolynomial 
interactions. In particular we ·shall give here a complete 
proof (see Sections 2 and 3) of the fact 

t-limlmin rA[H 0 A(a)]l=min lt-limfA[H 0 A(a)JI (1.13) 
' a(;;S ' 

a(;;SA 

important for practical applications of Proposition 1.1. 
In Eq. (1.13) the set S is defined by inequalities (1.14) 
(see below) which, as it was first shown in /7/, replace 
the usual self-consistence equations (molecular-field 
equations). Below a new derivation of Eq. (1.14) is given 
which is based entirely on the analysis of the auxiliary 
two-parameter variational problem for the limit func­
tion (1.12). The important particular cases of attractive: 
¢ "(a) > O and repulsive: ¢ "(a) < 0 interactions are 
also paid special attention (see Section 3). The main re­
sult of the present paper can be formulated as the fol­
lowing 

-------------------------* The convex-envelope tonstruction has been proposed 
by Lebowitz and Penrose /9/ for mathematically rigo­
rous derivation of the Van der Waals equation for classi­
cal g~sgs with a long- range Kac-type potential (see 
also/ 10/). Generalization to quantum systems has been 
obtained by Lieb/ 11/(for further generalizations see / 12/ 
also the review article / isl). 
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Theorem 1. 1. Let the Hamiltonian of the system be 
given by Eq. (1.1) and let the operators TA, iAA and the 
function ¢(.) satisfy conditions (i)-(vi), then 
(a) t-limfA[HA] exists for all h~R 1, {3>0 and v> 0; 
(b) t-limfA[H Al= min lt-limfA[H

0 
A (a)]}, where 

a~S ' 

S =la~ R 1: - .F'(h+¢ '(a) -0) ~ as-.F'(h+cp'(a) +0)l. (1.14) 

Rem ark 1.4. The above formulated theorem is a genera­
lization of the result obtained in /7 ,s/ under the condition 
that function is analytic on I and operators TA, !A A 
satisfy certain "short-range" conditions. We extend 
this result to the case of the broader class of functions 
¢(a) ~ C 2 (/} (iii) and reduce the restrictions on the 

range of interactions included in TA and A A to the 
more general conditions (iv)-(vi). Particularly we do not 
need the boundedness of the intensive (normalized /7/) 
operator IAl- 1TA. Thus TA may correspond for example 
to the kinetic energy operator of particles enclosed in 
a region A c R v • 

• The proof of Theorem 1.1 follows a line of reasoning 
different from /7/ and is based essentially on Proposi­
tion 1.1 and the main Lemma 2.1 (see Section 2). The 
idea of our proof consists in the consecutive establishing 
of the following four relations: 

t-limjf A [HA] - min f A[Ho,A (a)]I = 0; 
a~SA 

(1) 

1nin f A[H o,A (a)] = min max f A [ J( o,la, b)]; 
a~SA a~Rl b~Rl 

(2) 

t-lim{min max fA[J(
0

A(a,b)] = 
a~R 1h~R1 ' 

(3) 

= min max lt -lim f A[ J< 0 la,b)]}; 
a~R1 t,r;;R1 . ' 

min max lt-lim f A ( J( 0 A (a,b) ]l = min lt-lim f A [H
O 

A (a) ]I. 
a~R1 b~R1 ' a~S ' (4) 
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Equations (1) (Proposition 1.1) and (2) have been obtained 
in /i/ and the proof of Eqs. (3) and (4) is given respecti­
vely in Sections 2 and 3 of the present paper. The com­
bination of equalities (2)-(4) gives (1.13) and of (1)-(4) 
gives the statement (b) of Theorem 1.1. 

2. THE MAIN LEMMA 

We start with the proof of Eq. (3) (see Section 1) which 
is the content of the following main 
Lemma 2.1.Let lfA[Ho,A(a,b)]I beasequenceof 
functions generated by the two-parameter family of Ha­
miltonians (1.10) with operators TA and :AA satisfying 
conditions (i)-(vi) (Section 1). Then 

(a) min max lt-limfA [}( 0 A(a,b)]l=f({3, v,h) 
a~Rl b(;R 1 ' 

exists for all h~R 1, {3>0 and v > 0; 

(b) f(/3, v, h) = t- limlmin max fA [H
O 

A(a,b)], 
af;.Rlt,r;;R 1 ' 

Proof .. Ca) Let lJS denote z = h + <!ii(a) - Lb. Then (see 
(1.3) and (1.10)) one has 

f A [ }( 
0 

A ( a, b)] = FA ( z) + a¢ ' ( a) - ¢ ( a) - _!_Lb 
2 

. 
, 1 1 2 

(2.1) 

Conditions (i) and (v) (Section 1) imply the uniform equi­
continuity of the family IF A (x) l, since 

I FA (x ') - FA (x ")! SM Ix' - x "I (2.2) 

for arbitrary x',x"~ R 1 ,Hence, in the thermodynamic li­
mit we obtain that the limit function ,F(x) (see (1.4)) 
obeys the Lipschitz condition 

\F(x') - .F(x")I ~ M !x'-x"I . (2.3) 
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Using (2.3) one easily verifies that for all fixed aE Rl 
the function t-lirnfA[J{o A (a,_b)] reaches the absolute ma-
ximum with respect to ' b~R 1 on the bounded interval 
lbl <5.2M. Denote by b(a) the point at which th~ maximum 
of t- lirnf A [ J< 0 A (a,b)] is attained, and by bA (a) the 
corresponding point for the function f A [ J< 0 A (a, b) ] • 
On the other hand, the uniform equicontinuity of the fa-
mily IF A (x) I and the pointwise convergence (1.4) im-
ply the uniform convergence of {FA (x) I to F(x) on every 
bounded set from Rt (see, e.g., ref. /14/ ). Hence, for all 
a, bE R 1 and arbitrary fixed D>0 such that 
lh+<I>;(a) -Lbl~D we find 

lt-lirnfA[J<0.A (a,b)]-rA[J< 0,A (a,b)ll ~oA(D), 

where t-limo A (D) =0. Thus, for every fixed aER 1 one 
has: . 

f iJ<oA(a,b))] 2:_fA [}{oA (a,b(a))] > . . 
(2.4) 

?:, t- lirnf A [J{o,A (a,l(a;))] - o A (D a) , 

where D a '""lhl + l<I>~ (a) I+ a.M. Similarly: 

t-limfA[J{oA(a,b(a))] 2:lt-limfA [J{ 0 A(a,b)llj _ 2 
, • bzb (a) 

A 

~ f A [J{ o,A (a, b A (a;))] - 0 A (D a ) 

and, taking into account (2.4), we obtain 

ltnax lt-limfA[}{ A (a,b)ll-fA[J{ A(a~A(a))]l58A(D ) . 
R

l 0, 0, a 
~ . 

(2.5) 

Thus: _ 

10 

t-lirnf A [J{ 0,A (a,b(a))] = max { t-lirnf A [H o,A (a,b)]l "" 
bER1 

zt-lim{max fA [J{ A {a,b)]I =t-lirnfA [J{oA(a,bA(a))]. 
bER1 O, ' 

(2.6) 

l 

~ 
I 
~ 

I 

Consider now the sequence lfA[J( o,A(a, hA (a))]IL a ER 1• 
In ref. /1/ we have shown that the functions lbA(a) I are 

continuously differentiable with respect to a~ 1 and: 

bA(a) '=<!A A>J{o,A(a,bta))' I (2.7) 

- By differentiating the above identity with respect to the 
variable aE R 1 and making use of (1.11) and condition 
(iii) (Section 1) we conclude that 

db A (a) <I> '?a) K 
0 < --- < ---''---< (1 +-). (2.8) 

da - L - L 

Hence, and from inequality (2.2), condition (iii) and the 
existence of the limit (1 .4), it follows that the limit func-
tion t-limfA[J{oACa,ia))] is continuous in aER1 • 
Further, from the estimate 

f A [J{ o,A (a,bA (a))] - f A [J{ o,A (0, b A(0))] > 

(2.9) 
> - M( 4K + 3L) I al - .!...(L - 3 K) a 2 
- l, 2 

in which we have taken into account the fact that (bl\ (a) l~M 
(see (2. 7) and condition (i))as well as (2.8) and the mequa­
lity 

a<I>' (a) - <I> (a) > .1.(L - 3K) a 2 
1 1 - 2 

(2.10) 

it follows that the function t-lirnfA [}{0 A (a,bA(a))] 
attains its absolute minimum in the tiounded interval 
!al.$ R ""aJ(4K+3L)/(L - 3K). Let a , lil '5._R, denote the 
point that provides the absolute minimum value of the 
function t-limfA [J( 0 A (a,bA(a))] on R 1• Then from 
(2.6) we obtain the existence of: 
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min max lt- lim f A [ J{ o, A (a,b) ]l = t-lim f A [J<o,A (a,b A (a))], 

ar;;;R1 b~R1 (2.11) 

(b) Let us return now to estimate (2.5). For all aE[-R,R] 
we have 

lt-limfA [J{o,A (a1(a))]-fA mo.A (a,bA(a)))I ~OA (D). 

(2.12) 

where D = max D a is finite. The estimate (2.9) implies 
labR 

also the existence of the point a= a A (la A I ::; R) that 
provides the absolute minimum value of the function 
rA[J{o A (a,bA (a))] on R 1. Therefo~e from (2.12) and 
the definition of the points a= a , a= a A we obtain 

t -limf A[J{o,A (a,b(a))]- fA [J{o,A (aA,b A (aA))] ~ 

- - -
~lt-limfA[J{o A(a,b(a))lll ... 

. , a aA 
-fA [J{oA (aA,bA(a))l~ 

' 

::;, o A (D). (2.13) 

Similarly, 

f Arn o,A (aA,b A c'i A))] - t-limf A [ J{ o,A (i, b(aj)] ~ 

~rArno,A ~.bA (i))]-t-limfA[J< O A (i,b(a))]~ 
' 

::BA (D). (2.14) 

From (2.13) and (2.14) we find 

12 

If A [J{ o,A (aA ,b A (a A))] -t-limfA [J< o,A (a1(a))ll::o A (D). 

(2.15) 

~ ·~ 
) 

'i 

i, 
i. 

l 
r 
! 
I 
1', 

Hence, in the thermodynamic limit we get 

min maxlt.-limfA[J{
0

A(a,b)]I = 
a~R1bqt ' 

(2.16) 

= t-liml min max fA [}{ 
0 

A (~. b)]I 
alcR l br;;;R l ' 

which completes the proof of the lemma. 

Corollary 2.1. If the function .F(x) is known, Lemma 
2.1 gives the thermodynamic limit of the free energy den­
sity for the model(l.l) in terms of the two-parameter va­
riational problem (see (1.8), (1.9) and (2.16)): 

t-limfA EH A]= min max lt-limfA[J{O A (a,b)]I. 
a~Rl t,;Rl ,a 

(2.17) 

This result generalizes the mini-max principle due to 
Bogolubov, Jr. / 2, 3/ for the models with the nonpolyno­
mial interaction (1.1). 

3. PROOF OF THEOREM 1.1 

(a) Proposition 1.1 (see (1.8)), Remark 1.2 and Lem-
ma 2.1 imply the existence of t-limfA[H A]. The fact that 
min max fA [J{ A (a, b)] · . d d 

_-1 
1 

o, 1s m epen ent of the 
alcl(br;;;R 

choice of the auxiliary parameter L > 3K in Eq. (1.11) 
follows from (1.9). 

(b) Note that the functions IF A (x) I and consequentlv 
the function .F(x) (see (1.2)-(1.4)) are convex on R 1 • 
Therefore the left derivative, .F'(x-0), and the right deri­
vative, .F'(x+O), exist for all •tt ~R 1 • Hence, the condition 
for maximum with respect to b ~ R 1 in (2.17) is equiva­
lent (taking into account Eq. (2.1)) to the inequalities 

-F'(h + <l>~(a) - Lb-0):: b ~ -.F'(h + <l>~(iij - Lb+ 0) . (3.1) 
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From the monotone non-increasing of the left and right 
hand sides of (3.1) with the increase of br;;R 1 it follows 
that for each a ER 1 the solution · b = b(a) of inequalities 
(3.1) is unique. For b=b(a) we have 

-F'(z(a) - 0)::: b(a) :::-F-'(z(a) + 0) , 

where 

z(a) = h + <Ii '(a) - Lb(a) . 
1 

(3.2) 

(3.3) 

I.t should be emphasized that the uniqueness of b(a) (or 
bA (a), ·, which is the solution of inequalities (3.1) with 
F lh+<Ii1(a) - Lb± 0)) ) is an immediate consequence of 
the strzct convexity of the function t.:..limfA[~Aa,b)] (or 
f A [J{ 0 A (a,b)] ) with rE:spect to ~ R 1, t·urthermore, 
from die uniform in b r;; K (for any compact set Kc R 1 ) 

convergence of the sequence I fA [J{ 0 A (a,b)J l (see 
Proof (l!) of Lemma ~-1) and from the uniqueness of the 
points b A (a) and b(a) it follows that for every a r;;R 1 

one has: 

- -
t-limbA(a) =b(a). (3.4) 

We need now some properties of the function b(a). Integ­
rating inequalities (2.8) over the interval [ a 1,a 2 ] and 
proceedings to the, thermodynamic limit we find that 

- - 1 . 
0 ~ b(a

2
) - b(a 1) S L[ <Ii ~(a~ -<Ii1 (a~ J, (3.5) 

-
i.e., b(a) is Lipschitz-continuous (see (1.11) and con-
dition. (iii), Section 1) monotone non-decreasing function 
of a ER 1. 

Consider now the conditions for the determination of 
the points Ian l which corresl!..ond to the local minima 
of the function t-limfA[J{o.A (a,b(a))]. By definition 
of the point am E {~ l, there exists a neighbourhood 
I(am) of am , su~h that for all a r;; I(am) 

t-limf A (J{ 0, A (a,b(a))]- t-limf A [J{ o,A (am ,b(a m))]_? 0. 

14 

Hence, by using (1.12) and the concavity of <I> 
1 
(a), it is 

easy to obtain the inequality 

.F(z(a)) - F(z(a )) - Lb(a )[b(a) - b(a )] + 
m m m 

+ a[ <ll'(a) - <ll'(a ) ] > 0 • 
(3.6) 

1 l m -

Next, from the convexity of the function F(x) on R 1 

it follows that for any x 
1
s x

2 

(x
2 
-x 

1
) .F'(x

2 
-0) ~F(x

2
) -.F(x J s(x

2
-x / F'(x t0). (3. 7) 

If a .s:; a , at;; I(a ) , then from (3.3) and (3.5) we have 
z(am) ~ z(a) a1Ad from (3.6), in view of (3.2) and (3. 7), 
we obtain 

O<[<ll'(a)-<ll'(a )Ha+F'(z(a ) +O)] -
- 1 1 m m 

-L[b(a) - b(a ) ][b(a ) +.F'(z(a ) +O)] < 
m m m -

#_ 

< <ll"(t Ha-a )(a- b(a )) , 
- 1 a m m (3.8) 

where tar;; (am, a) , <Ii'1 (ta)> 0 (see (1.11)). Hence, for 
all ar;;{aEI(a ) : a <al one has: m m-

a_? b(am). (3.9) 

By similar arguments, for all a r;; I a E I (a ) : a ~ a I 
(now z(a) ~ z(a m ) ), we find m m 

a5b(aJ. (3.10) 

Com}1ining inequalities (3.9) and (3.10) we conclude that 
am= b(am). We have thus _proven the following important 
fact: Every point a= am , which corres~nds to a local 
minimum of the function t- Umr A [J( 

0 
A (a,b(a))], sa-

. tisfies the equation ' 
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-
a= b(a). (3.11) 

We observe now that on the set S of all the solutions 
of equation (3.11): 

1 -S= lai;R :a=b(a)I (3.12) 

the Hamiltonians Ho, A {a,b(a)) (1.10) and HO,A(a) 
(1.5) coincide, therefore 

min lt-limfA[J{ A (a, b(a))] I = 
at;.Rl 0, 

"'min lt-limfA[J{ 0 A (a~(a))]I"" 
at;;s ' 

=min lt-limfA[H 0,A(a)]I. (3.13) 
at;;S 

The definition of the set S (3.12) can be re-formulated 
in terms of the linearized syst~m r A (x) (see (l.2)-(1.4)). 
To this end we notice that if at; S, then from (3.2) 
it follows that 

-F'(h + ¢'(a) -0).: a 2 ~F'(h + ¢'(i) + 0) (3.14) 

and, conversely, if (3.11) holds, then b= a satisfies in­
equalities (3.1) for a= a. Hence, by the uniqueness of 
the point o(a) , we get b(a) = i. Therefore 

.s = I at; R 1: -.F'(h+ ¢'(a)-O) 5: a;:;-:-F'(h+¢'(a) +O) I 

which (see (2.17) and (3.13)) completes the proof of Theo• 
rem 1.1. 

Coro 11 a r y 3 .1.. Let the function ¢(·) in the initial 
Hamiltonian (Ll) correspond to an attractive type of in­
teraction, i.e., let for all at;/ 

¢ "(a) > 0. (3.15) 
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Then 

minlt-limfA[H
0
,A(a)]l,.. min lt-limfA[H 0,A (a)ll= 

at;;S . aERl 

= t-lirnfA [H
0 

A (a)], (3.16) 
' 

where a=a satisfies the self-consistence equation (1. 7), 
taken in the thermodynamic limit: 

a= t - lirn<:Ai\> Ho.A (a) • (3.17) 

Really, from the Bogolubov inequality, the spectral re­
presentation (iii) (Section 1) and condition (3.15) it fol­
lows that 

f A [ Ho A (a)]- f A [ HA] ~ 
' 

1. 
M+O 2 

: 
2 

< J dEA (AJ ¢"(, A)(>.-a) > ~ O, 
-M Ho.A (a) 

(3.18) 

where gAt;;(-M,M). Hence, taking into account that scR1 
we have . 

~ 

t-limf [H ] :: min lt-limfA[H
O

A (a)]}~ 
A Rl ' a~ 

_5minlt-limfA [H
0

,A (a)]I. 
a~S 

(3.19) 

Since the function t-limf A [ HO A (a)] is continuous (see 
(1.3)-(1.5)) and the set S is bounded (Sc I, because 
IF' (x ± O) I ~ M, , see (i) and (v), Section 1) and closed 
(see (3.5) and (3.12)), it reaches the minimum on some 
subset of the set S. From (3.19) and Theorem 1.1 it 
follows that equality (3.16) must holf for any point a be­
longing to this subset. Next, taking into ac.count (3.15) and 
the existence of the left and right derivatives of the func-
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tion t- limf J\ [H O J\ (a)] (see (1.3)-(1.5)) the minimum , 

condition for a,;; R 1 takes the form 

.F'(h+¢'(a) -O)+a so, 
(3.20) 

.F'(h+¢'(a) +O) +a_?O. 

On the other hand, by definition 'a,,;; s. Therefore, (3.14) 
and (3.20) imply the differentiability of the function 
t-lim fJ\ [ H

0 
J\ (a) ] at the point a="lt: 

, 

a=-.F'(h+¢'(a)). (3.21) 

Equality (3 .17) is then a consequence of the Griffiths 
lemma/ 16/ about the convergence of the derivatives of 
the convergent sequence !·F J\ (x) l of convex functions 
at the points of differentiability of IF J\ (x) l and the limit 
function F(x): 

-.F'(h +¢'(a))'"' t-liml-FA(h+ ¢'(;)) l .. 

= t- lim<AKH (a)• 
o,A 

(3.22) 

Rem ark 3.1. As was shown in ref_/l(in the case of attrac­
tive interaction theorem 1.1 holds without the clustering 
condition (1.6). This specific property of attraction has 
been exploited in paper / 161 for the particular case of . 
¢(a)= ½ a2 , J > O. The result of this paper can be gene-
ralized now to the case of an arbitrary twice differen­
tiable function ¢(a), such that ¢"(a) >0, for a 1;; I. 

Re rri ark 3 .2. If the interaction in Hamiltonian 1.1 is 
not purely attractive, then the clustering prop·erty is es­
sential. In the case of · ¢(a) = ½a2 , · J < O, . this question 
has been discussed in/17/ · (see also /3/ ). Den Ouden 
et a.1./1/ have made an attempt to replace the clustering 
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condition by a "short-range interaction" condition for the 
operators TA and :AA simultaneously. In /ls/ it has been 
assumed that the bounded self-adjoint operators 'IA and 
A J\ are one-particle operators, then the clustering pro­
perty follows trivially. 

Corollary 3.2. Let the function ¢{,) in (1.1) corres­
pond to a repulsive type of interaction, i.e., for all al;;/ 
one has 

¢"(a) < O. (3.23) 

Then 

min !t-limfJ\(H
0 

J\(a)]I = max lt-limfA[H 0 J\(a)]I = 
a~ . ' aERl ' 

= t-limf J\ [ H o,J\ ( a)], (3.24) 

where 

a= t-limaJ\ (3.25) 

and aA is the unique solution of the self-consistence 
equation for the finite system (compare (1. 7) for s A ): 

a= <!AA> Ho,J\ (a) ' (3.26) 

Really, by virtue of the convexity of function F(x) and 
condition (3.23), the set S contains only one point a=a. 
Hence, using Theorem 1.1, we obtain 

- , 
min I t-limf ( H ( a) ]l = t-limfA(H A(a)] =t-limf A (HA]• 

A o,A 0, 

aQ; (3.27) 

Next, taking into account the spectral representation 
(iii), (see Section 1), the Bogolubov inequality and (3.23) 
we get 

1 M+O 2 
fA(HA]-fA (HoA(a)]2--2 < f dE,\(AA)¢"(tA)(,\-a) >H ~o. 

, ~ J\ 
~ .. 
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where t A ~ (-M, M) . Therefore 

t-lirnfA[ H A (a)]5 max {t-limfA [H A (a)]} < 
0, aERl o, 

5t-lirnfA[HA]. (3.28) 

Thus Eq. (3.24) is a direct consequence of (3.27) and 
(3.28). Equality (3.25) follows from the uniform on any 
bounded interval of Rt convergence of the sequence 
lfA[HoA(a)]l to the limit function t-limfA[H 0 A(a)] 
(see Proof (a) of Lemma 2.1) and from the uniqu'eness 
(due to (3.23)) of the points a A and a. 
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APPENDIX 

1. Let the region A cRv (or zv ) be of finite vo­
lume with respect to the usual Lebesgue measure on R v: 
µ(A)=, IAI < oo (or with respect to the corresponding 
discrete measure on Z 11

). Consider the local C* -al­
gebra of the observables UA, contained in the domain A,· 
that is the algebra of all bou~~ed operators acting on the 
Hilbert space of states ~ A 6 • If xi;;A, then the opera­
tor-valued function :A: x ➔ A(x) E JU.A is called a local 
observable (local operator). Alongside with that it is 
convenient to define "qiasi-local quantities" (Haag /4/ ). 
Let the continuous function f Q (x, y) be such that there 
exists Q> 0 and f (x,y) =0 for I x-yl > 'Q, then 

~ Q I 

!A iY) = f dxfQ (x, y) A(x) 

is called a qi2:zsi-local operator. 
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Further, denote the group of translations of the space 
Rv (the lattice Z 11

) by a,,, {R 11
} (IZ 11 1). Let gx~• then 

there exists a representation g ➔ r of the group G 
into the group of automorphism tf t6e quasi-local algebra 
SU = LJ JU. which acts on the operators N_x0) (or 

A(R/ A 
AQ (x

0
)) ) as follows: 

r x A (x0) = A(Xo + x) 

for arbitrary x
0
,x ER 11

• The group G is locally compact 
and abelian, therefore there exists an invariant Haar mea-
sure dg on this group. For G= IR 11 l it coincides 
(up to a constant factor) with the usual Lebesgue measure, 
for G= I z 11 I - with the corresponding discrete mea-
sure. Thus, the space average of the local (quasi-local) 
operator :A(¾) i;; JU over the region Ac R11 (or Z11

) 

is defined for arbitrary x 0 EA as 

1 
!AA= - f dg r A(x 0) . 

IAI Glxo) x x 
(A.1) 

The operator AA ,is called intensive hi (or normali-
zed hi) operator. Here GA (x

0
) c G is such that' for 

all r x c; GA (x o) we have x + x EA. For G = { z 11} the 
corresponding discrete measure dg induces summation 
over the sublattice A cz 11

• A similar construction for 
IAa I: A 1 cA2 c "3 c ... and )A ) ➔ 00 is called ''ave-
raging operation" /19~ M- filter 2<f or M-net /6/ (see 
also /Bl/). 

2. With the notion of the space-average (or M -filter, 
M -net) of quasi-local operators one can formulate such 
a property of the infinite system states p(,) as the 
weak clustering I 19-21/ 1 

lirn ..!... -f dg p(r iA(x
0
) • B) = p(A(x0)) •p(B), 

IAl➔00i lAI GA(xo) x x . . (A.2) 
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for arbitrary N..x0) , B G-.SU. This property is necessary 
for the G -invariant state p(,) to correspond to a pure 
j}hase (see /a/ and /19-21/ ). 

In the present work we have used a clustering property 
(see (vi), Section 1), which is obviously weaker than (A.2), 
since (vi) involves only one intensive operator in inter­
action Hamiltonian (1.1). This means that for such a mo­
del ·the infinite system states generated by approximating 
Hamiltonian (1.5) may not correspond to pure phases. Thus, 
the condition (vi) is just a restriction on the fluctuations 
of the intensive operator !AA. 

A trivial example,, when the clustering property (vi) 
takes place, corresponds to the case of one-particle ope­
rators TA and AA (see /2,s/ and also /18,23/ ). It can 
easily be verified that the infinite system states generated 
by approximating Hamiltonian (1.5) for all a i;; R1 are 
'G -invariant and weakly clustering. 

Now, let Ac Z 2, JAi <"", and the operator 

T =-~ !, aa., J>O 
A 2 (i,j)CA i J 

Ji-j\=1 

describes the square Ising model (a i = ± 1) with nearest 
neighbour interaction. Let the space average AA be 

'.A = -
1 

- !. !A(i) 
A IAI i~A 

1 . 
where !Pl_O) denotes the quasi-local operator -a0 • -~ 0 j 

and 2 J 
JO-jJ=l 

:A(i) =r
1 

A(O) = la
1 

!. a . • 
2 j~ J 

Ji-jJ=1 

Then the infinite system states generated by approximating 
Hamiltonian (1.5) are known to be not weakly clustering 
for some domain of the variables {3> O, h~R 1 and aG-R 1 
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Nevertheless, the clustering property (vi) takes place be­
caus~1 the fluctuations in (1.6) are proportional to 

JAi c A ((3, a, h) , .· where c A ((3, a,h). is the_ specific heat 
capacity, which according to/23/ is bounded above by 
O(ln JAi) for !Al ➔ oo. . . -

REFERENCES 

1. Brankov J.G., Tonchev N.S., Zagrebnov V.A. Preprint 
IC/76/41, Trieste, 1976; Ann. of Phys., N. Y., 1977, 
107, p.82. 

2. Bogolubov N.N., Jr. Physica, 1966, 32, p.933. 
3. Bogolubov N.N., Jr .. A Method for Studying Model 

Hamiltonians, Pergamon, Oxford, 1972. 
4. Haag R. Nuovo Cimento, 1962, 25, p.287. 
5. Zagrebnov V.A., Klemm A., Ziesche P. JINR, 

P17-10289, Dubna, 1976; J. of Phys. A: Gen.Math., 
1977, 10, P.1987; 
Gilmore R.Physica, 1977, 86A, J,.137. 

6. Ruelle D. Statistical Mechanics (Rigorous Results), 
Benjamin, New Yorl, 1969. 

7. Den Ouden L. W.J., Capel H. W., Perk J.H.H. Physica, 
1976, 85A, p. 425. 

8. Perk J.H.H., Capel H. W., Den Ouden L. W.J. Convex­
Envelope Formulation for Separable Many-Particle 
Interactions, Preprint, Rijksuniversiteit Leiden, 1977. 

9. Lebowitz J._L., Penrose 0. J.Math.Phys., 1966, 7, 
p.98; , 
Penrose 0., Lebowitz J.L. J.Stat.Phys., 1971, 3,P.211.· 

10. Lebowitz J.L. Physica, 1974, 73, P.48. 
11. Lieb E.H. J.Math.Phys., 1966, 7, p.1016. 
12. Gates D:J., Penrose 0. Comm.Math.Phys., 1970, 

15, p.255; 1970, 16, p.231; 1970, 17, p.194. 
13. Hemmer P.C., Lebowitz J.L. Systems with Weak 

Long-Range Potentials, in Phase Transitions and 
Critical Phenomena, vol. 5B, C.Domb and M.S.Green, 
eds. Academic Press, 1976. 

14. Reed M., ,Simon B. Methods of Modem Mathematical 
Physics, vol. 1, Academic Press, 1972. 

15. Griffiths R.B. J.Math.Phys., 1964, ,5, p.1215. 
16. Brankov J.G., Shumovslzy A.S., Zagrebnov V.A. Phy­

sica, 1974, 78, p.183. 
17. Bogolubov N.N., Jr., Brankov J.G., Plechko V.N. 

Internal Report IC/76/51, Trieste, 1976. 
18. Den Ouden L. W.J., et al. Physica, 1976, 85A, p.51. 
19. Ruelle D. Comm.Math.Phys., 1966, 3, p.133. 

23 



20. Kastler D., Robinson D. W. Comm.Math.Phys., 1966, 
3, p;l51. 

21. Doplicher S., Kastler D., Robinson D. W. Comm.Math. 
Phys.,., 1966, 3, p.1 . . 

22. Lapushkin S.S., Moshchinsky B. V., Fedyanin V.K. 
JINR, E4-8816, Dubna, 1975. 

23. Ferdinand A.E., Fisher M.E. Phys.Rev., 1969, 185, 
p.832. 

24 

tl-

Received by Publishing DeJ;,artment 
on APril 26 1978. 


