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The approximating Hamiltonian of N.N.Bogolubov, Jr, is gene-
ralized to models with nonpolynomial in intensive observables in-
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1. INTRODUCTION

In our previous paper /1/ we have proposed a further
extension of he pproximating Hamiltonian method of Bo-
golubov, Jr./2 3/ which permits the asymptotically exact
(i.e., exact in the thermodynamic limit) investigation of
a general class of model systems with a nonpolynomlal
interaction term. The interaction is a function of the space
average of some quasilocal operator (observable, see
Haag 4/ and the Appendix). Thus it is a function of an
intensive observable of the system. In the case under

consideration, the N-body Hamiltonian, defined in a re-
gion A CRY (v =dimR") with a finite volume |A| ,
acts on the Hilbert space of states fjA and has the
form

Hy=Ty —hlAlAy —[AlG(A ). oA

Here hc RY T, and A, are self-adjoint operators sa-
tisfying the following conditions:

(i) A is an intensive observable generated by the
space averaging of some uniformly bounded in 55_),1\ self-
adjoint quasilocal operator, i.e., there exists M>0 such
that for all ACRY, with |A]<e

|I3AA”5A <M

* For other types of nonpo }ynomlal models (generalized
Dicke-type models) see ref.
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(ii) the operator T which generally defines as éxten-
sive obseruable of the system,is' such that there exists
K">0 satisfying

HOTy AAJ “353 <K~
for all ACRY with |A|<w;

(iii) the operator-valued function ¢(AA) can be deﬁ-
ned by the spectral representation

M+0

where ¢(\) is a twice differentiable function on I=[-M M]

(eWeC2an) such that there exists K>0 and the
following inequality holds:
67"\ ] <K,

without loss of generality we further assume ¢(0)=¢ ‘(0)=0
(see (1.1));

(iv) the operator Tp generates the Gibbs semigroup
fexp(-BT 5} g>o 1.e., e (-BT)) € Trace-class for
all 8>0;

(v) by virtue of conditions (i) and (iv) the operator

Ty =T, —-x|AlA, , xR . 1.2)
also generates the G1bbs semigroup; we require the exis-
tence of the thermodynamic limit t-1im(.)=1lim S ()

o Jo « JAL/N=y M| Ao
(where |[A]»~ in the sense of Fisher ) for the free
energy density -

Fy (0 =~BIAD! InTrexp (BT, (0) . (1.3)

namely, for all xcR!, >0, v>0 there exists function
such that

t-limFy\() =F(x), F@®ecC™R"Y); (1.4)
(vi) define the approximating Hamiltonian

Hop (8 =Tp(+6°@) + [N @$’@ ~6@) (1.5

which depends on the real parameter acl ; for the system
with Hamiltonian (1.5) and all 8>0 and v>0 the fol-
lowing clustering properiy must hold:

2 .

where a, is determined from the equation

min fA[HO’A(a)]= fA[Ho,A(aA)]’
aCSA

1.7)

S =facR!: a=<A > }.
A A
Hoa®®

Here the use has been made of the notations

<.>H = Tr{(.) exp(-BH) }/ Trexp (-BH) ,

-1
t}\[-] =-(B|A]) InTrexp{-g()},

for the thermal average and the free energy den51ty, res-
pectlvely 4

Remark 1.1. The clustering condition (1.6) corresponds
to certain restrictions on the magnitude of the fluctuations
of the intensive observable Ap in the system described
by the approximating Hamiltonian (for further details

see the Appendix).

Proposition 1.1.”Y Let the Hamiltonian of the system
be given by. Eq. (1.1) and let conditions (i)-(vi) be satls-
fied, then

- - =0, ‘
t limlfA [HA] min fA [HO'A(a)]I = ‘ (1.8)
aeBA
where Hj )(a) has been defined by Eq. (1.5).



Remark 1.2. As we have shown in paper /1/

in ! = mi A
min A[HO,A ()] = min max fA[}(o,A(a'b)]’ (1.9)
a€s) acR1pcrl
where

Hoa@® =Ty (h+ @) + ;1) +|AI1a2!@ ~ (1.10)

- (Dl(a) +bd’(b) -~ (b)}.
2 2
Here

@ = ¢ +La?

(1.11)
1
2
and the function ;i;(a) cC®R 1Y) isa twice differentiable
extension of ¢(a)<cC2(]) to R!, which satisfies condition
(iii). ' ,
In the general case (this means that approximating
Hamiltonian (1.5) is not to be one-particle operator) the
direct calculation of the thermodynamic limit
t-lim { min f,[Hy A D1} is hardly practicable because

2 S ’ )

of the absence of an explicit expression for f A[H A(a)]
at large but finite values N and |[A| as well as because
of the lack of explicit information about the structure of
the set Sy, for |A|-c. In the present paper it will be
shown how to avoid these difficulties provided the limit
function (see (v))

@, (b) =-—=Lb%, (L>3K),

| t ~ lim fA['}( 0. A (a,b)] =‘F(h,+(1>1’.(a) -Lb) -

(1.12)
_L[ 2 ’ -
b+ ad 1(a) (I>1(a)
is known.,
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Remark 1.3. Simultaneously with our work /4 the same
problem has been studied by den Ouden, Capel and Perk/7/,
They have considered the same Hamiltonian as (1.1) but
containing an analytic function of a finite number of in-
tensive (normalized /1/ ) self-adjoint operators A () |
i=12.,n, under stronger than (i)-(vi) restrictions

on the operators Ty , :AA‘) and the function &(.) (see
below remark 1.4). In the recent preprint /8/" the same
authors have given a convex-envelope formulation of the
problem in the fixed-magnetization ensemble *,

This paper presents a further development of the ap-
proach proposed in/1/ for systems with nonpolynomial
interactions. In particular we shall give here a complete
proof (see Sections 2 and 3) of the fact

t-lim{min £ ,[Hy \(@H=min {t-limfy[H, A (@]} (1.13)
’ aEs !
aEsp

important for practical applications of Proposition 1.1.
In Eq. (1.13) the set S is defined by inequalities (1.14)
(see below) which, as it was first shown in/7/, replace
the usual self-consistence equations (molecular-field
equations). Below a new derivation of Eq. (1.14) is given
which is based entirely on the analysis of the auxiliary
two-parameter variational problem for the limit func-
tion (1.12). The important particular cases of attractive:
6’ (a) >0  and repulsive: ¢”(a) <0 interactions are
also paid special attention (see Section 3). The main re-
sult of the present paper can be formulated as the fol-
lowing '

*The convex-envelope construction has been proposed
by Lebowitz and Penrose 9/ for mathematically rigo-
rous derivation of the Van der Waals equation for classi-
cal g}lst}s with a long-range Kac-type potential (see
also /10/), Generalization to quantum systems has been
obtained by Lieb/11/(for further generalizations see /12/
also the review article /13/).



Theorem 1.1. Let the Hamiltonian of the system be

given by Eq. (1.1) and let the operators T,,:A, and the

function ¢(.) satisfy conditions (i)-(vi), then

(@) t-limfy[H,]  exists for all hcR?Y, >0 and v> 0

(b) t—limfA[HA]=ménS te-limf\[H 4 @11, ‘ where
a

S={ac RL - F/(h+p%a) -0) <a<—-F’(h+¢(a) +0)}. (1.14)

Remark 1.4. The above formulated theorem is a genera-
lization of the result obtained in /7:8/ under the condition
that function is analytic on | and operators T,, !Aj
satisfy certain ”short-range” conditions. We extend

this result to the case of the broader class of functions
#(a) € C2 (I) (iii) and reduce the restrictions on the
range of interactions included in T, and A, to the
more general conditions (iv)-(vi). Particularly we do not
need the boundedness of the intensive (normalized /7/)
operator |A|""T,. Thus T, may correspond for example
to the kinetic energy operator of particles enclosed in

a region ACRY.

‘The proof of Theorem 1.1 follows a line of reasoning
different from /7 and is based essentially on Proposi-
tion 1.1 and the main Lemma 2.1 (see Section 2). The
idea of our‘proof consists in the consecutive establishing
of -the following four relations:

t-lim|f, [H ,]-min £,[H  (2)]] =0; 1)
, ATA aC-SAA 0,A

min fA[Ho,A(a)] ¥min max fA[HOA(a. bl; (2)
a&sp acR! beR1 '

t-Umi{min max £,[}, \(ab)] =
1 1 !
a&eR 'bER . (3)
=min max {t-limf, [}, \(a,B)]};
acR! wecR! '
min max it-limfA[}(oA(a,b)]}=min {t—1im f [HDA(a)]}.

E'J.GR1 bGRl ! acsS A (4)

Equations (1) (Proposition 1.1) and (2) have been obtained
in /Y and the proof of Egs. (3) and (4) is given respecti-
vely in Sections 2 and 3 of the present paper. The com-
bination of equalities (2)-(4) gives (1.13) and of (1)-(4)
gives the statement (b) of Theorem 1.1.

2. THE MAIN LEMMA

We start with the proof of Eq. (3) (see Section 1) which
is the content of the following main
Lemma 2.1. Let {fA{}A(a,)}i be a sequence of
functions generated by the two-parameter family of Ha-
miltonians (1.10) with operators T, and A, satisfying
conditions (i)-(vi) (Section 1). Then

(a) T@irélrgg?l{t—lim fo L3 A2 H=1(8, v, b)

exists for all heR!, B>0 and v>0;

(b) £(B8,v,h) =t-limimin max f, [X_,(ab)].
) acR1eR 1 AT oA

Proof. (a) Let us denote z=h+ @i(a) -Lb. Then (see
(1.3) and (1.10)) one has

(ALHo A D] =F (@) +207@ -0 (@ -—12-Lb2. @.1)

Conditions (i) and (v) (Section 1) imply the uniform equi-
continuity of the family {F, (1, since

|F) () = Fp 2] <M %" =% O @2.2)
for arbitrary x’,x”’c R 1 Hence, in the thermodynamic li-

mit we obtain that the limit function F(¥) (see (1.4))
obeys the Lipschitz condition

|F(x) - F(x")| < Mx"=x"} . 2.3)



Using (2.3) one easily verifies that for all fixéd ac Rl
the function t-limfy[}; 4 (a,b)]
ximum with respect to_ " b&R! on the bounded interval

[sf<eM.  Denote by b(a) the point at which the maximum

of t-limfy [} ;4 (ab)] is attained, and by bj(a) the
corresponding point for the function fa [}(0 A (@b 1.
On the other hand, the uniform equicontinuity of the fa-

_ mily I.FA(x) } and the pointwise convergence (1.4) im-
ply the uniform convergence of {FA(x)} to F(x) on every
bounded set from R1 (see, e.g., ref. /14/ ). Hence, for all
abeRr! and arbitrary fixed D>0 such that
|h+(I)l’(a) -Lb|<D we find

lt=Timf, [ 4 @BI-1,[H, ) @B <8, D),

lvlvhere t—limb‘A(D) =0. Thus, for every fixed acR! one
as: '

TAHGAGD] 21, TH , @BE@)] >

_ (2.4)
2 t~lmf (K, ) @u@)] -8, ®,),
where D_=|h+ |® ()| + 2M. Similarly:
t=timf s [y ) G b(@)] 216 ~Timty [ 5 @B bh @ 2
: A

21004 @b @]-8,0 )
and, taking into account (2.4), we obtain

|:1:1;11t—1imf/\[}( oA @bli-1, X O'A(a,bA(a))]lf‘o‘A(Da)-_
| (2.5)

Thus: -
t-limf, [Hy, (@b@)] = maz;l{t-limfA[}( op @B =
be

=t-1im{lr:nenklfA (X 0. A {(anl} ‘Et—limfA[Ho'A(a,b'A(a))] .
(2.6)
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reaches the absolute ma-
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Consider now the 'sequence ALK Aa, I;A(a))]},‘_,a cRL.
In ref. /Y we have shown that the functions {bA(a)! are

continuously differentiable with respect to acR! and:

=<A , > T .
bp(8)=<Ay Ho @8 L@

- By differentiating the above identity with respect to the

variable acR! and making use of (1.11) and condition
(iii) (Section 1) we conclude that

bl 0%
< <
= & - L

<@+%. . (2.8)
L

Hence, and from inequality (2.2), condition (iii) and the
existence of the limit (1.4), it follows that the limit func-
tion t-limf [} A(a,a))] is continuous in acRl,
Further, from the estimate

f, LK O’A(a,—bA(a))] - fA[Ho,A ©.b,0)] 2

(2.9)
> =M +30) [a] - 1-(L-3K)a?

in which we have taken into account the fact that |b, (a) <M
(see (2.7) and condition (i))as well as (2.8) and the iInequa-
lity

a0’ (@ - ¢ (2 -;—(L—3K) a® (2.10)

it follows that the function t-limf, [}, , (3,b,(a))]
attains its absolute minimum in the bbundeé\ interval

lajJ< R = 2M(&K+3L)/(L -3K). Let a, |aj<R, denote the
point that provides the absolute minimum value of the
function t-limfy[Hg 5 (abp(@)]  on R!. Then from

(2.6) we obtain the existence of:

11



min max ft—limf, (K A(a,b)]}=t—limfA[}(oA(E,_bA(E))].
acR® beR? (2.11)

(b) Let us return now to estimate (2.5). For all ac[-R,R]
we have

jt-time, (K b@)] -1, (K ) @B @} <3, D),

(2.12)

where D =max D a is finite. The estimate (2.9) implies

lal<r

also the existence of the point a=a, (Jap| <R) that
provides the absolute minimum value of the function
£}, A (a.by (@)] on R! Therefore from (2.12) and
the définition of the points a= 2 , a=2a, we obtain

t=limt\[H, o B.BED]- 1, (K, \ G UNCIVIES

—dt—.umtA[Ho,A(a’b(a))]”azaA -, [X oA (a, by (a N<

<5, . (2.13)
Sim‘ilarly,

£, (K O'A(;.A,EA(;A))]—t—limt‘A[}( o,A(;’E(;))]S

<tp[Hy o (aby @I-t-timf, (K G b@)]I<

<8y (D). : (2.14)

From (2.13) and (2.14) we find

12
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A

[}(O'A(EA,bA(aA))]—t—limfA[}( oA (a,b@)]|<8 , D).
(2.15)

i ei— T e—. - -

o Ty
u!

Hence, in the thermodynamic limit we get

min max {t~lmf \ [H, , @B =

aGRleRl
(2.16)

=t-lim{mn max f,[H (a,B)]}
A A
acR! peRrl 0

which completes the proof of the lemma.

Corollary 2.1. If the function F(x) is known, Lemma

2.1 gives the thermodynamic limit of the free energy den-
sity for the model(l.1)in terms of the two-parameter va-

riational problem (see (1.8), (1.9) and (2.16)):

t-limf, [H, 1=min max {t-limf, (K . (a0}, (2.17
A AP oA )

This result generalizes the mini-max principle due to
Bogolubov, Jr. /2%  for the models with the nonpolyno-
mial interaction (1.1).

3. PROOF OF THEOREM 1.1

(a) Proposition 1.1 (see (1.8)), Remark 1.2 and Lem-
ma 2.1 imply the existence of t-limfy[H,]. The fact that

min max f, [ A(a'b)]

Ao,
aGRleR1

choice of the auxiliary parameter L>3K in Eq. (1.11)
follows from (1.9).

(b) Note that the functions {Fy(®} and consequentlv
the function F(x) (see (1.2)-(1.4)) are convex on R
Therefore the left derivative, F’(x-0), and the right deri-
vative, F/(x+0), exist for all*x cR!. Hence, the condition
for maximum with respect to b €R! in (2.17) is equiva-
lent (taking into account Eq. (2.1)) to the inequalities

is independent of the

~F'(h+ ®{(2) ~Lb-0) <b <-F'(h+ ®Y(@) ~Lb+0) . 3.1)

13



From the monotone non-increasing of the left and right
hand sides of (3.1) with the increase of beR! it follows
that for each acR! the solution b=b(a) of inequalities
(3.1) is unique. For b=b(a) we have

-F*(z(a -0) _<'b(a5 <-F(z(a) +0) , (3.2)
where
%(8) = h+ ® (@) -Lb( _' (3.3)

It should be emphasized that the uniqueness of b(a) (or
bp(@, , which is the solution of inequalities (3.1) with
F (h+<I) (4 -Lb+ 0)) ) is an immediate consequence of

the strict convexity of the function' t- limf, [X Aapl (or
fp g (a,b)] ) with respect to pc p Fpurthermore
from the uniform in b € K (for any compact set KcR1)
convergence of the sequence {f, [}(o A @bl - (see
Proof (a) of Lemma 2.1) and from the uniqueness of the
points bA(a) and b(a) it follows that for every acRr!
one has; ‘ o . .

t—limEA(a) =__b(a) . 4 | (3-4) |

We need now some properties of the function b(a). Integ-
rating inequalities (2.8) over the interval [ a;,a,] and
proceedings to the thermodynamic limit we find that

OSEy(a‘g) -E(gl) 5%{@'1@2)-&1):1(%)1, | (3.5)

i.e., b(@ is Lipschitz-continuous (see (1.11) and con-
dition. (111), Section 1) monotone non-decreasing function
of aGR

Consider now the conditions for the determmatlon of
the points {a,, ! which correspond to the local minima
of the function t-1limf A[}( A @ b(a)) 1. By definition.
of the point a <fa }, ghere ex1sts a neighbourhood
Z(a ) of a_, such that for all ac3(a) :

t-tinf, [Hy o\ (ab@)]-t-limty[Hy r(a ba  )]>0.

14

Hence, by using (1.12) and the concavity of @ 1@, it is
easy to obtain the inequality

F(z(®) - F(z(a_)) -Lb(a ) [b(® ~bla )] +

+al 0@ -0 )] > 0. (3.6)

Next, from the convexity of the function F(x) onR!

it follows that for any X <X,

(x,~% ) Fx ~0) <F(x)) ~F(x )g(n} X )F(x 20 (3.7)
If a <a, ac3(a o)+ then from (3.3) and (3.5) we have

z(a;) <z(a) and from (3.6), in view of (3. 2) and (3.7),
we obtam

0<[@/() -¥/(a )1la+Fla(a ) +0)] -

-L[b@ -b(a ) bla )+F(a(a)+0)] <

a_

<<I>"(f Na~a Ya-b )) , (3.8)
where {,c(ap,a), ®7(£, )>0 (see (1.11)). Hence, for
all aG{aGE(a Yra <a} one has:

a> b(am) . (3.9)
By similar arguments, for all ac{a ¢ E(a ):ag a_ }
(now z(a) <z(a ) ), we find

a<b(a ). (3.10)

Compining inequalities (3.9) and (3.10) we conclude that
=b(a, ). We have thus proven the following important

fact Every point a=a which corresponds to a local

minimum of the function t~ lUmf, (X oA (a,b@) 1, sa-

‘tisfies the equation

15



a = b(a) . (3.11)

We observe now that on the set S of all the solutions
of equation (3.11):

S={acR}a=1(a)} (3.12)

the Hamiltonians J, 5 (a,b(®)  (1.10) and Hg a()
(1.5) coincide, therefore

min {t-Ymf [} (a,b(@)]} =

a@Rl ' A A

= min it—limfA[]( o A (2.b(@)} =
aEs '

= min {t—limfAv[HO'A(a)]}- (3.13)
ac$s
The definition of the set S (3.12) can be re-formulated
in terms of the linearized system I'a (X (see (1.2)-(1.4)).
To this end we notice that if ac S, then from (3.2)
it follows that

—F’(h+ ¢"(a) -0) <a<~F'(h+¢’(a) +0) (3.14)

and, conversely, if (3.14) holds, then b= a satisfies in-
equalities (3.1) for a=a. Hence, by the uniqueness of
the point (), weget B@)=a. Therefore

S={acRl: -F(h+¢'(a)~0) <a<-F'(h+pa)+0)}
which (see (2.17) and (3.13)) completes the proof of Theo
rem 1.1.

Corollary 3.1. Let the function &(.) in the initial
Hamiltonian (1.1) correspond to an attractive type of in-
teraction, i.e., let for all ae€l

$7(a) > 0. , : (3.15)

16

Then

lninit—limfA[HO'A(a)]l=nunlit l1mf [H A(a)]i-—-
a€s . a€R

= t-limf, [H , @], (3’.16)

where a-=a  satisfies the self-consistence equation (1.7),
taken in the thermodynamic limit:

a=t-lm<ay>, (3.17)

Ho,A®
Really, from the Bogolubov inequality, the spectral re-
presentation (iii) (Section 1) and condition (3.15) it fol-
lows that

fA[Ho,'(a)]_fA[HA]Z

1 Mo & a- ) 20 ‘
A ! > ,

32:& dE, (A )¢ §p\A-a e (3.18)

where fAG(-M,M). Hence, taking into account that ScR!
we have

-

t—limf [H ]<mm ft- limf [H A(a)]}<
aeR!

<mnfe-timt, (0 @ | (3.19)
aeS

Since the function t-limfy [H, 5 (@] is continuous (see
(1.3)-(1.5)) and the set S is bounded (scli, because
[F/(xx0)| <M, , see (i) and (v), Section 1) and closed
(see (3.5) and (3. 12)), it reaches the minimum on some
subset of the set S. From (3.19) and Theorem 1.1 it
follows that equality (3.16) must holf for any point 3 be-
longing to this subset. Next, taking into account (3.15) and
the existence of the left and right derlvatlves of the func-

17



tion t-limfy[Hg A (3)] (see (1.3)-(1.5)) the minimum

condition for acR!  takes the form
F1h+¢’(a) -0)+a <0,

(3.20)
F1h+¢’(a) +0) +a>0.

On the other hand, by definition acS. Therefore, (3.14)
and (3.20) imply the differentiability of the function
t—limfA[HoA(a)] at the point a=13:

A=—F'(h+$73)). ’ (3.21)

Equality (3.17) is then a consequence of the Griffiths
lemma/! about the convergence of the derivatives of
the convergent sequence i-FA(x)I of convex functions
at the points of differentiability of {-FA(x) ]  and the limit
function F(x): . .

—F/(h+¢"(a)) = t-lim{~F(h+ )} =

=t-lim<A,> . 3.22
A HO’AG) ( )

Remark 3.1.As was shown in ref./l,/in the cése of attrac-
tive interaction theorem 1.1 holds without the clustering
condition (1.6). This specific property of attraction has
been exploited in paper // for the particular case of

(@) = %-ag, 3>0. The result of this paper can be gene-
ralized now to the case of an arbitrary twice differen-
tiable function ¢(a), such that ¢’(a)>0, for acl.

Remark 3.2. If the interaction in Hamiltonian 1.1 is

not purely attractive, then the clustering property is es-
sential. In the case of ‘¢(3) = £a%, - J<0,  this'question
has been discussed in/17/ ' (see also /% ). Den Ouden

et al.””  have made an attempt to replace the clustering
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condition by a ”short-range interaction” condition for the
operators T, and :Aj simultaneously. In/ 1%/ it has been
assumed that the bounded self-adjoint operators Ty and

AA are one-particle operators, then the clustering pro-
perty follows trivially.

Corollary 3.2. Let the function ¢() in (1.1) corres-
pond to a repulsive type of interaction, i.e., for all acl
one has

¢”(a) <0. . (3.23)
Then

:ﬁerms{t—limfA[HovA(a)n = ;néaslit-limfA[HO’A(a)]! =

=t—limfA[H0'A(a)], (3.24)
where

a=t-lima, (3.25)

and a, is the unique solution of the self-consistence
equation for the finite system (compare (1.7) for Sy )

=<A, > .
a A7 Hy g (@) (3.26)

Really, by virtue of the convexity of function F(x and
condition (3.23), the set S contains only one point a=a,
Hence, using Theorem 1.1, we obtain

min {t—limfA[ HO'A(a)]l=t-1imfA[HO,A(a)]=t-1imfA[HA].

2SS (3.27)

Next, taking into account the- spectral representation
(iii), (see Section 1), the Bogolubov inequality and (3.23)
we get '

: g M+O g
fA[HA]—fA [HO,A (a)] 2 - -2—<_L{ dE}\ (’AA) qS"(EA)(A—a) >HA20 ,

.
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where f/\ ¢(-M,M. Therefore

t=limf [H  (9]< max ft~limf, [H) (@I} <
' acR!

<t-Umf,[HpT. (3.28)

Thus Eq. (3.24) is a direct consequence of (3.27) and
(3.28). Equality (3.25) follows from the uniform on any
bounded interval of R! convergence of the sequence
{fAlHpp @11 to the limit function t-HUmfy[Hy A (2) ]
(see Proof (a) of Lemma 2.1) and from the uniqueness

(due to (3.23)) of the points EA and a.
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APPENDIX

1. Let the region ACR” (or ZV ) be of finite vo-
lume with respect to the usual Lebesgue measure on RY:
(A =|A] < oo (or with respect to the corresponding
discrete measure on 2Y), Consider the local Cc* -al-
gebra of the observables 4, contained in the domain A,
that is the algebra of all bou?(}ed operators acting on the
Hilbert space of states $) ,/%. If xcA, then the opera-
tor-valued function A:x - A(x) G'U.A is called a local
observable (local operator). Alongside with that it is
convenient to define qiasi-local quantities” (Haag /4/ ).
Let the continuous function f (xy) be such that there
exists @>0 and f (x,y)=0 for |x-y|>:Q, then

A ) = [ iy (%) A®®

is called a quasi-local operator.
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Further, denote the group of translations of the space
RY (the lattice ZY) by G={R"} (z"}). Let g.cq, then
there exists a representation g _-r of the group G
into the group of automorphism of the quasi-local algebra

U T ] 2N A which acts on the operators A(x) (or

AQ (xo)) ) as follows:

1. A(xg) =A(xy+x)
for arbitrary x_,x&R Y. The group G is locally compact
and abelian, therefore there exists an invariant Haar mea-
sure dg on this group. For G={RY} it coincides

" (up to a constant factor) with the usual Lebesgue measure,

for g={z"} - with the corresponding discrete mea-
sure. Thus, the space average of the local (quasi-local)

operator A(x,) ¢ %  over the region Acg¥ (or zV)
is defined for arbitrary x,cA as -'

1
fAA= — f dgx’xA(xo) . (A.l)
1Al G\x )

The operator A, dis called intensive /V (or normali-
zed //) operator. Here GA(xO) cG is such that for

all fxCGA(xo) we have x +x€A. For @g={z"} the
corresponding discrete measure dg induces summation
over the sublattice Acz?. A similar construction for

gl Ay Ay CASC o and )A )» ~ is called ave-
raging operation” /19/ y_ filter /20/ or M-net /8/ (see
also 7/ 81/),

2. With the notion of the space-average (or M -filter,
M -net) of quasi-local operators one can formulate such
a property of the infinite system states p(.) as the
weak clustering /19-2V,

m LS dg el AGp B =plAlx) B,
lAlmlA\cA(xo) ‘ T (AL2)
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Axp) ,Bc. This property is necessary
to correspond to a pure

for arbitrary
for the G-invariant state p(.)
phase (see/8/ and /19-21/ )

In the present work we have used a clustering property
(see (vi), Section 1), which is obviously weaker than (A.2),
since (vi) involves only one intensive operator in inter-
action Hamiltonian (1.1). This means that for such a mo-
del the infinite system states generated by approximating
Hamiltonian (1.5) may not correspond to pure phases. Thus,
the condition (vi) is just a restriction on the fluctuations
of the intensive operator 'A,. :

A trivial example, when the clustering property (vi)
takes place, corresponds to the case of one-particle ope-
rators T, and Ay (see /2.8 and also/18.23/ ). It can
easily be verified that the infinite system states generated
by approximating Hamiltonian (1.5) for all 3¢ R are
‘G -invariant and weakly clustering.

Now, let ACZ®, |A|<~, and the operator

T = - L E o, 0 y J >0
AT 2 pea
li-3l=1
des’cribes the square Ising model (o, =+1) with nearest
neighbour interaction. Let the space average Ay be

1

A = — 3 AW
A A} 1eA
: : 1 D> o
where 'A0) denotes the quasi-local operator 5——00 . (A j
and [0—jl=1

AQ) = -1 Lo, .
,A(i) =7 A(0) > o, jé/\ aj
li-il=1

Then the infinite system states generated by approximating
Hamiltonian (1.5) are known to be not weakly clustering
for some domain of the variables 8>0, hcli“1 and acR! .

22

Nevertheless, the CIuStering property (vi) takes plz;ce be-
cause. the fluctuations in (1.6) are proportional to

lAl cA (B!ayh) ’
capacity, which according to/23/
O(n|AD.

- where ¢, (B,ah). is the specific heat
is bounded above by
for |A]» =. o o
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