ОБbЕАИНЕННЫЙ
ИНСТИТУТ
Я $\triangle E P H b X$
ИССАЕАОВАНИЙ

AYGHA

V.F.Los

THE SUPEROPERATOR METHOD

IN THE THEORY OF OSCILLATOR
WEAKLY INTERACTING
WITH MEDIUM.
I. General Results

V.F.Los

THE SUPEROPERATOR METHOD
 IN THE THEORY OF OSCILLATOR
 WEAKLY INTERACTING
 WITH MEDIUM.

I. General Results

Submitted to $\boldsymbol{T M \Phi}$

I. Introduction

The theory of the harmonic oscillator, whose weak interaction with medium is described by the axpression linear in oscillator coordinates (or displacement operators), is developed in a number of works /1-5/. Clasaical and quantum theory of nonlinear oacillators interacting with medium by means of the linear and quadratic (on oscillator displacements) friction is constructed in works $/ 6 \mathrm{~m} / \mathrm{s}$. The syatem of harmonic oscillators belonging to continuous spectrum was considered as a medium model in works /6-8/.

A new method of constructing the weakly interacting with medium oscillator quantum theory based on the use of superoperators /9/ is presented in this work. By this method, it is possible (as it will be seen below) to construct the theory of the weakly bound oscillator with arbitrary power of the obcillator nonlinearity in its displacement operator (nonlinearity, however, is supposed to be amall in comparison with the oscillator frequency) and taking into account any power of the oscillator displacement operator in the inter-
action Hamiltonian of the oscillator with medium. The medium and ite spectral properties are supposed to be rather general.

It is convenient to carry out the inveetigation of dynamics of the singled out particle by means of the correlation functions for its dieplacement operatora. Below we will obtain the general formulas for spectral representation $\left\langle U_{0}^{\alpha}(t) U_{o}^{\beta}(0)\right\rangle_{\omega}$ of the correlation function $\left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle\left(\vec{u}_{0}(t)\right.$ is the dieplicenenent operator of the singled out particle in the Heiaenberg representation; α, β denote Cartesian coordinates $x, y, \mathcal{Z} ;\langle\ldots\rangle$ denotes quantum-atatistical averaging with full Hamiltonian). The consideration ia carried out under the aupposition of fast medium reiacation with respect to the relaxation frequency of the singled out particle due to ita weak bond with the medium. This aupposition permits one to consider the particle (in zero approximation) as boing in some average field produced by the medium particles. The interaction of the singled out particle with the arerage field flucturtions is considered as a perturbation. The perturbation influence on the particle dynamics is described by epectral representations of the correlation function for the mediw potential energ.

The oscillation epectral distribation of the singled out particle is investigated by calculating spectral representation $\left\langle b_{d}(t\rangle b_{x}^{+}(0)\right\rangle_{\omega}$ of the correlation function for normal oacillation of number de $\left(B_{\chi^{(}}(t), B_{\infty}^{+}(t)\right.$ are annihilation and creation operators of oscillator \mathcal{X} in the Feisenberg repreaentetion) taking into conaideration the presence of other modee of perticle oscillatione. The
general formulas are derived determining this correlation function. It is shown that the apectral distribution of the aingled out oscillator may have the fine atructure due to oscillator nonlinearity. The fine structure line widths are conditioned by the oscillator interaction with the medium fluctuations and expressed by the medium correlation functions.

The general formulas are also found, deterining the spectral representation of the correlation function for oscillator $\&$ occupation number $\left\langle\hat{n}_{x}(t) \hat{\hat{R}}_{x}(0)\right\rangle_{\omega}$

$$
\left(\hat{n}_{x}=b_{x}^{+} b_{x}, \tilde{\hat{n}}_{x}=\hat{n}_{x}-\left\langle\hat{n}_{x}\right\rangle\right)
$$

The quantum kinetic equation detemmining the time correlation functions $\left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle,\left\langle B_{\mathscr{L}}(t) B_{\perp}^{+}(0)\right\rangle,\left\langle\hat{R}_{x}(t) \hat{\hat{n}}_{x}(0)\right\rangle$ of the particle interacting with medium is obtained.

All obtained reaults are true for the examined general case when any power of the displacement operator of the singled out particle \vec{u}_{0} is taken into consideration in the Hamiltonian.

The present theory may be applied to varioua physical situations. Por example, if the aingled out particle is an impurity atom in crystal, then obtained formalas describe local or quasilocal oscillations in crystals. Other applications are also possible, for example, in the theory of lasere and so on.
2. The general formulas determining
the oscillator dynamics

Let's consider the Hamiltonian for the system, consisting of the aingled out particle and medium, of the following type

$$
\begin{equation*}
H=\frac{P_{0}^{2}}{2 M_{0}}+\sum_{l \neq 0} \frac{P_{e}^{2}}{2 M_{l}}+U\left(\vec{R}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right) \tag{1}
\end{equation*}
$$

Here \vec{P}_{0}, M_{0} are, respectively, the momentum and mass of the singled out particle? $\overrightarrow{P_{e}}, M_{e}$ are the momentum and mass of an ℓ particle of medium consisting of N particles; U is the potential energy of all particles of the system; \vec{R}_{n} are the radius-vectors of particles ($n=0,1, \ldots, H_{\text {) }}$.

Let's define the dieplacement vectors of particles from the equilibrium positions in the following way

$$
\vec{R}_{n}=\left\langle\vec{R}_{n}\right\rangle+\vec{U}_{n} \equiv \vec{l}_{n}+\vec{U}_{n}
$$

where $\vec{l}_{n} \equiv\left\langle\vec{R}_{n}\right\rangle \quad$ are equilibrium positions of particles.
Let'a put down the aystem potential energy as an infinite series of displacements of singled out particle \vec{U}_{0} as

$$
U\left(\vec{R}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)=e^{\vec{u}_{0} \vec{\nabla}_{0}} U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)
$$

where $\vec{\nabla}_{0}$ denotes gradient operator with respect to particle coordinates. Row it is convenient to rewrite (1) in the form

$$
\begin{aligned}
& H^{\prime}=H_{0}+H_{m e d}+H_{i n t} ; \\
& \left.H_{0}=\frac{P_{0}^{2}}{2 M_{0}}+\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)<U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)\right\rangle_{\text {med }} ; \\
& H_{\text {med }}=\sum_{\ell \neq 0} \frac{P_{e}^{2}}{2 M_{e}}+U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right) ; \\
& H_{\text {int }}=\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)\left[U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)-\left\langle U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)\right\rangle_{\text {med }}\right]
\end{aligned}
$$

Here $\langle\ldots\rangle_{\text {med }} \equiv S_{\text {med }}\left(\rho_{\text {med }}\right)$ denotes averaging over the
Hamiltonian $H_{m e d}$ states, $\lambda=\frac{1}{K_{B} T}, \rho_{\text {med }}=\left(S p e^{-K H_{m e d}}\right)^{-1} e^{-\alpha H_{m e d}}$
Hamiltonien H_{o} describes the singled out particle, which is in the mean field, which is determined by the averaged over the medium states potential energy of the particle-medium interaction. Hamiltonian $H_{m e d}$, in fact, describes the medium, which the oonsidered particle interacts with. Hamiltonian $H_{i n t}$ describea the interaction of the singled out particle with the field fluctuations operating on the particle.

In the case of pairing forces, when the system potential anergy looks like

$$
V\left(\vec{R}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)=\sum_{\ell \neq 0} \varphi\left(\vec{R}_{0}, \vec{R}_{\ell}\right)+\frac{1}{2} \sum_{\ell \neq m \neq 0} \varphi\left(\vec{R}_{\ell}, \vec{R}_{m}\right)
$$

putting down $\varphi\left(\vec{R}_{o}, \vec{R}_{\ell}\right)$ as

$$
\varphi\left(\vec{R}_{0}, \vec{R}_{e}\right)=e^{\vec{u}_{0} \vec{\nabla}_{0}} \varphi\left(\vec{l}_{0}, \vec{R}_{e}\right)
$$

we receive the following expressions for Hamiltonians

$$
\begin{align*}
& H_{0}=\frac{P_{0}^{2}}{2 M_{0}}+\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right) \sum_{l \neq 0}\left\langle\varphi\left(\vec{l}_{0}, \vec{\ell}_{e}\right)\right\rangle_{m e d} ; \\
& H_{m e d}=\sum_{\ell \neq 0} \frac{P_{l}^{2}}{2 M_{l}}+\frac{1}{2} \sum_{l \neq m \neq 0} \varphi\left(\vec{R}_{e}, \vec{R}_{m}\right)+\sum_{\ell \neq 0} \varphi\left(\vec{l}_{0}, \vec{R}_{e}\right) ; \tag{3}\\
& H_{\text {int }}=\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right) \sum_{\ell \neq 0}\left[\varphi\left(\vec{l}_{0}, \vec{R}_{l}\right)-\left\langle\varphi\left(\vec{l}_{0}, \vec{R}_{e}\right)\right\rangle_{m e d}\right]
\end{align*}
$$

Let's consider now the spectral representation of the correlation function for the displacement operator $\vec{U}_{0}(t)$, which describes the dynamics of the singled out particle. It is convenient to express the correlation function through retarded and advanced areen function by the following

$$
\begin{aligned}
& \text { known formula } \\
& \left.\qquad u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle_{\omega}=i\left(1-\eta e^{-k \omega}\right)^{-1}\left[G_{\alpha \beta}^{z}(\omega)-G_{\alpha \beta}^{a}(\omega)\right],
\end{aligned}
$$

where

$$
\left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle_{\omega}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle e^{i \omega t} d t, \eta= \pm 1
$$

Fourier-components of retarded $G_{\alpha \beta}^{2}(\omega)$ and advanced $G_{\alpha \beta}^{a}(\omega)$ Green functions may be represented in the

$$
\begin{aligned}
& G_{\alpha \beta}^{r}(\omega)=-\frac{i}{2 \pi} \int_{0}^{\infty} e^{i(\omega+i \xi) t}\left\langle\left\{u_{0}^{\alpha}(t), u_{0}^{\beta}(0)\right\}_{\eta}\right\rangle d t \\
& G_{\alpha \beta}^{a}(\omega)=\frac{i}{2 \pi} \int_{-\infty}^{0} e^{i(\omega-i \varepsilon) t}\left\langle\left\{u_{0}^{\alpha}(t), u_{0}^{\beta}(0)\right\}_{\eta}\right\rangle d t
\end{aligned}
$$

Here the $\{A, B\}_{\eta}=A B-\eta B A$
is introduced and also $\hbar=1, \varepsilon \rightarrow+0$ are put.

Let's introduce Liouville superoperator \mathcal{L} by the definition

$$
\begin{equation*}
\hat{L} A=H A-A H \tag{6}
\end{equation*}
$$

where A is a usual quantum-mechanical operator, H is the Hamiltonian of the system. As far as the operator time dependence in the Heisenberg representation can be written via \hat{L}
as:

$$
\begin{equation*}
e^{i H t} A e^{-i H t}=e^{i \hat{L} t} A \tag{7}
\end{equation*}
$$

then the correlation function (4) after the substitution into it the expressions (5) and time integration will take

$$
\begin{align*}
& \text { the form } \\
& \left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle_{\omega}=\frac{i}{2 \pi}\left(1-\eta e^{-\lambda \omega}\right)^{-1}\left\langle\left\{ u_{0}^{\alpha},[\hat{G}(\omega+i \varepsilon)-\right.\right. \\
& \left.\left.\quad-\hat{G}(\omega-i \varepsilon)] u_{0}^{\beta}\right\}_{\eta}\right\rangle \tag{8}
\end{align*}
$$

Here Green superoperator $\hat{G}(\omega)$ is introduced according to

$$
\hat{G}(\omega)=\frac{1}{\omega-\hat{L}} .
$$

Let's suppose further, that the temperature satisfies inequality

$$
\begin{equation*}
k_{B} T \gg \omega_{i n t} \tag{9}
\end{equation*}
$$

where $\omega_{\text {int }}$ is of an order of the relaxation frequency of the aingled out oscillator, conditioned by interaction $H_{\text {int }}$. The rentriction (9) is not essential for the particle weakly bound with medium.

The aupposition (9) permita one to write down the density matrix of aystem $\rho=\left(S_{\rho} e^{-\lambda H}\right)^{-1} e^{-\alpha H}$

$$
\begin{equation*}
\rho \approx \rho_{0} \rho_{\operatorname{med}} \tag{10}
\end{equation*}
$$

where

$$
\rho_{0}=\left(S \rho e^{-\lambda H_{0}}\right)^{-1} e^{-\lambda H_{0}}
$$

Let's note, that neglecting $H_{\text {int }}$ for the density matrix while keeping $H_{\text {int }}$ for time-dependent factors of (7) type, doesn't influence the dynamics of the considered oacillator.

Taking into consideration (10) the expression for the correlation function (8) may be rewritten in the following way

$$
\begin{align*}
& \left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle_{\omega}=\frac{i}{2 \pi}\left(1-\eta e^{-\lambda \omega}\right)^{-1}<\left\{u_{0}^{\alpha},[\overline{\hat{G}}(\omega+i \varepsilon)-\right. \\
& \left.\left.-\overline{\hat{G}}(\omega-i \varepsilon)] u_{0}^{\beta}\right\}_{\eta}\right\rangle_{0} \tag{11}
\end{align*}
$$

Here $\langle\ldots\rangle_{0}=S \rho_{0}\left(\rho_{0} \ldots\right) \quad$ is averaging over the atates of HamiltonianHiAveraged Green superoperator is also introduced into the expreseion (11)

$$
\begin{equation*}
\overline{\hat{G}}(\omega)=P \frac{1}{\omega-\hat{L}} P \tag{12}
\end{equation*}
$$

where $P \equiv\langle\ldots\rangle_{\text {med }}$. Operator P possesses all the properties of the projecting operator, for example, $P^{2}=P$. It is possible to show /10/ that in general case the following exact expressions for averaged Green superoperator take place

$$
\begin{align*}
& \overline{\hat{G}}(\omega)=\frac{P}{\omega-P \hat{L} P-\hat{M}(\omega)} \\
& \hat{M}(\omega)=P \hat{L}_{\text {int }} Q \frac{1}{\omega-Q \hat{L} Q} Q \hat{L}_{\text {int }} P, \tag{13}
\end{align*}
$$

where $Q=1-P$.
While putting down the formula for "mass" superoperator $\hat{M}(\omega)$ (which in general case keeps the superoperator \hat{L} instead of $\left.\hat{L}_{\text {int }}\right)$ one takes into consideration, that $\hat{L}_{\text {med }} P=0, P \hat{L}_{0} Q=0, Q \hat{L}_{0} P=0 \quad\left(\hat{L}=\hat{L}_{0}+\hat{L}_{\text {med }}+\hat{L}_{\text {int }}\right.$ respectively to Hamiltonian (2) terme and definition (6)), and also trace invariance under the cycle permutation of operators.

Taking into consideration, that for Hamiltonian (2) or (3) $P \hat{L}_{\text {int }} P=0$, for the averaged Liouville superoperator $P \hat{l} P$, which according to the expreseion (13) definas the oscillation frequency apectrum of the considered particle, we have

$$
\begin{equation*}
P \hat{L} P=P \hat{L}_{0} P \tag{14}
\end{equation*}
$$

"Mass" suparoperator $\hat{M}(\omega \pm i \varepsilon) \quad$ defines oscillator Prequency shift (the real part $\hat{M}(\omega \pm i \varepsilon))$ and
broadening of the spectrum line (imaginary part), conditioned by interaction $H_{\text {int }}$. It may be expanded in the infinite powor serise over $\hat{L}_{\text {int }}$ as

$$
\hat{M}(\omega)=P \hat{L}_{\text {int }} \sum_{n=1}^{\infty}\left[Q \frac{1}{\omega-\hat{L}_{0}-\hat{L}_{\text {med }}} Q \hat{L}_{\text {int }}\right]_{(15)}^{n} P
$$

Let's suppose, that the characteriatic frequency of medium relaxation $\omega_{\text {med }}$, which is determined by

Hamiltonian $H_{m e d}$, is considerably larger than the oacillator relaxation frequency $\omega_{\text {int }}$, determined by

$$
\begin{align*}
& H_{\text {int }} \text {, i.e.g } \\
& \qquad \omega_{\text {med }} \gg \omega_{\text {int }} \tag{16}
\end{align*}
$$

While fulfilling the condition (16), which is quite realizable for weakly bound particle, it is posaible to consider the particle (in zero approximation) in the mean fiold, arising from averaged over medium atatea interaction with medium. It is consistent with the Hamiltonian definition H_{0} in formulas (2) or (3). Beaides, in this case the expanaion (15) for $\hat{M}(\omega)$ may be considered as a perturbation seriea over $\hat{L}_{\text {int }}\left(i, l . H_{\text {int }}\right.$) in a further considered frequency range W near oscillator frequencea, determined by the expression (14), and it is poasible to calculate the "masa" superoperator with any degree of accuracy in interaction.

Let's restrict further consideration by second order perturbation theory for the mase" auperoperator ($n=1$ in (15)). In this approximation masan superoperator $\hat{M}(\omega+i \varepsilon)$ in time representation may be given as

$$
\hat{M}(t)=\frac{2 \hat{\pi}}{i} \theta(t) P \hat{L}_{i n t}(0) e^{-i \hat{L}_{0} t} \hat{L}_{i n t}(-t) P
$$

$$
\text { where } \theta(t)=1 \text { for } t>0, \theta(t)=O_{\text {for }} t<0, \hat{L}_{\text {int }}(-t)=e^{-i \hat{L}_{\text {mond }} t_{\hat{L}}}
$$

Calculating $\hat{M}(t)$ by (17), using rule (6) and Hint (2) and then turning to the Fourier representation, we get

$$
\begin{align*}
& \hat{M}(\omega \pm i \varepsilon)=\int_{-\infty}^{\infty} d \omega^{\prime} P\left(\hat{e}^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{\omega^{\prime}} \tag{18}\\
& \frac{1}{\omega-\hat{L}_{0}-\omega^{\prime} \pm i \varepsilon}\left(\hat{e}^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{0} \varphi_{\omega}^{0}\left(\omega^{\prime}\right) P
\end{align*}
$$

The rule of action of the superoperator $\left(\hat{e}^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{\omega}$ on arbitrary operator A is defined in the following way

$$
\begin{equation*}
\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{\omega} A=\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right) A-e^{-h \omega} A\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right) \tag{19}
\end{equation*}
$$

As it is seen from equation (18) "mass" auperoperator
$\hat{M}(\omega)$ for the correlation function of the singled out and weakly bound particle is defined through function

$$
\varphi_{\omega}^{0}(\omega), \text { which is the Pourier component of the time }
$$ correlation function $\quad \varphi^{\circ}(t) \quad$ for the medium potential onergy

$$
\varphi^{0}(t)=\left\langle\tilde{V}\left(\vec{\ell}_{0}, \vec{R}_{1}(t), \ldots, \vec{R}_{N}(t)\right) \tilde{V}\left(\vec{\ell}_{0}, \vec{R}_{1}(0), \ldots, \vec{R}_{N}(0)\right)\right\rangle_{\text {med }},
$$

where $\tilde{U}\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)=U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)-\left\langle U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)\right\rangle_{\text {med }}$, $\vec{R}_{n}(t)=\exp \left(i \hat{L}_{\text {med }} t\right) \vec{R}_{n}$. Gradient operator $\vec{\nabla}_{0}$, entering into one of the superoperators $\left(\hat{e}^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{\omega^{\prime}}$, aots on one of the functions in (20), and $\vec{\nabla}_{0}$ in other superoperator acts on the other function $\tilde{V}\left(\overrightarrow{\ell_{0}}, \ldots\right)$. As it is seen from the corresponding equations, the superoperators (14) and (18) act only on the operators of the considered oscillator.

In the case of the pairing forces an analogous consideration with the use of the Hamiltonian (3) leade to the equation for $\hat{M}(\omega)$ the aame as (18) but with the

Fourier component of the function

$$
\varphi_{2}^{0}(t)=\sum_{\ell, \ell^{\prime} \neq 0}\left\langle\tilde{\varphi}\left(\vec{\ell}_{0}, \overrightarrow{R_{l}}(t)\right) \tilde{\varphi}\left(\vec{\ell}_{0}, \vec{R}_{\ell^{\prime}}(0)\right)\right\rangle_{\operatorname{me\alpha }}
$$

as the aubstitution for $\varphi_{\omega}^{0}\left(\omega^{\prime}\right)$,
where $\tilde{\varphi}\left(\vec{l}_{0}, \vec{R}_{l}\right)=\varphi\left(\vec{l}_{0}, \vec{R}_{l}\right)-\left\langle\varphi\left(\vec{l}_{0}, \vec{R}_{l}\right)\right\rangle_{\text {med }}$.
Extraction of real $\hat{P}(\omega)$ and imaginary $\hat{\Gamma}(\omega)$ parts of "masa" superoperator $\hat{M}(\omega \pm i \varepsilon)$ is easily performed by means of the known identity

$$
\begin{equation*}
\frac{1}{\omega \pm i \varepsilon}=\left(\frac{1}{\omega}\right)_{p r} \mp i \pi \delta(\omega) \tag{22}
\end{equation*}
$$

where (...) pr denotes the principal value of integral.
Formulas (11)-(15),(18)-(21) give the complete and strict (under conditions (9), (16)) solution to the problem on spectrum of the singled out particle, weakly interacting with arbitrary medium by means of interaction with any power of diaplacement operator \vec{U}_{0}.

As it is seen from equation (11), to find the oscillator displacement correlation function it is necessary to calculate trace over oscillator states. For this purpose it is necessary to have superoperator $\hat{\vec{G}}(\omega)$ matrix elements. The superoperator matrix element has four indices unlike the usual operator. It follows from the definition (6) according to which the euperoperator acts on the usual operator (and not on the atate vector, as the operator) giving the operator, as a result. Thus, if $C=\hat{L} A(C, A$ are operators), then we have for matrix elemente

$$
\begin{equation*}
C_{k}^{l}=\sum_{k^{\prime} l^{\prime}} \hat{L}_{k l}^{k^{\prime} l^{\prime}} A_{k^{\prime}}^{l^{\prime}} \tag{23}
\end{equation*}
$$

To fird auperoperator $\overline{\hat{G}}(\omega)$ matrix elements it is oufficient to have matrix elements of the superoperator $\hat{G}^{-1}(\omega)=\omega-P \hat{L} P-\hat{M}(\omega)$, that is inverse to $\hat{\vec{G}}(\omega)$. Then matrix elementa of the $\vec{G}(\omega)$ are defined from the aystem of equations

$$
\begin{equation*}
\sum_{n_{1} m_{1}}\left(\hat{G}^{-1}\right)_{n m}^{n_{1} m_{1}} \overline{\hat{G}}_{n_{1}^{\prime} m_{1}^{\prime}}=\delta_{n n^{\prime}} \delta_{m m^{\prime}} \tag{24}
\end{equation*}
$$

where n, m denote some complete set of functions corresponding to Hamiltonian H_{0}.

By multiplying both the parts of the equality (24) by matrix element $B_{n^{\prime}}^{m^{\prime}}$ of some operator B acting in apace of functions n, m, we receive after aumation of (24) over k^{\prime}, m^{\prime} the following (convesient for the further) relation

$$
\begin{equation*}
\sum_{n_{1} m_{1}}\left(\hat{G}^{-1}\right)_{n m}^{n_{1} m_{1}} \sum_{n^{\prime} m^{\prime}} \overline{\hat{}}_{n_{1} m_{1}^{\prime} m^{\prime}} B_{n^{\prime}}^{m^{\prime}}=B_{n}^{m} \tag{25}
\end{equation*}
$$

Superoperator $\hat{G}^{-1}(\omega)$ matrix eloments may be defined by formulas (6), (14), (18), (19), (23).

Let's consider now the time correlation function for

$$
\begin{aligned}
& \text { oscillator diaplacement } \\
& \qquad\left\langle U_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle=\left\langle u_{0}^{\alpha} e^{-i \hat{L} t} U_{0}^{\beta}\right\rangle
\end{aligned}
$$

Taking into consideration (10) we get

$$
\begin{equation*}
\left\langle u_{0}^{\alpha}(t) u_{0}^{\beta}(0)\right\rangle=\left\langle u_{0}^{\alpha} P e^{-i \hat{L} t} P u_{0}^{\beta}\right\rangle_{0} \tag{26}
\end{equation*}
$$

It ie easy to see that the averaged Green superopera-
tor $\hat{\widehat{G}}(\omega+i \varepsilon)$, defining the Fourier representation
of the correlation function (26) (sec (11)), is the Fourier component of the superoperator

$$
\begin{equation*}
\bar{G}(t)=\frac{2 \pi}{i} \theta(t) P e^{-i \hat{l} t} P \tag{27}
\end{equation*}
$$

Let's introduce the function

$$
g(n, m ; t)=\sum_{n^{\prime} m^{\prime}}\left(P e^{-i \hat{L} t} P\right)_{n m}^{n^{\prime} m^{\prime}} B_{n^{\prime}}^{m^{\prime}},(28)
$$

which according to equation (26) defines the time correlation function for diaplacment with $B=U_{0}^{\beta} \quad$.

Then from equation (27) for the Fourier component of the $\hat{\vec{V}}(\omega+i \varepsilon)$ we have

$$
\left.\theta(t) g(n, m ; t)=\frac{i}{2 \pi^{2}} \int_{-\infty}^{\infty} e^{-i \omega t} \sum_{n^{\prime} m^{\prime}}[\overline{\hat{G}}(\omega+i \varepsilon)]_{n m}^{n^{\prime} m^{\prime}} B_{n^{\prime}}^{m^{\prime}} d \omega\right)
$$

Differentiating 6q. (29) with respect to time and
taking into consideration the relation (25), we receive the equation for function $g(n, m ; t)$ for large times $t \sim \omega_{\text {int }}^{-1} \gg \omega_{\text {med }}^{-1}$

$$
i \frac{\partial}{\partial t} g(n, m ; t)=\sum_{n_{1} m_{1}}\left[P \hat{l}_{0} P+\hat{M}\left(\omega_{i}+i \xi\right)\right]_{n m}^{n_{1} m_{1}} g\left(n_{1}, m_{1} ; t\right)
$$

Here"mass" guperoporator $\hat{M}(\omega+i \varepsilon)$ is taken on one of the peak frequencies ω_{i} of epectral distribution $\langle A(t) B(0)\rangle_{\omega}$ for the operators of the considered oscillator,
as far as at large times $t \gg \omega_{\text {med }}^{-1}$ the correlation function $\langle A(t) B(0)\rangle$ describea peak region of the apectral distribution. Peak frequenciea are determined by the matrix element of the auperoperator $P \hat{L}_{0} P$ and it is aupposed that these frequencies do not coincide and aren't close to each other.

While receiving equation (30) it was taken into consideration the initial condition

$$
\begin{equation*}
g(n, m ; 0)=B_{k}^{m} \tag{31}
\end{equation*}
$$

which follow from the definition (28).
Bquation (30) plays the role of a quantum kinetic equation and defines the oscillator correlation function (26) in general cane for the system described by Hamiltonian (2). Masa" superoperator $\vec{M}(\omega+i \xi)$ is dofined by the expansion (15) in any perturbetion order over interection Hamiltonian in case of the fast medium relaxation relative to oscillator relazation frequency. In the aecond order on $H_{\text {int }} \vec{M}(\omega+i \varepsilon)$ (in 30)) is defined by formula (18).
3. Some general reaulta for the apectrum of singled out oscillator.
Let's consider the case, when Hamiltonian H_{0} has the inversion centre. let's expand the diaplacement of particle \vec{U}_{0} in normal coordinates of aingled out oncillators, which diagonalise quadratic in \vec{U}_{0} part of the

Hamiltonian H_{0} (together with the term $\frac{P_{0}^{2}}{2 M_{0}}$), by the formula

$$
\begin{equation*}
\vec{u}_{0}=\sum_{\infty}\left(\vec{\alpha} b_{x}+\vec{\alpha}_{x}^{*} b_{x}^{+}\right) \tag{32}
\end{equation*}
$$

where x numbers singled out oscillators, and $b_{\infty}, b_{\infty}^{+}$ obey the Bose commutation rules and are annibilation and creation operators for $\not \subset$ oscillation. The operator of momentum \vec{P}_{0} is expanded in $\theta_{x}, \theta_{x}^{+}$analogically.
moon, oatting n mon-rsoomeneoren tome of $b_{k}^{+} b_{x}^{3}$ type and so on (containing unequal number of \mathcal{G}_{2} and ℓ_{2}^{+} operators), which lead to higher-order corrections, we receive the following form for H_{0}

$$
\begin{align*}
& H_{0}=\sum_{x} \omega_{x} \hat{R}_{x}+\frac{1}{2} \sum_{x x^{\prime}} V_{x x^{\prime}} \hat{R}_{x} \hat{R}_{x^{\prime}}+ \tag{33}\\
& +\sum_{x x^{\prime} x^{\prime \prime}} V_{x x^{\prime} x^{\prime \prime}} \hat{R}_{x} \hat{n}_{x}, \hat{R}_{x^{\prime \prime}}+\ldots
\end{align*}
$$

Here W_{x} is \mathscr{R} oscillator irequency, $\hat{R}_{x}=b_{\infty}^{+} b_{x}$;
 $\left.=\left|\vec{\alpha}_{x} \vec{\nabla}_{0}\right|^{2}\left|\vec{\alpha}_{\infty}, \vec{\nabla}_{0}\right|^{2}\left\langle U\left(\vec{l}_{0}, \vec{R}_{1}, \ldots, \vec{R}_{N}\right)\right\rangle_{\text {med }}\right)$. Let's note, that later on it is not important to what nonlinearity order the series (33) is considered, but letis assume nonlinearity to be ssall in comparison with We

Iet's consider the correlation function $\left\langle\theta_{\alpha}(t) \ell_{x}^{+}(0)\right\rangle_{\omega}$ for creation and annihilation operators of singled out oscillator $d \mathscr{C}$. Taking into consideration (11) and (32) this funotion may be given as

$$
\begin{align*}
& \left\langle b_{x}(t) b_{x}^{+}(0)\right\rangle_{\omega}=-\frac{1}{\pi} \frac{1-\eta e^{-h \omega_{x}}}{1-\eta e^{-h \omega}} \\
& \cdot \operatorname{Im}\left\langle b_{\infty} \overline{\hat{G}}(\omega+i \varepsilon) b_{x}^{+}\right\rangle_{0} \tag{34}
\end{align*}
$$

When receiving equation (34) it was taken into conaideration, that for Hamiltonian (33)

$$
B_{x} e^{-\lambda H_{0}}=e^{-\lambda \hat{w}_{x}} e^{-\lambda H_{0}} B_{\infty}
$$

where $\hat{\omega}_{x}=\omega_{x}+\frac{1}{2} V_{x x}+\sum_{e^{\prime}} V_{x^{\prime}} \hat{R}_{x^{\prime}}+\ldots$,
and then nonlinearity terms are omitted from $\hat{\omega}_{\mathbb{L}}$ because tiney are amall, i.e., it is put $\hat{\omega}_{\infty}=\omega_{\infty}$.

The trace in formula (34) will be calculated with the sigenfunctions of the Hamiltonian H_{0} , which look like $\prod_{x}\left|n_{x}\right\rangle$, where $\left|n_{x}\right\rangle$ are eigenfunctions of operator $\hat{n}_{\infty} \quad$ correaponding to eigenvalues R_{∞} $\left(n_{\infty}=0,1, \ldots\right)$. In this repreaentation the correlation

$$
\begin{aligned}
& \text { function (34) may be written in the following way } \\
& \left\langle b_{x}(t) b_{x}^{+}(0)\right\rangle_{\omega}=-\frac{1}{\pi_{1}} \frac{1-\eta e^{-\lambda \omega_{x}}}{1-\eta e^{-\lambda \omega}} \operatorname{Im} \sum_{m, m^{\prime}}(\rho)_{m}^{m}
\end{aligned}
$$

Here for short m and m^{\prime} denote certain zats of numbers R_{∞}, corresponding to oigenvalues of H_{0}, and summation runs over all such sets of R_{k}. The notation of $m \pm \delta_{\mathscr{R} \mathscr{P}^{\prime}}^{2} \quad$ type means a certain get of numbers $R_{\mathscr{L}}$, as a sot M, but in which the occupation number for oscillator t is one unit larger or leaser in compariaon with sat M. Wile deriving equation (35), the known forms for matrix elements of the operators b_{2}, b_{x}^{+}were also taken into account.

Let's consider now superoperator matrix elements, entering into $\hat{G}^{-1}(\omega)$, which determine superoperator matrix elements of $\overline{\vec{G}}(\omega+i \varepsilon)$ according to relations (24), (25). The auperoperator matrix element of \hat{L}_{0} which determines the energy excitation of the oacillator (see (14)), in the chosen representation has the form

$$
\begin{aligned}
& \hat{L}_{o n m}^{n^{\prime} m^{\prime}}=\left(\omega_{n}-\omega_{m}\right) \delta_{n n^{\prime}} \delta_{m m^{\prime}} ; \\
& \omega_{k}=\sum_{x} \omega_{x^{2}} n_{x}+\frac{1}{2} \sum_{x_{x^{\prime}}} V_{x x^{\prime}} n_{x} n_{x^{\prime}}+\sum_{x^{\prime} x^{\prime}} V_{x x^{\prime} x^{\prime \prime}} \\
& n_{x} n_{x^{\prime}} R_{x^{\prime \prime}}+\ldots
\end{aligned}
$$

where n and m denote different sets of numbers $n_{\mathcal{L}}$. Thus, \hat{L}_{0} is diagonal in the given representation.

$$
\text { If we neglect "mass" superoperator } \hat{M}(\omega) \quad \text { in the }
$$ equation (13) for $\overline{\hat{G}}(\omega)$ (zero approximation over interaction $H_{\text {int }}$, then superoperator $\hat{G}^{-1}(\omega)$ is diagonal (taking into conaideration that ω and \hat{L}_{0} are diagonal). Then in this limiting case from equations (35), (25) (in (25) it is necessary to put $n=m+\delta_{x x^{\prime}}^{\prime}$, $n^{\prime}=m^{\prime}+\delta_{x^{\prime} x^{\prime}}^{0} \quad$ and replace $\left.B_{n^{\prime}}^{m^{\prime}} \quad\left(B_{x^{\prime}}^{+}\right)_{m^{\prime}+\delta_{x_{2}^{\prime}}^{\prime}}^{=}=\sqrt{m_{x}^{\prime}+1}\right)$ and (36) we obtain the following equation for the correlation function

$$
\begin{aligned}
& \left\langle b_{x}(t) b_{x}^{+}(0)\right\rangle_{\omega}=\frac{1}{z_{0}} \sum_{m} e^{-\lambda \sum_{x^{\prime}} \omega_{x^{\prime}} m_{x^{\prime}}}\left(1+m_{x}\right) \\
& \cdot \delta\left(\omega-\omega_{x}(m)\right) ; \\
& \omega_{x}(m) \equiv \omega_{m+\delta_{x x^{\prime}}}-\omega_{m}=\omega_{x}+\frac{1}{2} V_{\not x x^{\prime}}+\sum_{x^{\prime}} V_{\not x x^{\prime}} m_{x^{\prime}}+\ldots
\end{aligned}
$$

Nonlinear corrections to ω_{m} in ρ_{0} are omitted here and $z_{0}=S_{\rho} e^{-\alpha H_{0}}=\prod_{2}\left(\bar{n}_{2}+1\right), \bar{n}_{2}=\left(e^{\alpha \omega_{x}}-1\right)^{-1}$ is the mean occupation number of oscillator

It follows that in the considered limiting case the
$\not \subset$-oscillator spectrum consists of a series of fine structure lines, which is produced by the oscillator nonlinearity. In case, when there is only one oscillator \mathbb{R}, the apectrum consists of a set of line corresponding to different $m_{\mathbb{R}}=0,1, \ldots$. If there are several interacting singled out oscillations, then every line with a certain M_{2} splits into a series of lines, corresponding to different $m_{\mathscr{e}^{\prime}}$. At low temperatures ($K_{B} T \ll \omega_{\mathbb{R}^{\prime}}$) there is practically only one line in the epectrum, corresponding $m_{\mathscr{R}^{\prime}}=0 \quad$ - With growing temperature the other spectrum lines begin to appear.

For linear oscillator $\left(V_{\mathscr{L}} \mathscr{X}^{\prime}, V_{\mathscr{L}} \mathbb{R}^{\prime} \not \mathbb{R}^{\prime \prime}, \ldots=0\right)$ as it follows from equation (37), we have one spectrum line with $\omega=\omega_{\&}$, that corresponds to equidistant energy levele of the linear oscillator (full spectrum degeneration).

How we ghall take into consideration $\hat{M}(\omega)$, deacribing the interaction of oscillator with medium fluctuations. Consideration of interection $H_{\text {int }}$ leads to broadening and shift of spectrum fine structure lines of the nonlinear oscillator. If broadening becomes larger (for example, when the temperature grows), then apectrum lines begin to overlap and fine structure will gradually diaappear. At rether high temperature there may appear a
unified spectrum distribution, in general case, of a complicated form, instead of fine atructure.

So far as expression (18), for example, for $\hat{M}(\omega+i \varepsilon)$
$\begin{aligned} & \text { may be given as } \\ & \hat{M}(\omega+i \varepsilon)=\frac{1}{i} \int_{-\infty}^{\infty} d \omega^{\prime} P\left(\hat{e}^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{\omega^{\prime}} \int_{0}^{\infty} e^{i\left(\omega-\hat{L}_{0}-\omega^{\prime}+i \varepsilon\right) t} d t\end{aligned}$

$$
\begin{equation*}
\left(\hat{e}^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{0} \varphi_{\omega}^{0}\left(\omega^{1}\right) P \tag{38}
\end{equation*}
$$

 superoperator matrix elements of $\hat{K}=\left(\hat{e}^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{\omega} e^{-i \hat{L}_{0} t}\left(\hat{e}^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{0}$.

According to rules (7), (19), (23) matrix elements of

$$
\begin{aligned}
& \hat{K} \text { are defined by the oquation } \\
& \hat{K}_{n m}^{n_{m}^{\prime} m^{\prime}} A_{n^{\prime}}^{m^{\prime}}=\left[\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right) e^{-i \vec{\nabla}_{0} t}\left(e^{\vec{u}_{0}}-1\right)\right]_{n}^{n_{1}} A_{n_{1}}^{m}\left(e^{i H_{0} t}\right)_{m}^{m}+ \\
& +e^{-\lambda \omega^{\prime}}\left(e^{-i H_{0} t}\right)_{n}^{n} A_{n}^{n_{1}}\left[\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right) e^{i H_{0} t}\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)\right]_{n_{1}}^{m}- \\
& -\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{n}^{n_{1}}\left(e^{-i H_{0} t}\right)_{n_{1}}^{n_{1}} A_{n_{1}}^{m_{1}}\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{m_{1}}^{m}\left(e^{i H_{0} t}\right)_{m}^{m}- \\
& -e^{-\lambda \omega^{\prime}}\left(e^{-i H_{0} t}\right)_{n}^{n}\left(e^{\overrightarrow{u_{0} \vec{\nabla}_{0}}}-1\right)_{n}^{n_{1}} A_{n_{1}}^{m_{1}}\left(e^{i H_{0} t}\right)_{m_{1}}^{m_{1}}\left(e^{\overrightarrow{u_{0} \vec{\nabla}_{0}}-1}\right)_{m_{1}}^{m}
\end{aligned}
$$

Hereafter summation is meant over repeating indices n^{\prime}, m^{\prime},
n_{1}, m_{1}, and diagonality of the H_{0} in the
considered representation is taken into account (n, m
are eigenfunotions of H_{0}).
As it was said above, the case is considered when the
frequencies of the singled out oscillations do not coincide and aren't close $\left(\omega_{x} \neq \omega_{e^{\prime}}\right)$. Such a aituation may take place, for example, in case of the law symaetry H_{o}.

Let the different resonance situations between oscillations, when some combinations of frequencies $\omega_{x}, \omega_{\mathscr{e}^{\prime}}, \ldots$ coincide, also do not realize. Correlation function $\left\langle b_{\infty}(t) \mathcal{b}_{\mathscr{R}}^{+}(0)\right\rangle{ }_{\omega}$ will be considered in actual frequency range $\omega \approx \omega_{x}$.

It is not difficult to verify, that changing in eq. (39) the dieplacement operators \vec{U}_{0} to the operators $b_{\mathscr{R}}, b_{\mathbb{R}}^{+}$ by formula (32), it is necessary to keep only terms, containing the equal number of creation and annihilation operators for every oscillation \mathscr{X} in any order in $\overrightarrow{u_{0}}$ while expanding $e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}$ into series. Terms, containing unequal number of creation and annihilation operators for every oacillator x, give a contribution of Γ_{x} / ω_{x} or P_{x} / ω_{∞} order $\left(\Gamma_{X}, P_{x}\right.$ are of an order of the line broadening and oscillation \mathscr{L} frequency shift, respectively, resulting from the interaction $H_{i n t}$) into correlation function $\left\langle b_{x}(t) b_{\mathscr{R}}^{+}(0)\right\rangle_{\omega}$. Consequentiy, these terms may be omitted because the interaction Hamilitonian $H_{\text {int }}$ is small.

Thus, in the first two summands of (39) for $\left(e^{\overrightarrow{u_{0}} \overrightarrow{V_{0}}}-1\right)$. - $e^{ \pm i H_{0} t}\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)$ it is necessary to keep only diagonal terms with $n_{1}=n$ and $n_{1}=m$. Taking into consideration all the above said the superoperator matrix element of $\hat{M}(\omega+i \varepsilon)$ may be represented via formia (38) as $[\hat{M}(\omega+i \varepsilon)]_{n m}^{n^{\prime} m^{\prime}}=\int_{-\infty}^{\infty} d \omega^{\prime}\left\{\left[\frac{\left(e^{\overrightarrow{\vec{u}_{0}^{\prime}} \vec{\nabla}_{0}}-1\right)_{n}^{n_{1}}\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}^{\prime}}-1\right)_{n_{1}}^{n}}{\omega-\omega_{n_{1}}+\omega_{m}-\omega^{\prime}+i \varepsilon}+\right.\right.$ $\left.+\frac{\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{m}^{m_{1}}\left(e^{\overrightarrow{u_{0}} \overrightarrow{\nabla_{0}}}-1\right)_{m_{1}}^{m}}{\omega-\omega_{n}+\omega_{m_{1}}+\omega^{\prime}+i \varepsilon}\right] \tilde{\delta}_{n n^{\prime}} \tilde{\delta}_{m m^{\prime}}-\left(e^{\overrightarrow{\vec{u}_{0}} \vec{\nabla}_{0}}-1\right)_{n}^{n^{\prime}} \cdot(40)$ $\left.\cdot\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{m^{\prime}}^{m}\left(\frac{1}{\omega-\omega_{n^{\prime}}+\omega_{m}-\omega^{\prime}+i \varepsilon}+\frac{1}{\omega-\omega_{n}+\omega_{m^{\prime}}+\omega^{\prime}+i \varepsilon}\right)\right\} \varphi_{\omega^{0}}^{0}\left(\omega^{\prime}\right)$.

When deriving the equation (40) the well-known relation for correlation functions is used:

$$
e^{-\lambda \omega} \varphi_{\omega}^{0}(\omega)=\varphi_{\omega}^{0}(-\omega)
$$

Equations (35), (24), (25), (36), (40) give a possibility to carry out a full and atrict exploration of the oscillator d spectral distribution.

Let's consider the case, when widths of fine structure lines $\Gamma_{\neq}(m)$ of the singled out oscillator, arising due to interaction $H_{i n t}$, are considerably lesser, then distances between lines, i.e.,

$$
\Gamma_{x}(m) \ll\left|\tilde{\omega}_{x}\left(m+\delta_{x_{1} x^{\prime}}\right)-\tilde{\omega}_{x}(m)\right| \equiv \Delta_{\notin}(m)
$$

where $\tilde{\omega}_{\mathfrak{k}}(m)$ are renormalized by real part of $\hat{M}(\omega+i \varepsilon)$ frequencies $\omega_{\nless}(m)$ and \mathscr{L}_{1} may corresponde to any singled out oscillation.

Let's write equation (25) in the considered repreaentation (for $B=B_{\infty}^{+}$), separating the diagonal term, as

$$
\begin{aligned}
& \left(\hat{G}^{-1}\right)_{m+\delta_{x x^{\prime}, m}}^{m+\delta_{\infty}, m} \sum_{m^{\prime}} \overline{\hat{N}}_{m+\delta_{\infty x^{\prime}}^{\prime}, m}^{m^{\prime}+\delta_{\infty x^{\prime}}, m^{\prime}} \sqrt{m_{\infty}^{\prime}+1}= \\
& =\sqrt{m_{x}-1}-\sum_{\substack{m_{1} \neq m \\
n_{1} \neq m+\delta_{x x^{\prime}}}}(\hat{G}-1)_{m+\delta_{\infty} x^{\prime}, m}^{n_{1} m_{1}} \sum_{m^{\prime}} \overrightarrow{\hat{a}}_{n_{1} m_{1}}^{m^{\prime}+\delta_{x x x^{\prime}}^{s} m^{\prime}} .
\end{aligned}
$$

It ien't difficult to see, that non-diagonal terms $\left(\vec{G}^{-1}\right)_{m+\delta_{x x^{\prime}}, m}^{n_{1} m_{1}}$ in the right-hand aide of (42) are propor-
tional to $\Gamma_{\infty}(m)$, because ω and \hat{L}_{0} are
diagonal. On the other hand, the denominators of functions

(24), which should be solved for finding $\bar{i}_{m+\delta^{\prime} m^{\prime} x^{\prime}, m}^{\prime}(\omega+i \varepsilon)$. Roots of this determinant define fine atructure frequencies $\tilde{\omega}_{\mathscr{e}}(m)$ if the inequality (41) is satisfied. Thus, if we consider frequencies $\omega \approx \widetilde{\omega}_{R}(m)$, then functions $\hat{\widehat{G}}_{n_{1} m}^{\prime}+\delta_{X \mathscr{R}^{\prime}, m^{\prime}}^{8}$ in the right-hand aide of (42)will be of order $\frac{1}{\Delta_{X}(m)} \quad$. It follows, that aums in the right-hand side of (42) contain small parameter $\Gamma_{\mathscr{R}}(m) / \Delta_{\mathscr{X}}(m)$ and this syetem of equations may be solved by the iteration method. In zero approximation it may be written as

$$
\begin{equation*}
\sum_{m^{\prime}} \overline{\hat{N}}_{m+m^{\prime}+\delta_{x x^{\prime}}^{\prime}, m^{\prime}}^{\sigma_{x x^{\prime}, m}}(\omega+i \varepsilon) \sqrt{m_{x^{\prime}}^{\prime}+1}=\frac{\sqrt{m+1}}{\left[\hat{G^{2}+1}\right.} \tag{43}
\end{equation*}
$$

Substituting (43) into (35) and uaing (36), (40), (22), we obtain in the actual range of frequencies $\omega \approx \omega_{x}$

$$
\begin{aligned}
& \left\langle b_{x}(t) b_{x}^{+}(0)\right\rangle_{\omega}=\frac{1}{\mathbb{R}^{2} \mathcal{Z}_{p}} \sum_{m} \exp \left\{-A \sum_{x^{\prime}} \omega_{x^{\prime}} m_{x^{\prime}}\right\} \\
& \left(1+m_{x}\right) \frac{\Gamma_{x}(m)}{\left[\omega-\omega_{x}(m)-P_{x}(m)\right]^{2}+\Gamma_{x}^{2}(m)}
\end{aligned}
$$

$$
P_{x}(m)=\int_{-\infty}^{\infty} d \omega^{\prime}\left[\frac{\left(e^{\overrightarrow{u_{0}} \vec{\nabla}_{0}}-1\right)_{m+\delta_{x_{X}}}^{n_{1}}\left(e^{\vec{u}_{0} \overrightarrow{\nabla_{0}}}-1\right)_{n_{1}}^{m+\delta_{x x^{\prime}}}}{\omega_{x}-\omega_{n_{1}}+\omega_{m}-\omega^{\prime}}+\right.
$$

$$
\begin{align*}
& \left.+\frac{\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m}^{m_{1}}\left(e^{\vec{u}_{0} \overrightarrow{0}_{0}}-1\right)_{m_{1}}^{m}}{\omega_{\mathscr{L}}-\omega_{m+\delta_{\mathscr{L}}}+\omega_{m_{1}}+\omega^{\prime}}\right] \varphi_{\omega}^{0}\left(\omega^{\prime}\right) ; \\
& \Gamma_{\mathscr{L}}(m)=\mathscr{\pi}\left[\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m+\delta_{\mathscr{X}}}^{n_{1}}\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{n_{1}}^{m+\delta_{x x^{\prime}}} .\right. \\
& \text { - } \varphi_{\omega}^{0}\left(\omega_{\mathscr{L}}-\omega_{n_{1}}+\omega_{m}\right)+\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m}^{m_{1}}\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m_{1}}^{m} . \\
& \text { - } \varphi_{\omega}^{0}\left(\omega_{m+\delta_{\mathscr{X}}}-\omega_{m_{1}}-\omega_{\mathscr{\infty}}\right)-2\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m+\delta_{\mathscr{X}}}^{m+\delta_{x^{\prime}}^{\prime}}{ }^{\prime} . \\
& \left.\cdot\left(e^{\vec{u}_{0} \vec{\nabla}_{0}}-1\right)_{m}^{m} \varphi_{\omega}^{0}(0)\right] \text {, } \tag{45}
\end{align*}
$$

where $\{$ denotes the principal value of integral. Unessential nonlinear corrections to frequency $\omega_{\&}$ are omitted in formulas (45) (frequencies ω_{n} must be also taken here neglecting nonlinearity).

Thus in the considered limiting case, when the condition (41) is fulfilled, the oscillation \mathscr{P} spectral distribution consists of a series of Lorentzian lines with widths $\Gamma_{\mathbb{e}}(m)$ whose maxima are shifted relative to frequencies $\omega=\omega_{\mathscr{R}}(m)$ by $P_{\mathscr{L}}(m)$. Broadening of lines is caused by transitions between levels of oscillators and also by oscillator frequency modulation, appearing due to medium fluctuations. The modulation broadening ia described by terms, containing the medium correlation function in zero frequency $\varphi_{\omega}^{0}(0)$ and arises, as is seen from equation (45) for $\Gamma_{\infty}(m)$.
only in the interaction with medium, containing even powers of expansion $e^{\vec{u}_{0} \vec{\nabla}_{0}}$ in \vec{u}_{0}.

Let's note, that the obtained result (44) is of a general character, as it is true for the nonlinear oscillator with an arbitrary (in power of \vec{U}_{0}) interaction with medium.

In general case, when the condition (41) is not satisfied, it is necessary, as it will be done in a subsequent work, to consider a specific (in power of \vec{U}_{0}) type of the oscillator interaction with medium fluctuations and to look a solution to system of eq. (24) or (25).

Lot's give one more expression for the correlation function of occupation numbers, which may be obtained in the same way as (35).

Putting in this case $\eta=-1$, we have

$$
\begin{align*}
& \left\langle\hat{n}_{2}(t) \hat{\hat{n}}_{2}(0)\right\rangle_{\omega}=-\frac{2}{\pi}\left(1+e^{-\lambda \omega}\right)^{-1} \text {. } \\
& \text { - wm } \sum_{m, m^{\prime}}\left(\rho_{0}\right)_{m}^{m} m_{x}[\overline{\hat{G}}(\omega+i \varepsilon)]_{m m}^{m^{\prime} m^{\prime}}\left(m_{\nless}^{\prime}-\bar{n}_{\infty}\right) \text {. } \tag{46}
\end{align*}
$$

Equation (46) may be calculated by formulas for superoperator matrix elements obtained earlier. Instead of system (42) for calculating correlation function (46) it is necessary to uss the system

$$
\begin{equation*}
\sum_{n_{1} m_{1}}\left(\hat{G}^{-1}\right)_{m m}^{n_{1} m_{1}} \sum_{m^{\prime}} \hat{\sigma}_{n_{1} m_{1}}^{\prime}\left(m_{2}^{\prime}-\bar{n}_{x}\right)=m_{R^{-}}-\bar{n}_{2} \tag{47}
\end{equation*}
$$

which follows from (25) in the same way as (42).

The quantum kinetic equation for the function
$g_{x}\left(m+\delta_{x x^{\prime}}, m ; t\right)=\sum_{m^{\prime}}\left(P e^{-i \hat{l} t} P\right)_{m+\delta_{x x^{\prime}}^{\prime}, m}^{m^{\prime}+\delta_{x x^{\prime}}, m^{\prime}} \sqrt{1+m_{x}^{\prime}}$,
determining correlation function $\left\langle\mathfrak{b}_{\mathscr{E}}(t) \mathfrak{b}_{\infty}^{+}(0)\right\rangle$,
looks like equation (30), in which it is necessary to put

$$
n=m+\delta_{\mathscr{\infty} \mathscr{E}^{\prime}},\left(P \hat{L}_{0} P\right)_{n m}^{n_{1} m_{1}}=\omega_{x}(m) \delta_{m+\delta_{x x^{\prime}, n_{1}}} \delta_{m m_{1}}, \omega_{i}=\omega_{\mathscr{R}}
$$

The kinetic equation for the function

$$
g_{x}^{\prime}\left(m, m_{j} t\right)=\sum_{m^{\prime}}\left(P e^{-i \underline{L} \dot{t}} p\right)_{m m}^{m^{\prime} m^{\prime}}\left(m_{x}^{\prime}-\bar{n}_{x}\right),
$$

which deternines correlation function $\left\langle\hat{\mathfrak{n}}_{\mathscr{e}}^{\prime}(t) \widetilde{\hat{R}}_{\mathcal{P}}(o)\right\rangle$, coincides with equation (30) for $n=m$ (here the term $P \hat{L}_{0} P$ disappears, as it follows from (36), and thus, $\omega_{i}=0$).

References:

1. N. N. Bogolubov. O nekotorykh atatiaticheskikh metodakh v matematicheskoi fizike, Izd.Akad. Nauk UkrSSR, Kiev, 1945.
2. J.Schwinger. J.Math. Phys., 2, 407, 1961.
3. B. Ya.Zeldovich, A.M.Perelomov and V.S.Popov. Zh. Ficsper.Teor.Fiz., 55, 589, 1968; 57, 196, 1969.
4. M.O.Scully and W.E. Lambe Jr. Phys.Rev., 159, 208, 1967.
5. L. Mandel and E.Wolf. Rev.Mod. Phys. : 37, 231, 1965.
6. M. I. Dykman and M.A.Krivoglaz. phys.stat.sol. (b), 48, 497, 1971; UKr.Fiz. 2h., 17, 1971, 1972.
7. M.I.Dykman and M.A.Krivoglaz. Zh.Exper.Teor. Fiz., 64, 993, 1973. K. J. Dykman. Fiz.TVerd.Tela, 15, 1075 (1973).
8. M.I. Dykan and M.A.Krivorlaz. phys.stat.sol. (b), 68, 111, 1975.
9. R. Zwansig. Physica, 30, 1109, 1964.
10. L.Mower. Phys.Rev., 142, 799, 1966.

Received by Publishing Department on April 191978.

