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The Superoperator Method in the Thedry of Oscillator
Weakly Interacting with Medium, II, Definite Interaction
Mechanisms

On the basis of a general approach developed by the author
in an early work the correlation functions, describing the dynamics
of an oscillator weakly coupled to a thermostat are investigated,
As a thermostat is considered a system of a large number of
arbitrarily Interacting oscillators, Equations are obtained for "densi-
ty" and "density-density" type correlation functions. A square
on the interaction of oscillator with fluctuations approximation was
used in all calculations, :

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR.
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I. Introductior.,

In the precedimg work 73/ (references to which will be
VAV

marked as ) the general formulas for correlation functions
were obtained by the superoperator method, describing dynamics
of the weakly bound with arbitrary medium oscillator. These
results are true for any power of the displacement'eperator'zz;
of the singled out particle in the Hamiltonian of the system.
Oscillator non-linearity is supposed to be little in comparison
with its Trequency.

In the present work the cases of linear (on ZZ; ) and quadra-
tic interaction of oscillator with medium fluctuations are consi-
dered as an application of the general theory. Equation systems
for functions were obtained, determining the spectral distribu-
tion of singled out oscillators., These equations permit one
to explore oscillator ¢ spectral distribution described by
the correlation function <gde(t) g; (0)29 in a general case
of arbitrary relation betwsen obcillator non-linearity {which
determines the distence betweem fine structure lines of non-

linear oscillator) an? broadening of lines, Depending on relation




between these magnitudes, the spectral distribution either

splits up into a set of fine structure lines or merges into

single broadening distributiocn. Equation systems have also been
obtained for the correlation function of occupation numbers

< FL‘!({) ﬁ&(0)>‘0 which is smooth function without fine structu-
re.

Oscillator correlation functions in time representation for
the considered types of interaction were investigated by means
of kinetic equations, obtained from general kinetic equations
of paper /IA )

The correlation functions for the operator of medium poten-
tial energy are parameters, describing in equations for oscilla-
tor correlation functions interaction with medium fluctuations.

All used nqtations are given in work /1/ . References to

formulas of work /1/ will be marked by dual number of. (I,15)

type.

2, Linear interaction of oscillator with medium,

To pass in general formulas of work /1/ to the case of
i, 7, .

linear interaction, it is necessary to expand & °ve in
the interaction Hamiltonian ’4£nt (1.2) or (I,3) into a

series up to a linear term, i.e.,to perform the subatitution

u’° — = rad —> + P
— -— * .
e 14— UVo =) (Lgbp+d J8,)Y, .
. ) 2 / ,
. 1)
Then taking into consideration (I.40),-(1),the matrix element

A - .
of ™nass" superoperator ™M (u)) which determines averaged

A
Green superoperator (; (u)> in the second order on
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To obtaln formula (2) the conditions of applicability of

of perturbation theory can be written as:

equation (I.40), in particular, the condition of noncoincidence
of different singled out oscillation frequences (]42£ #-a22,>

and condition of non-coincidence of different frequency combinatis
ons (for example, (Jx + LJ{L 'i"fjd(’a_' and so on) were
taken into consideration. These restrictions lead to reducing

the dual sums :Z; , appearing with substituting (1) into
(I.40), to ordiiéiy sum over Af in (2).

Let us write down equation (I.35) for the correlation

function <g£ (\‘_) g;(o)zo in the actual frequgncy range W= a)¢ as

by @)lg (oY=~ Z Tm Z T (m,0+i€);

G (m,O+ie)= F(f)} Z\/z;’_"
[61(&9“53] e’

J(!’ m
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. rm
or the linear interaction has the following non-zero matrix

From equation (2) it follows, that the matrix M

elements: diagonal with N = VLI m=m' and nondiagonal of
orly two types with p'= rz+J) z' m m+f ! and with
n'=n- a’J €2, mi=m- e for every ofclllatlon gfi .
This circumstanc i i i

ance (and diagonality of Ln ) permits one,
as 1s easy to see, to write the system of equations (I,42) as a

system of equations for the function jae (M W+ (&)

[G (O-H.f)j e e o Jx (m D+iE) +

+Z > [G i(u)n )}"“ !+ e, msjdy, z'@ﬁ .
“Ira,m L+ Mg 4y b,

J +4 f
,(} e, (4)
jae (m-*édfgizv u?ﬂ&)— i+m£> (JD
Here, the function jx(m+}d';1£l ‘j+¢£) is determined by

equation {3)with the substitutionMy —»m 4-}63 ° m—-m-*tff
The real and imaginary parts of the superoperatorG («).H_ ,5.)_,

=0-PLLP- M(D+(€)

coefficients of equation {(4), are determined according to

(1.14), (1.36), (2) as
G—i(0+£6> )?eG (duf)-ﬂlm& (J-f-(é)
Re[6 0w 5™~ 0 ey 5, |

*azaem

Le o‘lfcw “ 1T 5 )

matrix elements, which are

(3)

Im[G-i(UJ‘“-f)] aeaeJm-__ ('1)(m)
F&“)(M\) = 7192:' )4 , Z. ("?mae'*'d-) ’+1+})‘f$ (‘J“)oe’>i

(=44

+ 1+ J) " m+g !
Re[G (u)ﬂf)]m f“ A }&N: :
M+ dpp’,m ’

; M+ Jput +f g e, m+ | Ip
4 . oae! +} 08 ', M L0 0!
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l°(a€ Lﬁ,.) ( Jc‘)*’i>

Equations (5) for real and imaginary parts of "mass™
superoperator M ((J-f— ¢ g) are written in the frequency
range W = (A) actual for the function <€ (f)g (0)29’
i.e.y (,J:.‘ “)12 'is put in them, Besides, non-lirear
corrections to the frequencies which are unessential here are
thrown away in formulas (5) for these magnitudes.

The system (4) of equations may easily be solved in some
particular cases.

Let's consider, for example, the harmonic (linear)oscillator,
when all nor-linear corstants \/XZI) V&!'X” e in the
Hamiltonian (I.33) are equal to zero. In this case, the system

of equations (4) has the exact solution of type
oy (mesa)exp{-AZ KMl
31(”1)“)*‘5):}” >
° 1, ""Faz

= Spexpl-A2 Do llely = [] (14T e); M =0-de-e,




— -4 XJ ~4
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where i, =&, J m,, expz’_,\g‘ W Mer = (o 2. 1)
is the mean occupation numb:r for oscillator & . Here the

definitior
Ay =8 o
I, :771('1—6‘ ) N Vl™ {5 (D) )

is introduced.{onsequently,the correlation function (3) for the

harmonic oscillator is determined by the expression

<£,;<(‘uf) (Z:{O)ZD (Vl +i)

["’ (7

Expression (7). describes Loren+z spectral distribtution of
harmonie oscillator & » Whose frequency shifi -Pag and
broadening [ZX". are conditioned by the linear interaction
with the mediurr; and determined by the medium correlation function

tﬁ; (10) (see (L.20), (1.21)),

Lets's consider now the system of equations (1) for non-
linear oscillator in case, when Fae(‘ (m) & A&, (m) (Ax(m)
ie determined by expression (I,41) and repregents non-equidis-
tancy measure of non-linear oscillator levels ). As is seen
from equation (5), the coefficien.ts at non-diagonal terms of
equation (4) are proportional K!Jat‘ {m) ~ T (i)(m) On the

other hand, functions g (m+$d-’ .0 )LJ+L€) , as it
follows from the discussion given in work 1 (after formula
4

- By (mY
at frequences () = ‘Jx(nﬂ . The correctness of this statement

I, .2)), are the magnitudes of an order of

will be seen further in calculations. Taking the function
m,
(mx+i> (fo)m
. (1
“Jae(m)—faeu >m)

g; (M}Q+i€) =

as zero approximation and solving the system of equations (4)
by iteration method we obtain with an)accuracy up to terms of

(4 .
the first order in small paramter & (m)/A,f(m) the solution

for correlatior function (3)

i éa&,m‘,, (:)(m> .
e @0, = 75 0 (mern)e 1177—“)?»5

] Mo+ 1+ dre,
[i _{_.Z Z Y;‘Xi(m)\/%_?: .

JZ‘!j X,

) [ )~ D) Dy (e
/.,(1)( )['()m-f-J .p)

(m+a[d9 xa) J

_/Z (m-Q-J ) (‘)(M+Jdppl) .

Here, the following definition is introduced:

Ny (s I ) = D= (m gLy 5 [=0,21

The magnitude Wy (M +,}"€me') ~ is determined by the
expression (I1.37) for W, (m) y in which M, is
substituted by mx, +J d_o . By analogy, the magnitude

I m(m-r} Ji; JE’) is determlned by formula (5) with substi~
1
for .
tution md{ J d'; 2 m.f’ | '

The first addend of equation (8) (zero approximation over
[;a)(m)/Aae(m))according to the general results, obtained in work
/1/ (see formula (I.44))is the function describing the set of
fine structure Lorentz lines of non-linear oscillator with the

i f
distance A‘! (M) between them. The shift ‘PeE )
lines with respect to the points LJ = ")ae(m) and




their width / (D( )
i s & m are determined according to formulas
(5) (corresponding to general formulas (I.45)) through Pourier
component of the medium correlation function Vl;’(u)> . As it
was noted in work /I/, in case of linear interaction line
broadening is conditioned only by transitions between oscillator
levels appearing due to interaction with the medium excitations,
and described by the medium correlation function on the oscillator
frequencies * h)fi « Modulational broadening, which the
. °
correlation function 71) (uj) on zero frequency corresponds
to, is absent in this case, For linear interaction,as it is seen
. X (1)

from (5), line widths /zz (nq) depend linearly on oscillation
occupation numbers M ' .

Correction terms of the first i @
| rst order in /"{ (m) A.P(m)
in formula (8) bring to slight asymmetry of separate lines,
change of their intensities, and in some shift of maxima with
respect to point =

p points _[Zx(m) =0 .
It is easy to obtain also an analytic expression for the
. . +

correlation function <'62‘(Z)éae (°)>LD on distribution wings,
when |- W, ~ I !
i.e.,it 18 possible to negl

, p glect in equation (I,37) for azt(hl)
the terms, depending on numbers M ) and also

i ) .

Lﬂx’ >> /; (M)' Then iterating the system (4) equations and
taking into consideration that terms with = + 4  are magni-
1) /

tudes of an order of
( [L (M)l3£l <<1'0'J2 g£( R for function
3) in the first approximation over 1) !

/-11! (M)/’ﬂ‘{ we get

OuObL (2, = 5 (M) L2

(9)
&€

In the general case the system (4) of equations may be
golved by breakirg the chain of equatiors, It appears to be
possible as far as according to definition (3) the function

?x (M,LJ-!—[E) is proportional to eXP{."(‘;(‘ZE’m&’s-
Thus, only one line will appear in spectrum at low temperatures,
corresponding to the set m =0 of occupation numbers
(intensities of the rest lines are exponentially amall), Jith
increasing temperature other spectrum lires with mz’ # 0
begin to develop and spectrum fine structure may appear, descrited
by equation (8). W@ith further increase of temperature lires with
large an, begin to develop, but line widths also grow, that
brings to gradual disappearance of fine structure and appearance
of single broadening spectral distribution.

Consequently)depending on temperature it is pogsible to
cut the system of equations (4) at any equation due to the factor
exp{-/( sz' mz,§ and to golve the remairing system of
equatioﬂgleither analytically {if there are few equations) or
numericaliy at computer,

Let us illustrate the aforesaid by a simple example, when
there is only one singled out oscillation & { or interaction
of the given oscillator with other oscillations may be neglected)
80 in sum over &, of expression (3) there is only one term
with &, = & .Let's take such temperaiure (KBT & LJ* ))
that it would be possible to take into consideration oniy
functions gﬂt(o)0+[f§ s j&(ijw‘*if) and throw off the rest.

Then the system of equations (4) is reduced to two equations

for the pointed out functions, and its solution is




jx (0)'4\9"'4‘&) + j{(i L«D-f-(‘f) =

Mg (1) +Ty (i) + L[N glo)+(T, {o)]l'7£+8t'/:.¢f’7x
[0 ,g(0)+ ,,e“)(o)][ﬂx(i)u/’;‘a)] +8I R

€ (10)

Formulas (3), (10) define the correlation function of #
ogscillation at low temperature ﬁith any relation between line
form parameters of oscillator ¥ gpectral distribution., Line .-
form)defined by equation (10), is a composite curve in the general
cagse. If the distance between the frequencies, defined by the
conditions Jl (o)— 0, sz(l) = 0, is significantly larger than
the magnitudes [7 ( ) r “)(1) then spectral distribution
decomposes into two fine structure lines with maxima on the
“ (1) . Line
intensities are essentially different (K8T<< LJ{) . If

(1)( ) a) )

is satisfied, the expression (10) describes one asymmetrlc 11ne.

pointed out frequencies and widths /1;1)(D>) /1
inverse inequality between sz (0)—;ﬂ (i)( and

Classical approximation for describing 0501llator is appll-
cable at high temperatures KB'T'$>QJ ' and in case of
absence of fine structure. As in the classical 1limit the main
contribution into co?relation function 1is given by gbz(}n)“9+‘f>
with large quantum numbers /7z£, , let us introduce the
continuous variable X = M. ([-_—_—o}i)__‘defines number of
normal oscillation and let's put J?o = ¥ ). Then going

in functions , =0 + to conti-
, jx(rqufg“aus) (J~D)-i>
nuous variables X[ and expanding them into power series

in the vicinity of ol = 0 , we get instead of the system of

equations (4) the differentiél equation

12

[N, (X)"CZ_(J }j,!(x Wt ig) -

-l Z X F 0(3“ (% “J“_f_) -3¢ Z ng(X,tJﬁ'E) _
dx( C#0 K‘JI LéxL'

23 x I o9 (x,00i6) _ 4 X, e-XZU Xi @

i .
K‘iﬁq G{XQQ' éz 3
Gue (X, 0+i8) = g (omyrie) =05 Fo = [ Ty >
where X denotes the set of numbers Xé > e, is deflned by
the expression (6).
The correlation function ¢ £ (¥) g‘;(,,»“) in the

classical limit is defined as

be@bg(o)y =% Tm fgx (x,Ori€)dx o)
and may be found by numerical calculation of equations (11),(12)
at the computer.

If there is only one 6acillation X2 , then the function
g‘e (x)“).,.(‘g) becomes the function of one variable X‘J
and the expression (11) is essentially simplified, One more
simplification is possible, if we restrict ourselves to

oscillator quadratic non-linearity in occupation'number operator

_g g . Then function {7 (X) _{2 Z\/‘uE X .

As it was shown in paper /1/, the oscillatdr correlation
function in time representation is defined by kinetic equation

(I.30)., Let's consider the function

ey = 5 (P (19m) 6y (my
Gx(m+}&4£',f)=zm ' )
2t e

~e[t p\mi+ mt' .
' _LD ) ([=0,%
( M+ dus +}JJ ’"*J."i‘z' d i)

13




Accordin, to equations (I.30) (I.31) (5) kinetic equat:ior
for tue function Gx(m) f) in the second order of pertur-
vatior theory in F{an 18

(22 ("T)f) =:-¢'[sz(“1)*'fzz -
+O‘ZZ f [(1+ a:’aq)& () +my [Rg + 31 J)]

&€y J—
Gyl j Ty 8); (5Omg), Golmo)=1 . ¥
/2/

Clm)] G (m,8) +

Following paper let us consider the function of

continuougly varying parameters 711

P(y)t) =5 Z(i+mx>6 (m,t)e z

and let's restrlct ourselves to the case when a) (nq) is

M fe

(15)

equal to la){ + ‘;,)!i“\/xg + ZVK81 m‘f‘ (in the expressi-

on (I.37) all non-linear constants besides \Gf are put

€y
equal to zero), In (15) y denotes a definite set of para-

meters .
ya:’
Then using equation (14) we may derive an squation for

the function (p(a"’-é)

qb
aag ,4) Zﬁz ch( é)_y P32

d(y,0) = & Z(iwrz exp(—f_m,yr) | (16)

The coefficients of this equation are defined by the formulas
\ﬂaq = (Vigw, ~ A/, (i*‘o?’l{‘) +‘>’Z€y"/:’(‘ Ry +
+Q€Ayx‘ /1.‘ (1+H’4) R

Xg = "i(&)¢+fgg+j-\/,£)— /1(}72_&+1)-2;@+d:£’>/;,ﬁ
+o‘2§ (i+d;,£,) [:’{, (i.,.y?rl)e‘#gr) &

4

and the correlation function <£g(é)é+(o) > by the value
of 4’(3 4) at ?z, —-,(lJ .

The equation of type (16) was solved in paper 72/ by the
method of characteristics, Using this solution, we get the

expression for the correlation function (13)

by (£) by (0> = (4+n£)\}/m(f>/7\{/ )

uexP[—l(Lox-f-_Px)d;r,f +(i—\/xtl+ f')f-] j ' 1)
(2 >>(Jr:ett).

Here the notation is the same as in work/2/

. Vgt o I
Vot (B) = Ch gt +[21+i ar. (1+a7,)] ‘—Zi' Sh @yt

a ]
Qupr = /;, + L /:,/ Vd’x’ (1+,,2nx> e in, | (18)

Solution (17) formally coincides with the solution obtained in
work/2/ but is more general, The parameterys l) [;,,enterlng
into equations (14),(16) and the solution (17),are defined by
expressions (5),(6) through the correlation function for the
arbitrary medium (in/2/ the magnitudes jiz s C;, are defined
for the medium as a set of harmonic oscillators with continuous
spectrum),

Thus, in the considered case of oscillator linear interac-
tion with the fluctuations of the arbitrary medium there is a so-
lution for the correlation function <fé&e({)ézgr(o)>) which is
true for any relation between magnitudes \‘Kae' (defining non-
equidistancy of oscillator levels) and /:E’ (defining level
broadening, conditioned by the interactlon with the medium).

In particular, at I»Gh!'} > /1 (}n) from formula (17) after




the Fourier transformation the oscillator 4 spectral
distribution as a set of fine structure lines is obtained, which

ig described by equation (8),

If the irverse limiting relation ’\Gez'l & [ ig
carried out, then expanding equatioms (17), (18) to this little
parameter, we obtain ref F V’a
<bue)by (o>>“, (2 n,,a{—r—,,—z 3, 77 e (4% )

e’ ~
[e+ 2l T (Fe - A
1+ 7:71 - == - S B ¥ J :
aeuz)[ /-;t '1+(F +’?/,) o?-( ;:a+[,£4 ) >

My = Dy = Z View Tar (44 )

In the case cf intermediate relation between \Qee,

and [;C' the oscillator & spectral distribut ion may be

obtained by numerical integration of expression (17) over time t .

Such calculation at computer was carried out for quantum and
clasgical caseé in works 2,3/ respectively. As it was said
above, in the general case for finding spectral distribution by
means of numerical calculation at computer the system of equations
(4) or differential equation (11)(in classical limit) may be
used instead of integration of equation (17).

Let's consider now the time correlation function for the

operator of the oscillation &  occupation number

<Ry (8) Ry (03> = Z(f) mxgx(mrs))
Ju (&) = T T, (PE Lt pyem

Kinetic equation for the function j‘! (m {;) is determined
by the expression (I,30), (I.31), (2) and is as follows

(in the second approximation of perturbation theory):

o i
3 jx(m){:):—ﬂzé__ in{ [mz‘(i*o'lﬁxi)*ﬁz,lgé(m,f)‘

T [y Dl o) g
) (¢ Wnie)
goé (m)o):mx—ﬁx

If the magnitudes

Noe, (8) = =2 m ;ﬁ (PN G (m,t)

are introduced, then from equation (19) we have equations for

(19

these magnitudes

o° ) oo oo
_33/‘%1(_*: 0 5 Ngg(o) = Mg () = 0 ;

Moo (¢) 4 o _ (20)
S Al N (&) 5 M ()= Mg (44T

Thus, for the case of linear interaction with the medium
7~
fluctuati : i R 7 = M2°
uctuations the correlation functlon(nx({;)nx(p)> = Ny /{)
depends on time exponentially with characteristic time (j/:r)-i
and its spectral representation has the Lorentz shape
7 L e
< (-{_-)VZ (o)> rz,e(i Ry) By
d (21)
+@)

3. Quadratic interaction of the oscillator with medium,
. s e
To congider non-linear in displacement operator Lto
oscillator interaction with the medium fluctuations, it is

necessary to take into consideration in the operator E?a°

expansion (in the Hamiltonian of interaction) nonlinear terms,

17




Let us restrict ourselves to quadratic in (7,’0

/3/

terms., Then,
in general formulas of paper , it is necessary to perform
the substitution
Z,9, 4 2 e — s o ¥\
° -— —* —. — _
e o _i___a. roO+I(u0V°) —-Z(Jgg{""o[zf‘)vo"-
€ (22)
e 4 (i
G0 (debet b)) (e b+ Al 42V E
J@tLJ
where L, denote Cartesian coordinates,
A
"Mass" superoperator M in the second order of perturba-
tion theory in }fint . is defined by square of expression
(22), Since (as it was pointed out in work /I/) it is necessary to
preserve only terms containing equal number of operators é:‘)
+ . . — =¥
4'! for every oscillation 2 , terms of linear (u_o Vo)
and quadratic interaction will not overlap, Taking into conside-
ration the aforesaid and also expressions (I.40), (22) we have the
contribution of quadratic interaction in the matrix element of the

guperoperator ] {Q)

G -‘Lja(w 2 {(.2 dee) 5o

(i nl.t)(i"-n", J;.I.;)
+J’ !’*dizl.'.(‘) U)
(i"'m!‘)(i"'mf&"' d'ﬂ.(;)

W= Wy + (“)mdfg‘,uai_ll."'

T (e Jiesa)
w - u)n_d;

4

£~ ".)r,az'+ (‘)m."‘)

mx‘ (m”_n JitrJ)

(J Wp + “)m.—d" d¢'+({) O~OR*J;1,-JZ,,+Q":Q
+ m A
+ Y (2+my, )My ’!‘4——:] dinldfnm.' - (a?“d-;.f)‘
w - LD,L-t- Lam_' , Jp + W i
Wy e~ dap et

},Jn - [i@:’i&)&'&_ﬂﬂ+

.\/?11- R&,’_)(i*»n{f J;x_p,)(iﬂ‘ mii)(i+m(a+ J:e,apa\) .

1 . ] ).
J; —u.) LJ*LJ,.L+ M+Jj’;f’+d’;ét’+o

.z"

(w Wnsd,

.d})m et &, J)m‘ e d — (Q-dpe,)

________,.____——————"’-‘—’
v—vcfi(n{l fg(a)m¢j_(m¥ ‘1’«1) ( '

+ L | '>Ji'n-c’9 ~(_\D A—)r ')9 )) -
D s ™

—[ (ifyztfi\)(ﬂ&’a*_ di’_fd) + “ (i+'2&4-‘dix¥;_)n¥2 ] )
' [\/(1+m&)(mar_.‘ dj’

Wi*mri d;;q)mdg} $ @

( - R = )
D A A e T

g’

‘CYQI éJ. _4—‘2_,"'}‘2((0 l)
R nﬂ{o "di'_, m m.+d) ﬂ?"J:'JSIJ V} l“zar_,vo w(u) .
From equation (23) it is seen that the superoperator
(4)(‘)) has diagonal matrix elements with K = r' , m= m'
different from zero and also with n = R-fJiJ:x; +$4Ji‘£, S
] + Consequently, the
m'= m+Jid'9 m—&ix‘ (Ji)j& ;i) q
system of equations (I. 42) for the function i (m)d*—c &)

taking into account linear and quadratic interactions may




be written as

[, (m) - f“’(m> +EF0m) + T2 e (myud+c6) +

: \/ +ma: 4 1 .
+L.Z ZX ("‘) +im‘,_ e $ jac(m"jdi,n',dneh

}:ti &€,

<) + K (24)
v 2 :(*;( )\/ 1+ Me 7 Ol

Jojamtt X A4 Mgt foGp ¥ s,
(Jarpa)

* e (), 7y, ,,%af, s OHE) =(2+m) (P .

Equation (24) is wrltten for actual frequency range Wy

and using formulas (4),(5) for linear interaction. lLagnitudes
) @) }1},@

PL(m) wna %), Yitdt (m)

correctlon to the frequency and broadening due to quadratic

, determining the

interaction respectlvely)are given by the equations
(.n)

(m)—"fc{u)z [(o') z,ae_,)diaei ’

—~ o0 9, &,
(i+ix.rd+a?mg_,‘)u> (1+ diq)(de,*‘oﬁ) +
('-49&1""49(‘) - LO

(25)

(4+m,‘)df,,n+(m,‘ ee,,) PP —~ =8 L7 a,p° OR
+d (0‘(4 09(‘—10 ], A , £, A ‘ﬁ.)( )J
=4
F,g - I Z ] *,z .l {(-Q XA [m‘fz(m dpi,‘+
&y dly

+df!".:) + e—f(o.r"r ra) (1+ My, die\’x)('{+ m".l+di¢l.c)] )
'(,h: (Oy‘*-(:)!‘) +[g2 (i+ m,i+ J;& )(m‘:e*-daxd) +J(i+m¥1)m‘:.+

0 ,
+ af;#_,]“f\.)(“p ‘Jaq) e, (112AM,, )(1+'9m¢l’1+92di¢1)'

(0 5

VI ()= [+ G102 F G o)~ Doy ]
[, + _.(ﬁJi] ? [ My, + am*I(i*Ji)] “Im, +di,_,+jt(1+};)+
+ Ja ey 1™ [Py + 3004 s G JP VL T 12 T, T
B (Do, 4a0e) s (fa7das Jija=*41)

From equation (25) for d’{;{: (rn)
190y

this magnitude equals zero at 11 = €y and Ji:—J;l =4 R

it is seen, that

8¢ that diagonal term in the last addend of the left part of
equation (24) is already separated and put into the first addend
of the left part of this equation.

Let us note, that quadratic interaction besides broadening
conditiored by transifions between oscillator levels and
described by the medium correlation function Vl;(qd> on the
combinations of frequencies u2,1 and u); - leads to
modulational broadening of levels, which is described by the
function (ﬁg (o).

Besides, broadening contains now together with the terms,

linear in numbers m y also terms, depending on n@z,

2’
quadratically,

Let us consider the solution of equation (24) in the Bame
cases, as for pure linear interaction.

In the case of harmonic oscillator (\/‘,&, R \/yf,*”y‘ E
are equal to zero)with nonlinear interaction the system (24)
of equations has no exact solution 1n contrast with the case of
harmonic oscillator with linear interaction, when there is

exact solution (see (7)).

2




iner ire Fine structure is revealed , the oscillator 4  spectral
distritution is defined by the solution of the system of equa-
tions (24) by the 1teratiorn method and is described by for-
rula (8), in which, nevertheless, it is necessary to nake tue

substltutlon

{’ (m)—* (m.) f' (M)+ (m.)

i

x(m) - ff:)("n}

and aud the correction term of kird
2. AR m; oy A i G, i,

Ji,4a=7%1 ‘!1‘!4

fl&(m)—-' fl;z(rVO

I

Cfozja) ~ .
4 Fa‘: (m ‘{:P ‘*J;dire )
T i hal) T (e i)
2
' /;(m) (M+J£J7 rd +J..‘ J{‘l) ~ﬁx(m)ﬁx(mq;é‘wt};él‘)

(M> (”l*‘}if £'+JJJ;"4)
Jorrection (26) due to quadratic interaction {the same as the
correction from linear interaction) has the order of uagnitude
~ .
F&(m)/ﬂ*{m) {iteration is carried out now over this little
paraueter),
The correlation function <&, {ﬁ)é*() on distribution
x(t)bg(0)7;
wings is defined by the equation ,,

bWy (7, = 3 (1+7) =%

a: (27)
- " o+ + — — -
Ir:z = f:z + ‘J%f(n:‘— Rl")/;zi + (R*1+n;’x+i)&li] '

Here the following notation is introduced

* ; A (D * 1)
Moz, = Z[1- e T NLTPILT A 0 0,),

A(Wpte,) -1

Rep =] € _4] (28)

Formula (27) is obtained by analogy with equation (9) by
iteration (in the first approximation) with respect to paraune-
~ ~ ~ .
ter Fx (m)/lﬂ‘ l ,and _n_& differs from fl -
by additions from independent of niz, terms of _P (nm)J
whic%Q?ake renormalization of f{z and V@za& (terms of
f& (m) , depending on m&, perform renormalization
of vazae’

In the case when it is possible to consider one oscillation

J

in the expreasion for u:;z('rYL )).

& and take into consideration only functions 3&2(0’h9+z53
and jae (1 R ,_[)+L‘E> (low temperatures), the system of
equations (24) has the solution (with arbitrary relation between
parameters of the line form) of kind (10) where it is necessary
to make substitutions

~
-[l,z (m£> - ﬁ*("‘a{) N Fag(‘)("n*) — [:e (m“> .
In the general case the s?stem of equations (24) may be
solved at computer,
In classical limit the system of equations (24) is
reduced to the differential equation (if we restrioct ourselves,

for simplicity, only to one oscillator & )

[ﬁz (Xo) - ¢ + 1 /:t:e (,(th;a-jx")*'q" Fe;]jae("%‘o*‘.f)“

- (29)
—ﬁéxo[/"¢+,,?f;; ‘—Z)— +Xo)} dg¢(i(’;°;‘9+"f)

dx2 )
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3‘_2 (" xo)“j*'(.é) = j& (oc,k?*—éé) =0

[

Here [

L
broadening. It is defined by the equation

1o = ZILT LT 0 = (R + )1,

H L

is the magnitude, describing modulational

Differential equation (29) may be solved numerically at
computer., Zquation (29) formally coincides with that obtained
in work/4/ for particular case, when ji (X )::jf - §7 X

o€ © ® o,
the medium is considered as a set of harmonic oscillators with
(4
continuous spectrum and f;x = @ (a particular kind of inter-
action Hamiltorian with respect to the displacement operators

/4/

of medium particles), In this case in work calculation of
correlation function <’é;e(é)é:;(o)zo was carried out
at computer by means of formulas (29), (12) for pure non-linear
interaction ('F = 0) . It is shown, that correlation
function is described by symmetric curve which has essentially
non-Lorentz shape, even for the case of harmonic oscillator
(V‘x&: 0) {compare with formula (7)).

In time representation, it is possible to obtain equation
for function Qb(g)ﬁ) in the same way as in case of pure
linear interaction. But consideration of quadratic interaction
leads to equation for ¢><;)é> , which unlike equation (16)
will contain besides the firat also the second derivatives with
reapect to (y“fi . This more complicated equation will not
be considered here. It is convenient to present the spectral

representation of correlation function of oseillator ¥

24

occuvation numbers as (w= @)

< R (4) flaz(o)>dz—;—r I Zmdz ?;(m)upﬂ‘f) :

T, ree) = (P Zm [G (D ]m™ 00

The system of equatlons for the function g (m Dedg)
may be obteined by means of expressions (I. 47),(2),€23), The

result has the form in actual frequency range u)" 4

[t.)+</" (m)]jae(m Wree)+i ) 2 Y (m)

J’=+i ¥

. e:(“){‘ I d_) .

?.z m-rj Y (.3+4€)+LZ: Z ‘ixi.: (m).
}1,}4 4 oy oy
(J1 }JJ) (31)
Afetie * j, : . .
€ y J ) 9& (m *é1 J;x"*-c}-’-—éa"ﬁ (‘)*‘.5):‘ (mae'-x)(ﬂ):

Here magnitudes F‘(M) a)("l) :(.!) M) (”‘) Xéi‘h
&,
are defined by formulas (5),(25) for :n (m.) Fu)( ), X (M)
e o
B;r:{;& (hm) respectively, in which it ie necessary to

pUt *!' = 0 .

The system of equations (31) may be solved also as the
system (24) by means of computer with breaking it at any
equation,

In classical 1limit of high temperatures the system of
equations (31) mey be written as a differential equation

(for one oscillation & )

(W-J20, - 8ix, ) g, (xo,0+ie)~2i[(Xot 5 I, +

25




+—- x . [
Ao (Xe* 5, I_M_Qﬁf_ 2l (s

(32)

+\ d? e (XodHi Ay Xo
+ %o [y ) 5";{(&* L Udex,-1) €,

5:2 (- Xo,Wti€) = g:e (o0,W0+i€)= 0

The correlation function of occupation number,as it

follows from (30), is defined in classical case by the equation

LRy O Rglo)> = -2 Im fx 9y (X, (£ dX
Y

The equation of type (32) is solved in wor numeri-

cally for different values of parameters. The obtained spectral

. . ; ; A x : .
distribution of function nx(t)nae (O>>0 differs from
the Lorentz distribution which takes place in case of

pure linear interaction (see (21)), the stronger the larger
s . . . . +
is contribution of non-linear interaction (’zez,) .

Taking into account non-linear interaction the non-
Lorentz character of distribution of correlation function

'e . .

<n‘(,&) ’Z&(o» is seen also from kinetic equation for the
function jhe ("2 é) . The quadratic interaction leads to
addend in the right part of equation (19)

I( 1,
MO -5 T AR -
Jj_}‘-—.l l’_"

(e 74a) (33)

‘due (o fule oy g d)

Jow the corrclation function /Vi:ﬁ (f) doea not satisfy
the cquation of type (20), ard thus the distributior is not
Jorentzian,

Let us note, ithai modulational broadening, defined by
the function tf’;(o) , falls out of equatiors {31),(32),(33)

for correlation funciiorn of occupation numbers.
4. Conclngion

The general theory, developed in work/I{ gives a possi-
bilityof calculating the correlation functions,which deter-
mine the dynamics of a particle weakly interacting with
arbitrary medium. The obtained formulas permii one to get the
resulis in any order of perturbation theory in Hamiltonian
interection ;iint (see expansion (I.15), and also to
consider any power of the displacement operator E:
of the singled out particle in terms, describing non-linearity
of the conpidered coscillator, as well ae in Hamiltonian Hint’

Transition to a definite(with reapect to power iZ; )
interactlon-of oscillator with the medium fluctuations is

ay performed by means of expansion of the megnitude
e -4 in general formulas to needed power of u_ . A8
it is shown in the present work, the consideration of definite
interaction mechanipms permits one to investigate the
dynamics of non-linear oscillator in details. For every inter-
sction mechanism there appears its own set of parameters
expregsed through the correlation functions for the medium

potential energy. For example we have the magnitude f;
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for linear irteraction (see (6)),whereas f;:; for
quadratic interaction (see (28))., These magnituﬁes may be
calculated at any definite wedium that will make possible
to obtain the dependence of the oscillator spectral distri-
bution from the medium parameters (temperature and so on),
For example,to pass to the-case of medium as a set of
harmonic oscillators of continuous spectrum, which was consi-
dered in work /2—4/, it is necessary in formulas of the

present work to carry out the substitutions for linear

and quadratic interactions respectively
. ° 2 =
ILTl® 05 (D) — 5 Vi [ (147,) de-D) +
K
+ Ry I (WDer)] 5

—

— e gy a p0
E/d— ld{ivo' [dxlvo’ ‘{w (wﬁiik)*ﬂ.)_’ ; in'xaK [(i"' (34)

#1500 (D, 0 - D) R, O (0 2000 0)]

where U)g is the oscillator frequency of the continuous

spectrum),y;x) V; are the constants of linear and

) 19K
quddratic interaction of the considered oscillator with the

continuous spectrum, The result (34) is obtained by nmeans of

expansion in the medium correlation functiong(I.20), (I.21) of

the potential energyfj(zlk:(i),...,k’”(f)) or ,‘:F(Z:,k;(f))

in power series in displacements of medjium particles Erc

up to the linear term. The conaideration of the next terms of
expansion. in ZZA_, permits. one. to. examine the. interaction

involving more then one (in contrast with (34)) quantum of

medium oscillations,

28
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Let us note, that the results of the present work
formally coincide with these of 'ork/2'4/ for the corrospopdins
particular cases, considered in these works, The coincidence
becomes actual, if we pass to the iit of harmonic c.';scillator-
of contimuous spectrum as a medium by means of the procedure

described above,
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