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nocb B.<l>. El7 - ll508 

MeTon cyneponepaTopos a Teopuu ocuunnstTopa, cna6o 
aaauMo.aeikTByiDmero co cpe.aoH. II. KoHKpeTHhie MeXaHH3Mhi 
B38HMO.OeiiCTBHSI 

Ha ocHoae o6mero no.nxo.na, paasuToro aaropoM paHee, uccnenyiDTCst 
KOppenstUHOHHhie ¢YHKUHH 1 OflHChiBBIOWHe nHH8MHKY OCUHnnstTOpa, cna6o 
cas:taaHHoro co cpenoH-TepMocTaToM. B Kal.fecrae cpeAhi-TepMoCTaTa pac
CMaTpusaeTcst CHCTeM8 6onblll0f'O l.JHCna K8K Yf'OllHO B38HMO,neHCTBYIOlliHX 
M9>KllY C06oii OCUHnnSITOpOB, nonyqeHbi ypaBH8HHSI AnSI KOppenSIUHOHHhlX 
<flyHKUHH Tuna "nnoTHOCTb .. u 'nnoruocTb-nnoTHOCTb'. Bee pacqeThi nposeAe
Hhi B KB8Jlp8THllHOM ITO B38HMOl(eitCTBHIO OCUHnnSITOpa C $n:yKTy8UHSIMH 
cpe.Ubi npu6nu>KeHHH. 

Pa6oTa BbiiTonHeHa a lla6opaTopuu reopeTnqecKoH ¢H3HKH OH fiH. 

npenpHHT 00b91lHH9HHOrO HHCTHTyTa llll9pHbiX HCCil91lOB8HKA. llyoHa 1978 

Los V.F. El7 - 11508 

The Superoperator Method in the Theory of Oscillator 
Weakly Interacting with Medium. ll. Definite Interaction 
Mechanisms 

On the basis of a general approach developed by the author 
in an early work the correlation functions, describing the dynamics 
of an oscillator weakly coupled to a thermoslat are investigated. 
As a thermostat is considered a system of a large number of 
arbitrarily Interacting oscillators, Equations are obtained for "densi
ty" and "density-density" type correlation functions, A square 
on the interaction of oscillator with fluctuations approximation was 
used in all calculations, 

The investigation has been performed at the Laboratory of 
Theoretical Physics, TINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna 1978 

C) 1978 06'1>9/lBBBBBhlfl BBCf'Bf'}'f' Jlll9pBhiJC BCCR91l0BBBBII /1y6Ba 

I. Introduction. 

In the preceding work /l/ (references to which will be 

marked as 111 } the general formulas for -correlation functions 

were obtained by the superoperator method, describing dynamics 

of the weakly bound with arbitrary medium oacillator. These 

re•ul ts Qre true for any power of the displacement operator u. 
of the singled out particle in the Hamiltonian .of' the system. 

Oscillator non-linearity i-s supposed to be little in cmnparison 

with its ~requency. 

In the present work the cases of linear {on U0 ) and 'Cluadra

tic interaction of oscillator with medium fluctuations are consi-

dered as an application 1:>f the general theory. Equation systems 

for f'=ctions were cobtained, determining the -s),lectral distribu

tion of singl~d out oscillators. These equations permit one 

to expl1:>re oscillator £. spectral distribution described by 

the correhtion function < BiL(t)8;_ (o))w in a general case 

of arbitrary relation between oscillator non-linearity (which 

determines the distanc~ betweem fine structure li~es of non

linear oscillator) and broadening of lines. Depending on relation 
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between these magnitudes, the spectral distribution either 

aplite up into a set of fine structure lines or merges into 

single broadening distribution. Equation systems have also been 

obtained for the correlation function of occupation numbers 

( rl,ae (1:) Yf~ (o))w which is smooth function without fine etructu-

re. 

Oscillator correlation functions in time representation for 

the considered types of interaction were investigated by means 

of kinetic equations, obtained from general kinetic equations 

of paper /I~ 
The correlation functions for the operator of medium poten

tial ener~~ are parameters, describing in equations for oscilla

tor correlation functions interaction with medium fluctuations. 

All used notations are given in work /I/ • References to 

formulae of work /I/ will be marked by dual number of {1.15) 

type. 

2. Linear interaction of oscillator with medium. 

To pass in general formulas of work /t/ to the case of 
~~ 

linear interaction, it is necessary to expand e in 

the interaction Hamiltonian ff(~i {1.2) or (1.3) into a 

series up to a linear term, i.e.,to perform the substitution 

iZoV: --- ')(__.{} _..,./)+)-. e -i- Uo \10 == L d..£. 0~ +d..~ 0<£. 'iJO . 
£.. { 1 ) 

Then taking into consideration {1.40), .(1),the matrix element 

" of "mass" superoperator ~ (u)). which determines averaged 

4 

Green euperoperator 6 (w) in the second order on 

tt· t of perturbation theory can be written as: 
Ot 00 

[M ( w+it.)]n'rn' = J ciw' L L {[ Yl~~ +-'J:(i.+j.) I . + 
nm. _""" £.1 j==:ti tJ-wtt+j~~,+Wrn-w+Lt 

md(L + f(:t.+j) J ,.:; ~ + d~ I d.., I w-w -rw .,.7 .,'+ " rut mm 
l'l.. m+JO.r.L.£,+w lc.. 

-V[n~;L+i(:t+j)][mde:t+f(:t+j)i · <
2

> 

( 
:1.. .i ) . + . 

w- cJn.+J·t. , + w"""- w'+t't. w- wn. + L.Jm+i~ .1!'' +w ~it 
d(L£ 0 A 

~'>n.-~-i~~~e' ~';tvt ... i~.L~J I ~i V: I~ f~ (w') 
To obtain formula (2),the conditione of applicability of 

equation (1.40), in particular, the condition of noncoincidence 

of different singled out oscillation frequences (~~ #4l~,) 
and condition of non-coincidence of different frequency combinati~ 

ons (for example, (..)de -:/= Wre.L ± W ~~ and so on) were 

taken into consideration. These restrictions lead to reducing 

the dual sums L , appearing with substituting ( 1) into 
«::~.de,_ 

(1.40), to ordinary eum over ~i in (2). 

Let us write down equation (1.35) for the correlation 

function <~¥!(-t.)t; (o)/win the actual frequency rangew~W..e as 

<tce(t);;(o)/w==- .fi. Im..I_J~(rn>w+iE)j 
In 

3<Je(m.)w+it)= V:i+nt~ (jo): L Vi.+m~' 
I _:) I Yr/..1 

[ 
-;;-I · \ 7M -rd.Jt<l!''> m. 

· GlcJ+,tJ_J 
' l'l'l+~d!''>m 

.o) 
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... n.'m.' From equation (2) it follows, that th€ matrix M 
n.m 

for the linear interaction has the following non-zero matrix 

elements: diagonal with n:: n') m = m.' and nondi.agonal of 

or•ly two types wi.th n.'= n.+ ;;~..r' > m'= m+(e
1
.e' and wi.th 

n'= n.-~ ,, m 1= m- J:. , for €Very oscillation ~--"".t"' ) ""1£ ..... ... 

This circumstance (and diagonality of lo ) permits one, 

as is easy to see, to write the syst~m of equations ( 1.42) as a 

system of equations for the function jae. (m) ~+it) 

[ 
"-:1 .?m.+r..roe'm.. G (t.J+it)J ,.., > q..e (m

1
<.J+it) + 

m+ooe.el>m. d 

[ G-3-(w+it)]m+~Je'f-JO:,.t«'', m+jv;_,.r•\ r-;: mdl! 
m+f.,.,,>m.. V ~« +ia;._.t +[_ L_ 

j=H ,ei 
{4) 

,<j c.J~~. ( . r2 ' ) ·e it£ m.+J"~.ioe',i.J+a = (1.+mt£) (p.Y~ · 
Here, the function :JM?. ( m+j~1;e•.J t.J+ tc) is determined by 

equation {))with the substitutionm.~~:-.nz.e+j~,~.Je Jm.-.m.+i~.~,L'o 
G"'-::1.( 0 ) The real and imaginary parts of the superoperator ~+tc = 

... ... ) = W- f L f - M ( W + 1.' t matrix elements, which are 

coefficients of equation {4), are determined according to 

(1.14), (I.J6), (2) as 

G- :t ( LJ+ i. t) == R.e G- i ( t.J+i.t) + i. I m.. 6---:J.(tJ.,.('c) J. 

[G""-:it. ,lm.+~.r' m.. 
Re \w+i.t)J .:J > ==t:J-c.J.x:(m)-f 0 

h'l.+ddl.re' m ¥! ..} 
) (5) oo I 

fJe == ;L f dw' w.: ~L)' .t I J:e V:l.t f~ (w) j 
-co 

I 

I [ G-1 (t.J+it)]m ... 1.~e')m == rJe.(i.)(m) s 
m m+oJe&~e'>m 

r (~\ m.) == Jl L. J~, v;, r'" [ (J mcle, +~de'+ j+ j) f~ (jiJd(,) j 
£. ' 0 

~ J=ti 
R.e [ e.-:i(w+i.t)]m+i;..,~t'-f"id;_.i.lt') m•j"'1de':::: 0 

~t+~.Jt~M. 

Jm. [G-:L(c:J+i.t)]m+o;_.Je,+j~1-r')m+j~.tJe':::: J 
0 M+~dE.''JM. Qd(~:t. (rvt)) 

t J~i. (tn)::::- :;Jf vr YYl~:t. + ~<lf':t. + f(J.+ j)][ m~1. .,_ f(i+i)] I 

I ~1. "Vo lot tf~ (-jtJ~:!) 0 

Equations (5) for real and imaginary parts of "mass" 

superoperator M { t.J+ i E) are written in the frequency 

range W ~ W~ actual for the function <tfi! {t.)t; {o)/c.), 
i.e., i.J== Wre. is put in them. Besides, non-lir.ear 

corrections to the frequencies which are unessential here are 

thrown away in formulas (5) for these magnitudes. 

The system (4) of equations may easily be solved in some 

particular cases. 

Let's consider, for example, the harmonic (linear)oscillator, 

when all nor:-linear constants VJt.Jt.'.) VJt.dE.''?R" ,. •o in the 

Hamiltonian (I.33) are equal to zero. In this case, the system 

of equations (4) has the exact solution of type 

Q ( · 
0 

d (mdt. + .:t.) e xp{:- A 'f,lJ.~t,m.~t,) 
0 

(f£ m)LJ+f..f)==y 
0 

j 

., .JZ£ + L r£ 
Jo - ~pexpS-t.L_cJde,nfi!,L == Tl(i+nd?.);ll =cJ-t.JJI!.-P ~ ~I ) Je_ 4(. Je) 

1 



-d. I I ~. 'l } 0 ). :J )- :.L Ylheren =£ L_m¥.exp-f\LWJC,Wl£']=: e -=:_j_ 
.;;;>. 0 ln. - .J!' 

is the mean occupation numl:"r for oscillator £ . Here the 

definitior; 

~( -J.t..J£) ~ -•,/) JJO( ) r£ ::::: :JI j_ - e I oi.Je. v" - 1
[ t.J c..J ~ 

(6) 

is introduced.Consequently,the correlation function {3) fol' the 

haimonic oscillator is determined by the expression 

< fJ~ (d R;/(o)/0 == !;., (Yi~+ 1 ) /)_ r.lt?. ., 
;~I Jl ·!- f'. · (7) 

ck'.. £ 
Expression (7) describea Lorentz spectral distribution of 

harmonic oscillator ~ , whose frequency shift Fee 
broadening r. a:: are conditioned by the linear interaction 

and 

with the medium and determined by the medium correlation function 

r; (w) (see 0.20), (1.21 }). 

1ets'u consider now the system of equations (4) for non
(~) 

linear oscillator in case, when r.Je (m) << Llde(m) (4.l!!(m.) 
iu determined by expression (I.41} and represents non-equidis-

tancy measure of non-linear oscillator levels). As is seen 

from equation {5), the coefficients at non-diagonal terms of 

equation (4) are proportional '( ji(~ ( m.) "" r.~/1hn). On the 

Other hand, functiOnS q (m-t;' i:. I w+i.e) t aS it 
(Jt!i:. ¥J.le ) 

follows from the discussion given in work /I/ (after formula 

0,42)), are the magnitudes of an order of _i__) 
. tJ,JI! ( m. 

at frequencea £J -:;:: W<~:(m..) • The correctness of this statement 

will be seen further in calculations. Taking the function 

( mre + j_) ( .fo)':::_ 
0 (. . ) (:t) ) ~r)t'.. tn}t.?+lf = cJ-Wce(m)-.f.;e-ri.~ (m 

e 

as zero approximation and solvjng the system of equations (4) 

by iteration method we obtain with an accuracy up to terms of 
0)( , I 

the first order in small paramter f£. m)/ A~(m.) the solution 

for correlation function (3) 
-)L.r:J. ,m.r>' f. (4)( ) <B (i:)t+(o)/ == _L) (m +i)e .~e· (£ or: t>t 

£. £. w '.ff:lo ~ £. Jl:. (m) + r(~)t..) 
JC. £ 

. [1.-+- L L '( j (m) V mK+:i +JJ;-*'J.' 
. oe.£j, m.K + i 

j'::±:t ~:l. 

(J:) r (:1.)( . ~ ) ,.::; f;e, (mJ Je m.+Jd£.._Je' -Jl£(m)Jl.d(,(m+j.drl',{.ile') (8) 

r (:t)c > r (t) . "' ) 
de YYl. £. ( tvL + J 0 ile.._ .>?' 

(:!) ;;> 
. f£. (m.+joK1 Je 1 ) ] 

:. ( . .:J ) (~) .:J • 
Jl ,)( I'Yt + J d ~.£.1('' + ~ ( YYl. + j d -~':t.""') 

Here, the following definition is introduced: 

J2~ (M+ i ~1,~e') = tJ- t.Jtle (m.+ii;1 £')- f.£ j j = DJ'!-1. 

The magnitude cJ.le (m.+i/;~..e•) is determined by the 

expresSiOn (I. 37) for Wol(' (YYl.) t in Which m £I iS 

substituted by fY{de, + j ~:t.cle' • By analogy, the magnitude 

rJ((i)(wt-tji;,J.£') is determined by formula (5) with substi-

tution f'Yl. I +J. cf:.. 1 fOr m 1 
~ «J..¥?. Jl?. 

The first addend of equation (B) (zero approximation over 

r.,./.c)(m)/.6.~e("'))according to the general results. obtained in work 

III (see formula (I.44),is the function describing the set of 

fine structure Lorentz lines of non-linear oscillator with the 

distance 

lines 

~£ (rn) between them. The shift P <e. of 

with respect to the points W = wae(m) and 

9 



their widths r£(1.) (m) are determined according to fo~ulas 

(5) (corresponding to general formulas (I.45)) through Pourier 

component of the medium correlation function f~ (~) . As it 

was noted in work /II, in case of linear interaction line 

broadening is conditioned only by transitions between oscillator 

levels appearing due to interaction with the medium excitations, 

and described by the medium correlation function on the oscillator 

frequencies ± LJ~J. • Modulational broadening, which the 

correlation function fwo (w) on zero frequency corresponds 

to, is absent in this case. For linear interaction,as it is seen 

from (5), line widths r~~)(~) depend linearly on oscillation 

occupation numbers ~~' 

Correction terms of the first order in r:J.)(m.)jlll?(m.) 
in formula (8) bring to slight asymmetry of separate lines, 

change of their intensities, and in some shift of maxima with 

respect to points ..fl_<lt.(m.)::::; 0 

It is easy to obtain also an analytic expression for the 

correlation function < f~ (zU t; (o)>w on distribution wings, 

when 1 w- w,£- !ae _ j vc('lle 1 =: 1 Jl~ 1 >> J;. v¥.r:' m£, + ... 
(i.e.,it is possible to neglect in equation (1.37) for ~~(~) 

the terms, depending on numbers m 1 ) and also 

' / n(i)r, ) . . cte /Jlde >>t<£ (I'Yl. Then 1.terahng the system (4) equations and 

taking into consideration that terms with J. == ± i are magni-

r (:i) I I 
tudes of an order of Jf. { m.) ~de/ <</.fl. ole 3£ ( ; for function 

(3) in the first approximation over 

< t~(t)t;{o)>w = ~ (nJe+i) 

10 

r :_i,(nt)/ Ill~ I we get 

~ 
? fl. 

(9) 

In th€ general case the systera (4) of equations rr,ay be 

solved by breakirg the chain of equatiors. It appears to be 

possible as far as according to definitioR (3) the function 

~~(m,w+i.c) 
Thus, only one line will 

is proportional to exp{-~f, i.Jl(.,rfl.,!f, }. 

appear in spectrum at low ternperaturesJ 

corr€spondin~ to the set m == o of occupation nur,,teq 

(intensities of the rest lines are exponentially small) • .lith 

increasing temperature other spectrum lines with nQ * 0 <e' 
begin to develop and spectrum fine structure may appear, rlescrileu 

by equation {8). ''lith furtner increase of temperature lir.es wj th 

large rtl.J!, begin to develop, but line widths also ;:,row. that 

brings to gradual disappearance of fine structure and appearance 

of single broadening $pectral distTibution. 

Consequently,depending on temperature it is possible to 

cut the syst-ern of equations (4) at any equation due to the faetoi' 

exp f-).. L w.t', m~, ~ and to solve the remair,ing sys tern of 
.L' equations either analytically (if there are few equations) or 

numerically at computer. 

Let us illustrate th€ aforesaid by a simple er~n~le, when 

there is only one singled out oseil~ation Je 
of the giv~n oscillator with other oscillations 

~o in sum over Je~ of expression (4) there 

with £-£ ::: £.. .Let's take such temperature 

~ or interaction 

may he neglected) 

is only one term 

(K8 T « W~), 
that it would be possible to take into consideration only 

functions :J.~t.{o>w+t.'t) 
1 

Jrii!(J.)w+it) and throw off the rest. 

Then the system of equations (4) is reduced to two equations 

for the pointed out functions, and ita solution is 

II 



J£. (o)w+i.r::) + Jr!e(:i.J~+i.t) = 

(J.) [ (:i) 1- -../2£(1.)+£~ (:t.)+J. fl.Jt{o)+ir'ae (o) Yl£+8L·~n.~ 

[ . (~) )][JZ () . u) )] fA-Jl.,(o)+ ,~ (o ~ 1 +t.r£ (1.. +8 rJ( n~ ( 10) 

Formulas (3), (10) define the correlation function of de 

oscillation at low temperature with any relation between line 

form parameters of oscillator de spectral distribution. Line 

form)defined by equation (10), is a composite curve in the general 

case. If the distance between the frequencies, defined by the 

conditions JJ.~(o)-::: 0> ..f2.Jt'.(J.) == 0, is significantly larger than 

the magnitudes r.x?.(-t){o)) r¥<.(-1.)(:1.)) then spectral dlstribution 

decomposes into two fine structure lines with maxima on the 
(:f.) ) r. (i) ) 

pointed out frequencies and widths j7~ (o ; ~ (1 

intensities are essentially different ( K8 T << LJ~) 
inverse inequality between I JZ ole (c) - Jlrl€ ( :t) ( and 

• Line 

• If 

rrJ((i.){o)) r;:t)(i) 
is satisfied, the expression (10) describes one asymmetric line. 

Classical approximation for describing oscillator is appli-

cable at high temperatures K8 T >>c.J~~ and in case of 

absence of fine structure. As in the classical limit the main 

contribution into correlation function is given by JJt. (trt)w+/f) 

with large quantum numbers fn. ~ 1 , let us introduce the 

continuous variable X· ::; YYl. ( i-::: o 1.. defines number of 
L ~i ) )''' 

normal oscillation and let's put de 0 =de ). Then going 

in functions 3Je(M..+ji;~rJ( 1JLJ+ie) (i==OJ±1.) to conti-

nuous variables X · and expanding them into power series 
( 

in the vicinity of J == 0 , we get instead of the system of 

equations (4) the differential equation 

12 

[ Jl.e. (x)- i. [_ (:l- J;~,) rlt,] ~t~t. (x> w+ i.e)-
' 

-~i.L_x.r. . (. ~,· 
t 

r1.3.1A! (xJw+i.t) _ :l.i. L. ~ • 
dx, ,·7/o J..t.J.JEi 

J3Jt! (X,Lt)+i.f) 

d.x, 

-J.i.L.X· rlt.- c<:~~(x,w+ie) =.:LX --<?rJdt,xi, c11> . (. /•, jx .R. ~ 0 e J 
i. 1\ W,~e. a.. . It! 

L ' • = n ....L IJ« (-X,(.)+ i.E)= :1~ (oo,IJ+U) = 0 ; 3o i .<w.w.- > 
where X denotes the set ol numbers Xi. , rJe. is defined by 

I. 

the expression (6). 

The correlation function <I .It (t) ~.:. (o) l'w 
classical limit is defined as 

in the 

+ -< tttdt:)!r"R.(o)>..., =- #( Im. 5 3r"R.. {x)w+i.f) cLx (12) 
0 

and may be found by numerical calculation of equations (11),(12) 

at the computer. 

If there is only one oscillation £ then the function 

d£ (x, w+ i. f) becomes the function of one variable X0 

and the expression (11) is essentially simplified. One more 

simplification is possible, if we restrict ourselves to 

oscillator quadratic non-linearity in occupation number operator 

fi. ::: t+ C • Then function Jl~ (l<):::: _fl~- [_ V..,.,.. X. • 
Jt. ftl! L I I ' . "'""'-L L 

As it was shown in paper 1, the oscillat~r correlation· 

function in time representation is defined by kinetic equation 

(I.JO). Let's consider the function. 

< £~(i:.)~; (o)) = L_ (fo)';_ ( 1. + m.<£) 6-de { m.Jt)) 
~ ., 

G + . d.. I - 1.. + m~ • (13) v I c~e ( m. J ~1-lt'. , 1:.) - f, :f.+ m.Je + i a;~,~ 

. (.fe-'-lt_p)m.'+4«',~' . ; (i=o)±:t) 
m.+~«'+ J J;~.,Jt.' ,m.+J~.~.~· 

13 



Accordir:1 to equations (1.30) (1.31) (5) kinetic equat:or: 

for t;1e function GJ£( rYt 1 t) in the second order of pertur-

oatior theory in 1-(.nt is 

/t G£ ( m, i:) =- i. [i/J.i!(m) + P,e- L ~(.t)(m)] Gde (m,i) + 

,_ ~ L._ T_ [ {1. +~,l(i. ){(1.+/) +m.~1. J r n(£1. + f(i.-j)] rrei.. 
d:'1. J =H 

G.~Jm+j~1 *!' 1 t)) (t>>c.J~:.J.) G<~e(m,o) = ::L. 
( 14) 

Following paper 121 let us consider the function of 

continuously varying parameters ~~· 

is 

1 - L_ m.t, lit'' 
<P(~,t):;:;: T 2..: (i+m~)Gc£(rn.,-t) e ~I 

o m 
when uJ ae ( m.) 

( 15) 

ancl let's restrict ourselves to the case 

equal to wfl? -t 4---- V.~t:c!e + L Vc~e.r moe 
0(,. r¥!4. 1 i 

(in the expressi-

on (1.37) all non-linear constants besides vif!J!1. 
are put 

equal to zero). In (15) ~ 

meters ~t¥:' 

denotes a definite set of para-

Then using equation (14) we may derive an equation for 

the function cf> ( :J > t) 

d iJ(J,f:) + \ R d cb((lt:) ::: v ¢{ ) . 
,.. t L J' £J.. 0 11 D.~e :f,t .> 
CJ <tP;t. d<L:t 

<P(JJo)=; [_ (i+m.Je)exp(-[..m.~,~~t'). (16) 
o m tie' 

The coefficients of this equation are defined by the formulas 

R . V r. ( - ) ~.t$. -..r ~ = - L (Lj( - .:1. ¥ 1.. + r2 n. , + !2 e P.t, n.., + 
1. :! :L o;. :L .1. "'1. 

-~~ ( -+ .2 e .~. r~;f. 1.. + n¥) ) 

r.~ =- t. (t.J~+ .f?ll + fv~*'-)- r:e (n6!+:i)- '(J+I.. )r n- + 
L.; ~£' £' ,J(' 

+ .2. L. ( 1. + ~.¥!') r;, { 1. + n£,) e- ~'~· t!l! 
del ) 

14 

and the correlation function <dJI!.(t);.:. (o)) by the value 

of <P{d' ~) at 1Je' =) t.J~, 
The equation of type (16) was solved in paper 121 by the 

method of characteristics. Using this solution, we get the 

expression for the correlation function (13) 
+ -:l -i. < tJe (i:.) ~I£ (o)> = {i. + YirJ!!) 'ft' .. ~ (t:) n t: 1 (t) ' 

""~ ~· rt!l!. 

· e xp [-~.· (cJ.l!+ fdl!) ~it',t +( .fv~"'' + f*-',) t] ) <n > 

( i: >> c:J:,e~) . 
Here the notation is the same as in work/2/ 

d. I ) I [ . V.t".t' ( . - ] pit', I 
T de""' ~i: = Ctt a~re· t + :t-t-L 11f. I :1. +J.Yl.e,) ::;- ,Sn. a_IR~'t .i 

CO<. It( le. "'-¥Jt' 

'" - r~ · r v: r - ~ ait'l?'- ~·+I.~~ K'.o~' i+Jn. ,)-.:Lv 
... 1!. l.f ~It' 

( 18) 

Solution (17) formally coincides with the solution obtained in 

work/2/ but is more general. The parametert 1?~ f., Jentering 
... , Je 

into equations (14),(16) and the solution (17),are defined by 

expressions (5),(6) through the correlation function for the 

arbitrary medium ( in/2/ the magnitudes .f if! > 0e 1 are defined 

for the medium as a set of harmonic oscillators with continuous 

spectrum). 

Thus, in the considered case of oscillator linear interac

tion with the fluctuations of the arbitrary medium there is a so

lution for the correlation function <iJe{t)t;{o))> which is 

true for any relation between magnitudes \/¥~' (defining non-

equidiatancy of oscillator levels) and /'~, (defining level 

broadening, conditioned by the interaction with the medium). 

r. (1.} 
In particular, at / \1 "tit' / ">) ~ ( rrt) from formula ( 17) after 
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the Fourier transformation the oscillator JE: spectral 

distribution as a set of fir•e structure lines is obtained, which 

is described by equation (8), 

If tr.e ir.verse limiting relatiOIJ IV~£' I<< rJe' is 

carried out, then expanding equations (17), (18) to this little 

paran,eter, we obtain 121 ~ 
17 ) /) + ) 1 C - { rc~e. , vdt'ol'' - -<6x.{t:. t'7Je{v 'Ju.)""J/ :J..+Rt£) ,...,1 n'- +L.. MrL ndt.(:t+ndt')· 

.fl.£ -t I,<£ ,;e' '11 ~~ 

(1 cr: >[ r£ _ roll!+~~· ~ rdf?,(r:-ii'.:.o.)]l 
· + £;o!' Ji': + Gt" J['} +(~+Jt;./ -eX- (Jr'd(.'ll. + r~~:')/J. J .i 

JL~ = _n ~ - z:; vKdt' n.Je, ( :1. + ~.e·> . 
In the casedtof intermediate relation between \/~£' 

and r<£.' the oscillator £ spectral distribution may be 

obtained by numerical integration of expression (17) over time t . 
Such calculation at computer was carried out for quantum and 

classical case~ in works 12 ,)/ respectively, As it was said 

above, in the general case for findin~ spectral distribution by 

means of numerical calculation at computer the system of equations 

(4) or differential equation (11)(in classical limit) may be 

used instead of integration of equation (17), 

Let's consider now the time correlation fur.ction for the 

operator of the oscillation £.. occupation number 

< n~(c) ~.~e.(o)> = r (p .. Y:::. m~J~ (m)~:)., 
I'Yl. "" 

g~ (m)l) = L. m..'de. (Pe-;_f.tp)~:' 
m' 

Kinetic equation for the function j~ ( m >I;) is determined 

by the expression (1.30), (1.31). (2) and is as follows 

(in the second approximation of perturbation theory): 

16 
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-a~ J~ r m)~:) = -:L L- r.lf!~ f [ m~J:t.,.~nd(J + ni!J~~{m, t)-
.rJ. 

-[. [nK +f(:i-j)][m~J.+"fU+j)]j~(m+j~t.~e'J)jj 
• J. 

J- .. :1. ( 1 -1. ) -- z:->><Jmeci (19) 

g~ (M,o) = mJ(-nt~e 
If the magnjtudes 

A /I(I(L ( ) \""" li K wt. 
fV,r,£~ t:_ :;Lm_clem_~: (fo)M ~~(m.,t) 

l'l'l 
are introduced, then from equation (19) we have equations for 

these magnitudes 

C1 Noo OJ 
JE,£ - 0 

~ t - .) tV;; (o) == !V~o; (t) = 0.) 

i.O(t) :1.0() 
d /V¥cle =- rf/. ~ JVK~ t 

a~: 

:/,0 - -
;V~~ (o) = Yl.r: ( 1.+ n¥?.) 

(20) 

Thus, for ~he case of linear interaction with the medium 

"' ~ 40 ) fluctuations the correlation function< n~Jt:)Yll!.(o)> :=: ;\/~£ (i. 
depends on time exponentially with characteristic time ()ret: r :i 
and its spectral representation has the Lorentz shape 

.... ~ ) 1 - - J r~ < n. elf (-e) n. J( ( o >w ;::; Jl n rJe ( :J. + n clf) : G r. )R < 21 > w +.fl. Je 

3, Quadratic interaction of the oscillator with medium, 

-To consider non-linear in displacement operator ll 0 

oscillator interaction with the medium fluctuations, it is -v.-
necessary to take int·o consideration in the operator e Uo " 

expansion (in the Hamiltonian of interacti~n) nonlinear terms, 

17 



~ 

Let us restrict ourselves to quadratic in U0 terms. Then, 

in general formulas of paper/!/, it is necessary to perform 

the substitution --U.oVo - __. -1 (-o -).2 ~ (-,. ll -"#/)+)rt + e - j_ - u. 0 'Vo + :L Uo Vo = L- "'d! O.~e + ol~ 6~ Vo 

de (22) 

1 "\ (. i /} , . .,../)+)( j /} j"*' /)+) ' j +:r L- d.£. ode+ dole 15£. J.<t:,(;£. 1 +d..£' t5.~et '\70 'Vo ~ 

denote Cartesian coordinates. 
~~·ij 

where {. l 
J d ~ 

"Mass" superoperator ~ in the second order of perturba-

tion theory in H ittt is defined by square of expression 

(22). Since (as it was pointed out in work/!/) it is necessary to 

preserve only terms containing equal number of operators e~ J 

g:. for every oscillation £. , terms of linear ( (Z0 ~ ) 
and quadratic interaction will not overlap. Taking into conside

ration the aforesaid and also expressions (!,40), (22) we have the 

contribution of quadratic interaction in the matrix element of the 

superoperator M (w) 

[
M(J)(w)]n.'m'::::. -=Lfood.w' L {(..2-~~ )[ (i.-t-Yld!.~.)(t+n.r,.+4.~ ... >,+ 

1tm. il ~ ~ s. o2 w-wn .. l. i'.. +w -w -00 .1 J. 'll';tJJtl+ .. ole' m. 

n.Jt (n.~t,-O:.s..~e.a) (::t.+m.t,._)(i+m.r.~..+~.~..r_,) 
+ ~ + T 

w- wvt-~ I ~ +Wm.-w' w- w"- + wm. .. ~ , "' , +w' 
<it;tit!- IJJ/t•.lt' ilt;~.M .,.IJJit.lolt 

m. ~s. ( Wlw.a- ~:~..*.r) J i i..._ + [ q{ ::t.+n¥.-. )n* .. f-~ ..... + 
+ t.:J- wtl. + Wm..-i , .:; +w' n.n.' mm.' ~-Witt-1. ,:> +W~!J

1 

~~-~~ ~~~~ 

+ 'l(i-HYl.riL",Jm~, +~"~"' J cf ,i ' - (~-cT )• w- w -+ LJ ,!) -+-w' l'ln mm.. o:l!'.._dt.a 
1'1.. m.-+ <~..,.~.«'- o;,.Jc' 

II 

~-----------------------------------, 

(i-t- n~J { i ... n<£.2. + ~~£.:~ )(.i + ra.£J ( 1 + mo1P.1 -t" ~.£.,_) 

.( i 
w-w a: ,..> -tcJ -w' 

+ j_ I) 
Yl+ Jt,J(.I+JJ!'J.J(' ""-

·~',n+f..:~.it!'+i"J~·~',"' ... ~ ... Je'+~.~.e'- (fl-~.1£.:~) 
I ( j_ + ·VVI."'Jn.d?.-i~•~:~.)m,JYYI.'*',-I;~,.J w-w ..> .; +tJm.. ·' 

... .. 'fl.-d¥,¥'-dJliJ'f'-' 

j_ . )i 
+ - VL +LJm.-1. .:> +w' n.')n.-~.t.ae'-~,lf!·~'m-~ ,_.,_j 

.1( ~ji! I - d I'.J,!£, .3 > .f'l ..- ~~I 

- [ '/(1+ n£J ( nce.1 -r ~~£J + V(1.+n<t:1 - i;~JeJ_) n;~ ] · 
. [ V (.i+m£:~-){m ... ~+o;_.i'*'..t)' + V(:i+m~j.-cr;:~.Je.t)m~~ J • (23) 

1 
. c c.J- w •. .;., ... -.... , .... 

i )· 
-- +t.)' 

+ w- wVl.. -rwm+-~1.~e'-a;;,J.t'' 

. i 1 cr: ,:; ~ I. ,- - .:21 ;r --,J.I} 0 
I ) 

n) ~T ¥ 14'- o.r.,~olf' m'Jm+-O::,.,JJt,_o:;,~, J dar1. Vo/ £.2 Vo lw\W
1 

• 

From equation {23) it is seen that the superoperator 
"" (~)I ) I I M 1~ has diagonal matrix elements with fl.= Yl. ) m.::: YYl 

different from zerO and alSO With Yl. 1 
:= n. -+J.;t a; .,1 f" iAi:. 1 :1.• tf oi< ~.l j£ ) 

rvl. I:::: YY1... + ii. ~.tcle' + jJ.. ~J<IC' (i:J. Jj~ := ± -J.)• Consequently, ~he 
system of equations (!.42) for the function Jdt!. (M 1 w?+tc) 
taking into account linear and quadratic interactions may 
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be written as 

[ 
(.I} . r. (t) . r. (.t)( )j ( . 'I . ) Jl.¥!(m)-f~ (m)+L ~ (m)-t-t rJt. m. d~ mJw+Lt + 

+ i. ~ ' vi V :t+rYI.IJ!. , ~jc:J~s. ·;. . 
(- LO¥!.tte(m.) ::t.+m<Jt..+jd,1 e J,J(_{YYI..+J*!,~..w'>W+LE)+ 

;=±i Jf:L j_ 1 

. "" '\ v j1 J.t / ) V .i + mc~E:. ' (24) 
+i..L._+ L odl'~s.·!e}m. .i.+m +i 1.. +' i:. exp[Ujs.t.?~/J~c.Jit)} 

J1 •J,z-- i cl'.t¥,1. rJt. (f. JUl.. j.t IP#!A 

(is.>, i.t) 

• ~d! (m.-t-iJ.I;.t<f'+J~i;. ... Jt'' W+tf) =(i+n'l.:.){J>S:. 
Equation (24) is written for actual frequency range tJ 'i:: WJ(. 

and using formulae (4),(5) for linear interaction. kagnitudea 
) . ' 

pCa.)(m) and rCA (m) V(~J.t (m.) , determining the 
~ r£ > O.~tii(,~.~.J.. 

correction to the frequency and broadening due to quadratic 

interaction reapectively~are given by the equations 

p~'>(m.) = 1 r iw' [ [ (.!J-~.~.~) ~!le:L • 

- oO clf.t .lf'.J.. 

( :t. + ~~~J. +Jm~~e.A)w'- (i+ 4,Jt)(""".~+w~,) 
------~--~~--~--~r-~~~~ + 

{ c.Jttf 1" L.?olf t - WI .A 
j. .. (25) 

I) (.:t+m~.~.)~.~t.4+ (m.w.t+-~.r.t)~•t J IX' fjLltf Vj~lf) 0 (w') · 
+ ol w _ w _ t..J 1 ":1 o ,, o Tw .> 

olt'.t olt':t. 

r:~)(m) = f [ JJ;~.V..IJL/.I;,.,_V:I.JI.[ (.!l-o;.t¥)[ m,Jm~-~.tM'.t + 
t¥:1. dt.t 

+ ~ct'.J) + e -.U'-' ... .~+wdl',a) (i ... rYl~.1 + ~.t'J(l-+- m .. .~ + ~tolf.a )] • 

·~~ (IJ~" + LJ.te,) + [ Jl ( i + m"~. + o;,~)( m ....... f..IJ(.~) + ~ (t+m.., )IYl + 
"" "':1. .., 

+ ~..tdi'J] 1~ (w.~e., -wdl':t)- ~ .... A (.:tt-.2mli(J(l+Jmtte:l.+-..2~"J. 
·f~{o)) ~ 
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r;;:;.t (~) =- f [1 + 1 rJ~-J~)J [~-f(i1-J~)- ~1£~1· 
.[ mrlt'~. + J (t+i1 )r1-'- [ Y'fl,r.1. + ~~~ + f(i+J.~.)t"- [m~+ O:..r.2 +j(i+J~) + 

• ,!) ]'!.?.. [ .., { . . I. ]tf.J.I- - J / ....... -=- ~ + J,: o.t':~..«'.t I'Yl.r.,~. -t- -;;r d.+J.;.) +J.J .r~..r,~ ol,
1 

V.,) d,.t 'V.,j · 

· f; (-jJ_LJ~1.-J~cJ*',.~) ~ (ji. ";}I~ J ji.,jJ=:-=i) 

From equation (25) for O,Ji.h, (m.) it is seen, that 
JJ(J(I.df,t . . 

this magnitude equals zero at .~i. = £~ and Ji=-J.t =1., 
eo that diagonal term in the last addend of the left part of 

equation (24) is already separated and put into the first addend 

of the left part of this equation. 

Let us note, t~at quadratic interaction besides broadening 

conditioned by transitions between oscillator levels and 

described by the medium correlation function f~ (~) on the 

combinations of frequencies ~~ and ~~ leads to 
:1 ~ 

modulational broadening of levels, which is described by the 

function lf;(o). 
Besides, broadening contains now together with the terms, 

linear in nUIIJbere YYI.dt, ' also terms' depending on mrl?., 
quadratically. 

Let us consider the solution of equation (24) in the same 

cases, as for pure linear interaction. 

In the case of harmonic oscillator ( V"" ,.,, V_.., 1 11 
• 

"'"" ) ... ~JR J". 

are equal to zero)with nonlinear interaction the system (24) 

of equations has no exact solution in contrast with the case of 

harmonic oscillator with linear interaction, when there is 

exact solution (see (7)). 
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'""' :_,_e fine structure is revealei! , the oscill3tor ~ spectral 

c.LJ t r ~ Lu t ion is defined by the solution of the systera of equa

tions (24) by the iteratior, method and is described by for

L.ula {G), in which, nevertheless, it is necessary to uake t!,e 

substitution 
(:1.) "-' 

r.¥< ( m.) ~ rJt! ( m.) == 
(.!) (:l) rJI! (m.) + rtlt. (m.)) 

JL<L- (m.)- _ffdl!(m_) == Jl.JI!(m..)- .E~"")(m.} 

an1l :-~~d the correction term of'r-'k~l=-:. r:_:do___-:--.,----:-

L L OJ.t.iJ. {m)V :f.+nt~ +jt.~ ... +k_~ .... 
J
. i. == :! i ~ ... Z<ll":~. ~e..,_ :i ..., m i/1!. 
~) 4'.J. a;. I. c;.L 

<;J >.- j.z) ~ (m+Js~,~~ + J~~.re~) 
~ · .n:: {m.+i~~r+l:.~dE.) +'f.: (m..-.j,~t•'+J~i:r.rif-·) ..... ~ t. ~- :.1 (26) 

~(r<~.) ~ (m+-j~~'*''4-J~~£~) - fi.te(M)j[.e {m+i1~~ .. • +J~~K') 
r-' ?V . • 

r£. ( m) f.x. ( m. +i1 ~.l. ~· + J ~ ;:._,JI!1 ) 

Jorrection (26) due to ~uadratic interaction {the same as the 

ccrrecti0n from linear interaction) has the -order of Lragnitude 

'f.J!.{m)/t:o~(Wt) (iteration is carried out now over this little 

parameter). 

The correlation function <G,Jte(i:.)f; (o)>J.) on distribution 

wings is defined by the equation ~ 

<t~ (/:) t;_ (D)';Q = ir ( j_ + fi.*!.) ;'*;_ .) 
.It!. {27) 

r == de r. + ~ 2: [ (n»- n; ... ) r,..; + (iiw +YiN,.+ t)rdt';] . 
cl! JI!J. ... " """"-' -L "'.:1. .:1. .:1. 
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Here the following notation is introduced 

r ::!:: ::::: r.[i- e-u<J.e±w.r!.>] ,,r V IJI,r V:l.:l .D
0 (w ±w ) . 

~¥- l( <L. 0 .r!_, 1...; ;£ ££ ) 
j_ 

- ± - [ ..< (tJ.le±tJ.re£) 1-:i 
ndeJe - e - i 

1 

(28) 

Formula (27) is obtained by analogy with equation ( 9) by 

respect to parai,•e-
1 

iteration (in the first approximation) Vlith 

ter r£ ( m.) I I Jl..~ l 'and J[Cf. differs from Jl.de 
by additions from independent of n?.,e' terms of .P~;J.)(rn), 
which make renormaliza tion of P <£ and V £.I£. (terms of 

J?~~)(~) , depending on nn 1 perform renormalization 
..... de ' 

of vd(~' in the expression for t.JCJ!.. ( rYL )). 

In the case when it is possible to consider one oscillation 

de and take into consideration only functions gr1i?. {oltJ+-~·t) 

and d~(i)t.?+it) (low temperatures), the system of 

equations (24) has the solution (with arbitrary relation between 

parameters of the line form) of kind (10) where it is necessary 

to make substitutions 
~ ~) -

JLJt_(mde)~Jl.de.(m~) .i r£ (W1clf)- rfl!_(rnCtt). 
In the general case the s~tem of equations (24) may be 

solved at computer. 

In classical limit the system of equations (24) is 

reduced -to the differential equation (if we restrict ourselves, 

for simplicity, only to one oscillator de ) 

[ flJe (Xo)- i. rJe. + .:Ji. ~: (I~- 3 Xo) +4i. r<R:J j,.oe ()(o)w+i€)-

-!li.X [f. +.:Jr+ (_j_ +X)] d.9¥!.('te,w+i.t)- (29) 
o .If <r.¥- I.IJJt. o d. X o 

. )( 0 

- JL ~witt. 
( r. + ~ r + X ) dD 3~ ( Xo,W+i..E) = J '\ X e-,<t.Joi()(D 

cle dt'C/C'.. • ~ f,.W"' 0 d X
0 

'"'- J 
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Jde (- Xo,t.J+(E) :::- 32 (oo),.J+~E) = 0 . 

Here 
0 r££ is the magnitude, describinr rnodulational 

broadeninG• It is defined by the equation 

ro = :f )~qo/.2/Jd(V:IJLf~(o) = (n~~ +:i.)r~~ 
¥£ 'I 

.Jjfferential equation (29) may be solved numerically at 

computer. ~quation (29) formally coincides with that obtained 

in work/4/ for particular case, when .1[ (xo) = j[ - V X 
j(_ JC. ?/!~ 0 J 

the medium is considered as a set of harmonic oscillators with 
0 

continuous spectrum and f. =: 0 (a particular kind of inter
~<£ 

action Hamiltonian with respect to the displacement operators 

of medium particles). In this case in work / 4/ calculation of 

correlation function < ~dl!(e) ~; (o))c.J was carried out 

at computer by means of formulas (29), (12) for pure non-linear 

interaction ( r~ = o) • It is shown, that correlation 

function is described by symmetric curve which has essentially 

non-Lorentz shape, even for the case of harmonic oscillator 
~ ( v££= o) (compare with formula (7)). 

In time representation, it is possible to obtain equation 

for function GD(~Jt) in the same way as in case of pure 

linear interaction. But consideration of quadratic interaction 

leads to equation for </>(JJ-e) J which unlike equation (16) 

will contain besides the first also the second derivatives with 

respect to d £i • This more complicated equation will not 

be considered here. It is convenient to present the spectral 

representation of correlation function of oscillator de 
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occupation numbers as (c.)"' 0) 

~ ~ ~ I . < n.JI?.. (t.) ndt. (o)>w =- :Jr lrn. L m.r. <J (M.)W+LE) ~ 
m_ ole. 

~.:e(rrt,IJ+<.'t) = ( Po)'VI. ~ m' [G. (w~tt)]m'm.' (}o) 
.J . m. L .~e. m.m. . 

m! 
The system of equations for the function 3~ (m.

1
t.J+c.t.) 

may be obtained by means of expressions (I.47),{2),(23). The 

result has the form in actual frequency range <J,;:::: 0 

[w+(r~(m)]~~(m1 wt-ic)+i.[_ [ 
j::ti fi!:L 

;.tJ . 
.Jt'sf I ( , ,.J . ) ·e ~~ m....-Jc1Jt~.~e·1 ,:>+t.c.)+L.t-

• +J. J:t);~=-

(J~ ~i~) 

tJ (rn). 
.I(.J(.i 

"\ ¥. 'J.tJ.t (m.). 
L ~JE~~ ... 
.It,~. dt.t. 01 ) 

J..(i1"'M.s.+j.~.vJ/t.~.) , . r:1 . ..:; . _ Ill 

. e 'Jt~t. (m • J1ctoe,~.Je'+b.o<ir.,~o~t'; t.J.,.<.f.) = (mdt!-n.~e ){fo),.. 
""'t / ) nl(l.) t(~) ) •j •i£i 

Here magnitudes fee\~= fJ/1! (~)+rJ/1! (m 1 '(«o~t/"'-\ r~*: (m) 
(1.) .. ~. 

are defined by formulas {5),(25) for('..,. (11\.) r~.t)(m.) vJ (m..) 
. . - J - JO~s ' a.::i~.t (m.) respectively, in which it is necessary to 

put a;.lf, = 0 

The system of equations {31) may be solved also as the 

system {24) by means of computer with breaking it at any 

equation. 

In classical limit of high temperatures the s~tem of 

equations (31) may be written as a differential equation 

(for one oscillation de ) 

(w-,il.f.~e- 8£><o~:_)3~(x0,kJ+,·e:)-Ji[(xD+.<~«-)r~+ 
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+.:lX (X+ 1£ )r+ l ri1~(X,,~.o'hi.t) - '1. ~ (r + 
0 0 j.,I.J~ '*!.£ d. ad. l.w£ it?. X, 

(32) +.2xor+)d...tj~(Xo,w+i.t)_/lc) _) -~t.J,jf><o. 
dt:de :J.. - lA ~x, t e 

d_ Xo ) 

I J£ (- XoJW+L't) = ~~ (010Jt!J+i.c) = 0 

'J?he correlation function of,.occupation number,as it 

follows from (30), is defined in classical case by the equation 

00 

< n£. (1:) fi~(o)>w ==- fr J m f X d~ (X) W+L.c) d. X 
0 

The equation of type (32) is solved in work/4/ numeri-

cally for different values of parameters. The obtained spectral 

distribution of function< nt!e(t)~c!e.(o)l'w differs from 

the Lorentz distribution which takes place in case of 

pure linear interaction (see (21)), the- stronger the larger 

is contribution of non-linear interaction ( r :~) 
Taking into account non-linear interaction the non-

Lorentz character of distribution of correlation function 

~ < n.~~a(-t:) n£{o)/..; is seen also from kinetic equation for the 

function 3)e ( 1Y! l-/:) • The quadratic interaction leads to 

addend in the right part of equation (19) 

r~(J.){m.) 3~(m)f)- .~ 
JL,J.t= ±J. 

(iJ. ~iJ.) 

'\ '( JLJ.L ( m_) 
L tJtllrJ..JtJ. 

.t'J.dl!'.t 

' 3~ ( m + iJ. ~~*!' + i.~ ~_,)Jt') t) 
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lJow the corrclatjon ftmction } ,~£ (t:) does not satisfy 

the equation of type (20), nr;d thus the distribution is not 

r..orentzia.n. 

Let us note, that modulational broadeni!lf, defined bJ 

the function )0~ ( 0) , falls out of equations 01) ,(32), 03) 

for correlation function of occupati~n numbers. 

4 0 .C.2.!~]}~ 

'rhe general theory, ·developed in work/!/, r;ivcs a possi

bility of calculating the correlatinn functions 1which deter

mine the dynamics of a pa:::ticle weakly interactint; with 

arbitrary medium. The obtained formulas permit one to .c;et the 

results in any order of perturbation theory in Hamiltonian 

interaction H · ... 
~it<: 

(see expansion {I.l5), and also to 

cor£ider any power of the displacement operatDr ~o 
of the singled out particl~ i.n tenus, deacribing non-linearity 

of the c-onsidel!'ed oscillator, as well as in Hamiltonian Hi.._t. 
Transition to a definite(with respect to power U., 

interaction-of oncillator with the medium fluctuations is 

easJV. performed by means of expansl.on of the magni tml.e 

eu. • -- 1 in general formulas to needed power of u~ • As 

it is shown in the present work, the consideration of definite 

interaction mechanisms permits one to investigate the 

dynamics of non-linear oscillator in details. For every inter

action mechanism there appears its own set of parameters 

expressed t~~ough the correlation functions for the medium 

potential energy. For example,we have the magnitude f'~ 
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+ 
for linear iroteraction (see (6))) whereas r- for 

¥!11!.1 
quadratic interaction (see (28)). These matnitudes may be 

calculated at any definite 111edium that will make possible 

to obtain the dependence of the oscillator spectral distri

bution from the mediUPl pararnete~s (temperature and so on). 

For example,to pass to the case of medium as a set of 

harmonic oscillators of continuous spectrum, which was consi

dered in work 12
- 41, it is necessary in formulas of the 

present work to carry out the substitutions for linear 

and quadratic interactions respectively 

I.Z:..Voi.:~. f~(tJ.X?.)- L_ v~ [ U+n,£Jc1{wde-tJK)+ 
K 

+ n~ f (vJ~+wl()] .; 

~ l~j.voi~Fl~Vo!.rlf~ (w~j.~wc~e.1)- L_ v~ [(i+ 0 4 ) 
7 K d!:i..!e~ I( 

+ n.!_..~,ji?J tr Wo~e1 ± 0¥!.1- wl() + n! .If t (w.~e ±welt' + w"') 1 
;ILi. 1 .1 ~. 

where cJK is the oscillator ~requency·of the continuous 

_spectrum, vdtl<, vciE.'1olt.tl( are the constants of linear and 

quadratic interaction of the considered oscillator with the 

continuous spectrum. The result (34) is obtained by means of 

expansion in the medium correlation function$(I.20), (I.21Y of, 

the potential energ/lJ(l,,"((t:.), ... ,ll"'(-t)) or lj{T.,Jl~.{t)) 
in power series in displacement~;~ of med~um part;Lcles ZZ:.. 
up to the linear term. The consideration of the next terms of 

expansion in /1.,._ permits.one to.examine the.interaction 

involving more then one (in contrast with (34)) quantum of 

medium oscillations. 
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Let us note, that the res~ts of the p~sent work 

forsally coincide with these of work/2-4/ for the corresponding 

particular cases, considered in these works. !he coincidence 

bec011es actual, if we pass to the set of harllonic oscillators 

of contiii1l011B spectnm as a aedi- by aeans of the proceclv.re 

described a~Te. 
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