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I, Introduction

The theory of the harmonic oscillator, whose weak
interaction with medium is described by the axpression
linear in oscillator coordinates (or displacement operators),
is developed in a. nuhber of works /1-5/. Classical and
quantum theory of nonlinear oscillators interacting with
medium by means of the linear and quadratic (on oscillator

displacements) friction is constructed in works /6-8/. The

gyatem of harmonic oascillators belonging to continuous
spectrum was considered as a medium model in works /6~8/.

A new method of constructing the weakly interacting with
medium oscillator quantum theory based on the use of super=-
operators /9/ is presented in this work. By this method, it
is possible (as it will be seen below) to construct the the-
ory of the weakly bound ogcillator with arbitrary power
of theé oscillator nonlinearity in its displacement operator
(nonlinearity, however, is supposed to be small in comparison
with the oscillator frequency) and taking into account any

power of the oscillator displacement operator in the inter-



action Hamiltonian of the oscillator with medium. The medium
and its spectral properties are supposed to be rather gene—
ral,

It is convenient to carry out the investigation of dyna~
mics of the singled out particle by means of the correlation
functions for ite displacement operstors. Below we will ob-
tain the general formulas for spectral representation
<a;"(.(:) CL'g (o)>d of the correlation function
<L(:(£)Qf[a)> ([Zo(-t) is the displacement operstor of the
singled out particle in the Helsenberg representation; L, ‘}9
denote Cartesian coordinates Ngas <> denotes
quantum-etatistical averaging with full Hamiltoniom).

The consideration is carried out under the supposition of

fast medium reiaxation with respect to ths relaxation frequency
of the singled out particle due to its weak bond with the
medium, This supposition permits one to consider the particle
(in zero approximation)as being in some average field

produced by the medium particles, The interaction of the
singled out particle with the average field fluctmtions is
considered as a perturbation, The perturbation influence on
the particle dynamics is described by spectral representations
of the correlation functions for the mediym potential energy.

The oscillation spectral distribution of the singled
out particle is investigated by calculating spectral repre-
sentation < 4,_,({) g; ( 0)> 3 of the correlation function
for normal oscillation of mumber &€ (8, g; (x) are
annihilation and creation operators of oscillator &
in the Heisenberg representstion) taking into consideration
the presence of other modes of particle oscillations, The

general formulas are derived determining this correlation
function. It is shown that the spectral distribution of the
singled out oscillator may have the fine structure due to
oscillator nonlinearity. The fine structure line widths are
conditioned by the oscillator interaction with the medium
fluctuations and expressed by the medium correlation
functions.

The general formulas are also found, determining the
spectral representation of the correlation ffn;nction for
oscillator & occupation number <Fl¢(£) ﬁx_(U) >h)

A + ~x A ~

The quantum kinetic equation determining the time
correlation functions < Ua@ULE(0)>, <bp@)dh(0Y> <R u@y@>
of the particle interacting with medium is obtained.

All obtained results are true for the examined general
case when any power of the displacement operator of the

—

singled out particle U, is taken into eonsideration
in the Hamiltonian,.

The present theory may be applied to various physical
gituations., For example, if the singled out particle is an
impurity atom in crystal, then obtained forsmulas describe
local or quasilocal oscillations in crystals. Other appli~
cations are also possible, for example, in the theory of

lasers and so on,



2, The general formulas determining

the oscillator dynamics

leth consider the Hamiltonian for the system, consis-
ting of the singled out particle and medium, of the following
type '

H - ﬂ?Mo Z" ‘QMe + U(E;) gi)-") E,v) . €Y

#0

—

Here P ° M ° are, respectively, the momentum and mass
—ly

of the singled out particley} _Pe 5 Me are the momentum

and mass of an ¢  particle of medium consisting of A/

particles; U is the potential energy of all particles

—y

of the system; Rn are the radius-vectors of particles
(D-0,1 poee .n)c

Let's define the displacement vectors of particles
from the equilibrium positions in the following way

—p

R, = </—&_?+an5 ZL+~(ZVL

n

where gn == < ‘Q)’n>

Lett's put down the system potential energy as an infinite

are equilibrium positions of particles,

series of displacements of singled out particle (Zo a8

- — ",,—V‘:, - —» —
URE, By=e“" U R, R,

—

where Vo denotes gradient operator with respect to partic-~
le coordinates. Now it is convenient to rewrite (1) in the

' form

H= Ho+ Hppu + Hepe s

Pl (7 F
=y 2 + U4, R, ,R,); (2)

—

=P Y[ VER, R)~<VE B ]

Here (.. ol = Spmd (f e )denotes averaging over the

= kT’ meed—(’sl d)e Mf

deacribes the singled out particle,

Hamiltonian H, .4 states, |
Hamiltonian H,
which is in the mean field, which is determined by the
averaged over the medium states potential energy of the
particle-medium interaction. Hamiltonlan Hmeo(_ ,1in fact,
describes the medium which the oonsidered particle interacts
with, Hamiltonian Him‘: describes the interaction of

the singled out particle with the field fluctuations opera-

ting on the particle,

In the case of pairing forces, when the system potential
anergy looks like

U(FO)—R-:L)'") i,//) = Z ‘P(RO)Fe) * %Z— ’O(F )z"l)a



putting down f( Fc,ﬁ.e)»- as

-

\P(RO)R OVO ‘F(Zn £

we receive the following expressions for Hamiltonians

7 S
Ho= 5o “_1>€§O<f(zo,/ee>>m,
3
mel {éo'_?ﬁ; + ’;f}*of(k—;)FM)*Zéo\F(Z’)é))
Hoe= (€™ 2)5 [ P(Z8)-<HER ]

£#0
Let's consider now the spectiral representation of the

correlation function for the dieplacement operator 67,(’6))
which describes the dynamics of the singled out particle,
It i8 convenient to express the correlation function thrbugh
retarded and advanced Green functions by the following

known formula

CURU0)y, = i (1-ne™7) f (= 65, )],
(4)

where
xR . t
UL, = 5 [utt)udion e dt p=zs,

Pourier-components of retarded 6;‘[; (Q) and advanced
6: (ug> Green functions may be represented in the
following way

£ ril L +L i' o+ y
G;(w)=-7 je (Dece) <{a.,(£), af(o)},z>4£-
ap ()= ff ‘(“’“f)tdu @), ULE3, > d ¢ . @

Cq

Here the {A 8% =AB- ?BA is introduced and also
h=41,&E++0 are put.

Let's introduce Liouville superoperator Z by the
definition

[A= HA-AH, (6)

where A 1is a usual quantum-mechanical operator, H 1is the
Hamiltonian of the system. As far as the operator time depen-
dence in the Heisenberg representation can be written via L
ass
(HE, —HE (Lt
e Ae  =e A, Q)

then the correlation function (4) after the substitution
into it the expressions (5) and time integration will take

the form

LR UIYy, = o (1-pe™) <{us, [Govie)-
- Glw-iu? (8)
Here Green s:\llperé];zerator 6:( tD) is introduced

according to
A 4
W) s
Gl =—%
Let's suppose further, that the temperature satisfies

inequality

KeT >> Wy (9)

where LJ (nt i8 of an order of the relaxation frequency
of the singled out osclllator, conditioned by interaction
/-/‘-“é . The restriction (9) is not essential for the

particle weakly bound with medlum.



The supposition (9) permits one to write down the

density matrix of system \P = (,SIP e—‘H)-ie—KH as

\P zJDoJomea( ) (10)

where 4 .
_ —-AHoY -
\/Oo - (;5!,06’ 4 ) € ° .
Let's note, that neglecting /_/int for the denmsity

matrix while keeping /-/"" ¢ for time-dependent factors
of (7) type, doesn't influence the dynamics of the consi~
dered oscillator,

Taking into consideration (10) the expression for the
correlation function (8) may be rewritten in the following

way
<a:‘(é)uf(o>>o=jy—,; (1—?e‘m)—idal‘,[g(oug)—
-G (o-ie)] afj,z > (1)

Here .. > SPo (\Po is averaging over the states of
HamiltonianH Averaged Green superoperator is also intro-
duced into the expression (11)

Y 4
G(‘D) = LJ—Z 5 12

where £ = <.. > . Operator L possesses all the
properties of the projecting operator, for exmple, _P _P

It is possible to show /10/ that in general case the following
exact expressions for averaged Green superoperator take

place

N |
6(D)= 5o At

F1(0)= Pl Q w—_i‘é‘z’é' Qlint?, (13
where Q: 4-P.

While putting down the formula for "mass" auperoperator
M((_D) (which in general case keeps the superoperator L

instead of Lmé) one takes 1nto consideration, that
L. P=0, Pl.o=0,Ql,L=0 (L=] ot Loed* i
respectively to Hamiltonian (2) terms and definition

(6)), and algo trace invariance under the cycle permutation
of operators.

Taking into consideration, that for Hamiltonian (2) or
(3) "Pzian: 0 , for the averaged Liouvillé super-
operator PZP , which according to the expression
{13) defines tha oscillation frequency spectrum of the

considered particle, we have
Pip=PL.P . (14

"Mags" gupsroperator M ((Di LE) defines oscillator
frequency shift (the real part /Cf((ﬂtté)) and
proadening of the spectrum line (imaginary part), conditi-
onsd by interaction Hz'm‘: . It may be expanded in the

Pl
infinite powsr seriss over L as

M(“D>:‘PZ2néi [—Qw QL“‘&]P
n=4 (15)

Letts suppose, that the characteristic frequency of

medium rslaxation "J'Wed. , which 18 determined by



Hamiltonian Hmat , is considerably larger than the [v{ (Q-*(f_) = 51‘0 P(e a"v" . (18)
oacillator relaxation frequency (J int , determined by

: 4 @

Huuf » 1.e.y l » (e = i) f (‘D)P
. L 0’ +£& w frf A

%, %y ( The rule of action of the superoperator (e eVe_ i)..‘)
>> 16
med wrt ) on arbitrary operator A is defined in the following way
While fulfilling the condition (16), which is quite reali-
zable for weakly bound particle, it is possible to consider " u" a _‘l) A= (e o ° )A e A (e Z¥ i)

the particle (in zero approximation) in the mean field, (19)

arising from averaged over medium states interaction with As it is seen from equation (18) "mass" superoperator

medium, It is consistent with the Hamiltonian definition /C{('O) for the correlation function of the singled out

“ and weakly bound particle is defined through function
(-4
expanaion (13) for /:1{0) nay be considered es & pertur- *KD ( (.9) , which is the Fourier component of the time

H, 1in formulas (2) or (3). Besides, in this case the

bation series over [‘""“ (‘" €. Hiné) in & further conside- correlation function ‘()o(i-) for the medium potential
red frequency range u,) near oscillator frequences, deter- enersy
mined by the expression (14), and it is poessible to calculate
° Ay N —
the "mass™ superoperator with any degree of acouracy in f (ﬁ) = U—(Zo’ ,(’i(t))___ é)) U[ e,Pi(o) ,Q”(o))?"d,
interaction, (20)
t trict furth iderati d ord 2 M~ Ny 7 D 78 7D

Let's reastrict further consideration by second order where U‘(f 2“ R )__ 'U'(/.,JP p”)_<v(/°’pb“?p”)> ol

perturbation theory for the "mass™ superoperator (n=1 in 5

e ({_) = exP(‘LM“Lt) ,Q . Gradient operator V,

. Int ximation *mass” v ; T
(15)) his appro tion a" superoperator /M (0+¢é> entering into one of the superoperators ( oVo i)u): ,

in time repreaentntion may be given as

‘9 7 ¢ aots on one of the functions 1n (20), and ¥ 1n other

- J, (_ o A R '~ —»

M(f) 9(£) ‘P[‘mt (O) € [’inf(—t)f) superoperator acts on the other function V(!o_,) .
an Z 4 As it is seen from the corresponding equations, the super-

T -
where Qﬁ)::‘ for £ > 9, Q(é): Otor é(o; L",‘t(‘f)=e .d[,..( operators (14) and (18) act only on the operators of the
“ (1
Calculating M(-é) by (17), using rule (6) and considered oscillator,
H: " (2) ,and then turning to the Pourier In the case of the pairing forces an analogous
i
representation, we get consideration with the use of the Hamiltonian (3) leads to

the equation for M (») the same as (18) but with the



Fourier component of the function

=5 <L R RO,
£, 0'+o (21)
as the substitution for %; (u??
wnere (00 B,)= P, R0~ < (00,00, 0 -
Extraction of real _P (\D) and imaginary /"(@)
parts of "mass" superoperator M(Qiéf) is easily perfor-
med by means of the known identity

= (%), * (I

WLE (22)

where (i..)Pz denotes the principal value of integral.

Formulas (11)-(15),(18)~(21) give the complete and
strict (under conditions (9), (16)) solution
to the problem on spectrum of the singled out particle,
weakly interacting with arbitrary medium by means of inter-
action with any power of displacement operator ZZ; .

A it is seen from equation (11) , to find the oscilla-
tor displacement correlation function it is necessary to
calculate trace over oscillator Btategi For this purpose it
is necessary to have superoperator éS(LD) matrix elements,
The superoperator mairix element has four ind¢ces unlike
the usual operator. It follows from the definition (6)
according to which the supercoperator acts on the usual
operator (and not on the state vector, as the operator)
giving the operator, #s a result. Thus, if (C = Z A (CJA

are operators), then we have for mairix elements

é _ e K’él _e/
Co=D Lo A . (23)
k'e' =
To fird superoperator 6 (\I)) matrix elements it is
gufficient to have matrix elements of the superoperator
GA_A(\")>:0"PLP—M(0) , that is inverse to é"(w)
Then matrix elements of the 6((.3) are defined from the

system of equations

ngMmy 4

> (67

namy :

i

TP P R TS
J

G
Rym, ~ Yan' Tmm

where R_) . denote some complete set of functions corres-
ponding to Hamiltonian H, .

By multiplying botlll the parts of the equality (24)
by matrix element B,,_",2 of some operator B acting in
space of functions R, m , we receive after summation of

(24) over h") m' the following (convemient for the further)

relation B
ngm, = nlm! m' m
Z (6: ) Z G‘nimj_ Bn' = Bn (25)
F I »
szmi ahm

Superoperator G- ( ._o) matrix elements may be defined
by formulas (6), (14), (18). (19), (23).
Let's consider now the time correlation function for

oscillator displacement
LuiuL)> = cut e "tuss,

Taking into consideration (10) we get

(Lt

) ~Lt), ~'
<U:[f)a.‘,ﬁ/o)> = <a;‘f€ _PC(D"B>O ,(26)

15



E_t is easy to see that the averaged Green superopera-
tor & (Q+L€) , defining the Fourier representation
of the correlation function (26) (see (11)), is the Fourier

component of the superoperator

= LLf
G (é):%ﬂ gy e : (21

Let's introduce the function

(Lt
rym ;4) = )
g(rm; ) Z (Pe o0
which according to equation (26) defines the time correlation
function for displacsment with 5= us .
Then from equation (27) for the Fourlier component
of the G (W+1€) we have

O&) §lnm; 4) uﬂ, f —caéz [Gmﬂe)j B o,

(29)
Differentiating eq. (2%) with respect to time and

taking into consideration the relation (25), we receive

the cquationbr function g(n m; {-) for large times
PN NN (J,mc

2 oumid= 5 [ELL+ P ie]™™ oo )

nymy

(30)
Here™mass" superoperator M(O+ Ll&) ie taken on one
of the peak frequencies (Di of epectral distribution

< A(‘ﬁ)g(‘,)}uJ for the operators of the considered oscillator,

as far as at large times 7 >> LO;,:,{ the correlation
function <JA(¢) B(o)> describes peak region of the
spectral distribution., Peak frequencies are determined by
the matrix element of the supe;:operator ,PZ,,_P and it
is supposed that these frequencies do mot coincide and aren't
close to each other.

While recelving equation (30) 1t was taken into conside-
ration the initial condition

g(n,m;o) = 8‘:’") (31)

which follows from the definition (28).

Equation (30) plays the role of a quantum kinetic
equation and defines the oscillator correlation function
(26) in general case for the system described by Hamiltonian
(2). "Masa™ superoperator /CI(L,D-P(.E\} ias defined by the
expansion (15) in any perturbation order over interaction
Hamiltonian in case of the fast medium relaxation relati-
we to oscillator relaxation frequency. In the second order
on H e M (D+t€) (4n 30)) 1is defined by formula
(18). .

3., Some genersl results for the spectrum

of singled out oscillator.

Let's consider the case, when Hamiltonien }f, has
the inversion centre. L'o't 's expand the displacement of par-
tiocle —(zo in normal coordinates of singled out oscillators,
which diagonalise quadratic in .L_(_.o part of the



.'?.

Hamiltonian H, (together with the term —— ,?M ),
by the formula

— — —> & -+

Uy =3 (dy b+ odg by ), ©2)

A
where X numbers singled out oscillators, and 4‘2)4’:
obey the Bose conmutation rules and are annihilation and
creation operators for ) oacillation. The operator of
momentum _Po is expanded in é N 4 ; nnalogically.
Then, omitting "non-~resonance" terms of 67 é’x

type and so on (containing unequal number of é’z and 42
operators), which lead to higher-order corrections, we

receive the following form for IL/O

A
= A R
He Z‘*‘Dz Ry + 5 Z’\/a. Ry Ry +
03
A
+ Ve ' .
*ggﬂ xrx Rxnx, {/’ + s
+

Here: “)x is 2 . oscillator frequency,rr}x::éz éi,.
V;;l V‘p;rx' -are-nonlinear constamts (for example \/“v 2=
= 1L Tl T | <V(li,,l",“.,&2m)- Let's note, that later
on it is not important to what nonlinearity order the series

(33) is considered, but letts assume nonlinearity to be
small in comparison with (4) 2 . o

Let's consider the correlation function ()b (o)
for creation and annihilation operators of singled out
oscillator ¢ » Taking into consideration (11) and (32)

this funotion may be given as

e

(/,z t‘)g (0>>‘9 71’"1—?6

T ({g g(0+£2)gg >a

¥hen receiving equation (34) it was taken into consideration,

- A

(4

that for Hamiltonian {33)
Gee "T=e e" 4,

where ,D (,J=2+aQ \/d(’z +Z *521)’2*,, Ceey
and then nonlinearity terms afe omitted from (J because they
are small, i.,2.,,1% 1s put (OK:"D{ .

The trace in formula {(34) will be calculated with the
sigenfunctionsof the Hamiltonian H, , which look
like g IRe> , where ]VZ{> are eigenfunctions

of operator corresponding to eigenvalues R,

A
VZ:K
(}’Z‘_)e = o')i B ) . In this representation the correlation
function {34) may be written in the fg}lowing way

B, = ImZ (P

7oA - ?e
m+ dgepe! ‘f)m + m'
(g > FG (O+14)J +JD¥, (é;( s Pt
(35)

Here for short M. and m' denots certain seta of
numbears R& , corresponding to eigenvalues of Ho ,
and summation runs over all such sets of ¥, .
The notation of m * 0';£: type means a certain set
of numbera Rgz , a8 a set n2 , but in which the occupa-
tion number for oscillator < 13 one unit larger or
lesser in somparison with set )2, . While deriving squation

{35), the known forms for matrix elements of the operators

+
g g were also taken into account,
x> YX

19



Lett's consider now superoperator matrix eléments,
entering into é-i(d> , which determine superoperator
matrix elements of 5(04-(&) according to relajions
(24), (25). The superoperator matrix element of Lo ’
which determines the energy excitation of the oscillator

(see (14)). in the chosen representation has the form

= (Dn= D) Irnt T’ 5 6
L‘)n:Z“?ae"ae*'i"Z,\'{u’na: ' 0 Vg’
& X

S

oﬂ."‘l

- Vl‘!n*:’?‘r" “+ ...

where . end m_ denote different sets of numbers Rd( .
Thus, Z, is diagonal in the given representation,

If we neglect "m_&ss" superoperator /Q] (,,J) in the
equation (13) for é (O) (zero approximnt’:\lon over
interaction H[ut ), then superoperator 6:" 1(.,9)/\ is
diagonsl (taking into consideration that (J and /[,
are diagonal), Then in this limiting case from equations
(35), (25)(in (25) it is necessary to put R = M+ dueye’)

’l‘)'
nw=m-+ ! and replace Bn' (@t) 37 P ) and
(36) we obtain the following equation for the correlation

function

+ A WD M
SORAVMAOYA =j; > e (1+my)

d(0- D (W) 0
(Dx(m)fdmﬂ;;*‘““)m:“r)ae*j" eoe g

Nonlinear corrections to U) " in A
Xh)‘ u
omitted hers and Z, = Spe " °=[1(R,+1), 1, = (e )
is the mean occupation number of oscillator & -

It follows that in the considered limiting case the
& =oscillator spectrum consists of a series of fine
structure lines, which is produced by the oscillator nonline-
arity. In case, when there is only one oscillator ¥ .
the spectrum consists of a set of line corresponding to
different m£= 0,1,... . If there are several interacting
singled out oscillations, then every line with a certain
Me
rent mat’ « At low temperstures (KBT & (,,)2,> there

splits into a series of lines, corresponding to diffe-

is practically only one line in the spectrum, corresponding
m.f , =0 » With growing temperature the other
spectrum lines begin to appear.

For linear oscillator ( P )\{\?Bo?” = 0) as it
follows from equation (37), we have one spectrum line with
u): u)£ , that corresponds to equidistant energy levels of
the linear oscillator (full spectrum degeneration),.

Now we shall take into consideration /CI (Q) ’
describing the interaction of oscillator with medium fluc-
tuations, Consideration of interaction Hint leads to
broadening and shift of spectrum fine structure lines of
the nonlinear oscillator. If broadening becomes larger
(for example, when the temperature grows), then spectrum
lines begin to overlap and fine structure will gradually
disappear., At rather high temperature there may appear a

a



unified spectrum distribution, in general case, of a
complicated form, instead of fine structure,
A B
So far as expression (18), for example, for M(0+(E)

may be given as

A Lo +ct"
u_i>J»(0Lu>e)

i+ =7 ja(w p(é dt-
(38)
A oVo
(e “ > 1), Y, (w)f
then matrix elements of /\/1(@) are dofined by ,\ o
Aroo "C ot fallaVo
superoperator matrix slements of ( ( —_‘l)o.

According to rules (7), (19), (23) matrix oloments of
K are defined by the squation

an _I_—(eup -i)ed-/f(e(/oo )] A ((Ha)
et (e“'““*)“ A [(e™ % g)e ™ (€™ )] -

mwy - L
A -tHo*-) my s UoTo > ( LH.,*.>

NERNHNG Ao, (€ e ) -

—KQ)‘ "'(Ho‘£ n Uon ) AM:"( LHof) ( Uv WL
_etoe™) (e7 e I,
Hereafter summation is meant over repeating indices R )m )
R, m, , and diagonality of the /_ in the
considered representation is taken into account ( R, re
are sigenfunctions of Ho )e

As it was said above, the case is considered when the
frequencies of the gingled out oscillations do not coincide
and aren't close (LD{ #* &9£1> . Such a situation may take
place, for example, in case of the law symmetry Ho .

Let the different resonance situations between oscillations,
when some combinations of frequencies u)x) ‘D.f’;--- coincide,
aleo do not realize, Correlation function <é£(g)é£(o)>“)
will be considered in actual frequency range W x (J, .

It ie not difficult to verify, that changing in eq. -(39)
the displacement operators (2:, to the operators éx) g;
by formula (32),it is necessary to keep only terms, containing
the equal number of creation and annihilation operators
for every cscillation & 1in any order in L_Z; while
expanding eL(.,Vo into series. Terms, conteining unequal
number of creation and annihilation cperators for every
oscillator & , glve a contribution of Fx/&)az or ae/‘Dne
order ( Fae S Px are of an order of the line breadening
and oscillation £ frequency shift, respectively,
resulting from the interaction Hini' ) into correlation
function <gx(é)g£(o)>o . Consequently, these terms
may be omitted because the interaction Hamiltonian H(nt
is small,

Thus, in tht.a_'first two summands of (39) for(e —_{) .
. C‘LH"t(e Uo °_.i) it is necessary to keep only diagonal
terms with ”4 =N and VZi= ", . Taking into conside-~
ration all the above said the superoperator matrix element
of M (c.9+(. f)my be represented vin formula (38) as
[K1(o+ie)] faao { (%% (%%,

W= Wy, +Wp -0+ €
NG R PN
(43 W+ (Omi-f(..?*-(f O = (€= Ln (40)

4
(e"" —i)m' ((4) ,+LO 0"“5 LJ W) +LD v+d)+cf }\f(w .

23



When deriving the equation (40) the well-known relation for

correlation functionas is used:

e AP 00) = 0w .

Equations (35), (24), (25), (36), (40) give a possibility
to carry out a full and strict exploration of the oscilla-
tor X spectral distribution.

Let's consider the case, when widthe of fine structure
lines /—;e(m_) of the singled out oscillator, arising due
to interaction Hln'& , are considerably lesser,

than distances between lines, i.e.,

Me(m) & | We (m+dg ) =D ()| = A, (m).
(41
where ch (m> are renormslized by real part of M(u)-ri&;
frequencies (Dcf (m.) , and 3?1 may corresponde to
any singled out oscillation.
Let's write equation (25) in the considered representa-
tion (for B = é; ), separating the diagonal term, as

(G g & ool Ve =

m+dpe! m ' mtoge’ m

=VieeT - T (TN Y e

myFEm Ram,

[
Ny # me Tyt m

V—T‘—"'V (42)
CVmg+a

It ien't difficult to see, that non-diegonsl terms

- nym
(¢ ) 1M in the right-hand side of (42) are propor-
e+ (zt,WL

24

Betm) = f deo’

-~
tional to /_:e(m) , because () and Lo are
diggoml. On the other hand, the denominators of functions
m+ gg’)m'
G g, {w) contain the determinant of syaten—
(24), which should be solved for finding G m"'d;‘e m (/J,,.i{-)

m+ ar.z’ m
Roots of this determinant define fine atructure frequencies

a)£ (m)) if the inequality (41) 1s satisfied, Thus, if we
considor froquenciea (J LJ 2 ( m) s then functions

m+Jp N .
Gn,m“ m’ in the right-hand side of (42) will
£
be of order A{ ("l) » It faollows, that sums in the

right-hand side of (42) contain small pa.rameter/—' (m)/A&(m)
and this system of equations may be solved by the iteration
method, In zero approximation it may be written as

2 Gt iy = e

(6“0l 72

(43
Substituting (43) into (35) and ueing (36), (40), (22), we

obtain in the actual range of frequencies W= LJJ:
(&(é)f;(o))o =‘7-,{; > exp{—lza),,mx,g :
@ rn. !’
(a4)

e [W-We(m)- fx("")l a(m)

[ (™% (€7 1)
w& - wni‘l'hjm‘—bol

with notation ff’ !
o




P
°

(i €™ T ),

+ ;
L«)x - (Dm_,._&z"f' (A)mi‘f'uj

*

Ry = [(€4), (€52

R,

L

2 (D Dy 00) + (@A) (€70

e ) TAA "l'“’;’x'
. \Ko ({‘mefg{c‘— (.Jmi— QJCE)_ og(euov‘f_ i)m+J;£: .

—y—?

. (euov_ i):: ‘F; (0)1 ) (45)

where i denotes the principal value of integral, Unessen-
tial nonlinear corrections to frequency (")k are omitted
in formulas (45) (frequencies l“)n_ must be also taken
here neglecting nonlinearity).

Thus in the considered limiting case, when the condition
(41) is fulfilled the oscillation ¥ spectral distribution
consists of a series of Lorentzian lines with widthe [/ g(m)
whose maxima are shifted relative to frequencies (4):(.-:)&("{)
by Px (m> . Broadening of lines 1is caused by transitions
between levels of oscillators and also by oscillator
frequency modulation, appearing due to medium fluctuations.
The modulation broadening is described by terms, containing
the medium correlation function in zero frequency ‘F; ( 0)

and arises, as is seen from equation (45) for [’az (m) ’
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only in the inter:.f:g..on’with medium, containing even powers
of expansion £ ©o Ve in C(__:, .

Let's note, that the obtained result (44) is of a
general character, as it is true for the nonlinear oscillator
with an arbitrary (in power of (7.:, ) interaction with
medium,

In general case, when the condition (41) is pot
satisfied, 1t is necessary, as it will be done in a subsequent
work, to consider a specific (in power of Io ) type
of the oscillator interaction with medium fluctuations and
to look a solution to system of eqs. (24) or (25).

Let's give one more expression for the correlation
function of occupation numbers, which may be obtained in

the same way as (35).

Putting in this case IZ =-4 ,» We have

<Ry ()R, (0, =-2 (1+e*) "

m = m'm’
'Immz;n’ (fo)m Mg [G(‘D“&)_-}mm_ (m.:e" de).
? (46)
Equation (46) mey be calculated by formulas for super-
operator matrix elements obtained earlier, Instead of
system (42) for calculating correlation function (46) it is
necessary to use the system ' :
A n AT
G G (- Ty ) = mg
nim_t mm m! YL € € & £,

L

47)
which follows from (25) in the same way as (42).
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The quantum kinetic equation for the function

-(Lf‘ m""'ﬁ’ ’;m, P
jag(nudi NE ¢) = Z (_P )m+d;:l)m VA+ My, 5

+
determining correlatlon function gx ({)gg (o),
looks like equation (30), in which it is necessary to put

nR= m+t;;£l (PL P)“_{mj.__ &(m)(’:" “,,R‘J;M"J‘-=(D£

The kinetic equation for the function

Gu (mym ;) =7 (Pe "“P> - 7),

which deteminee correlation function < IQ&_ (.é)n (o))
coincides with equation (30) for n = nL ( here the term

P
.PL,.P disappears, as it follows from (36), and thus,az-:o)
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