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Parametric Excitation in Kane's Semiconductors

The parametric excitation of electromagnetic vibrations in
narrow gap semiconductors with nonparabolic energy dispersion
defined by the Kane's model is investigated using the quantum
formalism proposed in /Y The numerical estimates periormed for
the typical sample of n-InSb crystal in different cases show that
the deviation from parabolicity makes the instability threshold field
values lowered by about one order of magnitude,

The investigation has been performed at the Laboratary
of Theoretical Physics, JINR,
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1. INTRODUCTION

As is well known, the parametric excitation in
solid state plasmas is intensively studied in the
last decade,

In this phenomenon the energy of external ectro-
magnetic wave field is transferred to the system
under consideration by a resonant mechanism that
takes place when the field amplitude is large enough
to cause the vibration (with the external field fre-
quency) of certain physical parameters of the system,
In the case of relativistic systems such a vibrating
parameter is the mass of particles that depends
upon their velocity in radiation field, This effect was
first considered by N.L.Tsintsadze’/?. Later it was
pointed out 3/ that in the plasma of narrow gap
semiconductors in which the electron energy disper-
sion is expressed in the Kane's model/4 by the
pseudorelativistic formula

&) =v(me*?)% ~pPcr?, (1)

where m ands are the particle’s effective mass 1
and canonical momentum, respectively, c¢*=(E ;/2m) 2
with E, being the energy gap value, there realises
the same excitation mechanism, The authors of /23
have investigated this case for a single eleciron
system is the hydrodynamical approximation without
taking into account the thermal motion effects.

The purpose of this paper is to make an ac-
count of the effect of nonparabolicity of the type



(1) in the parametric excitation process in interact-
ing electron-phonon systems, The calculations will
be carried out in the framework of the guantum for-
malism proposed in (1), Analytical results for insta-
bility growth rates will be presented for interacting
electron-phonon (Sec. 3) as well as for single elect-
ron (Sec. 4) systems, EFor comparison with the re-
sults presented in Ref,’ '35 the umerical estimates
for the threshold field values have been performed
for a sample of n-InSb crystal,

2., EQUATIONS FOR POTENTIALS
OF ELECTROMAGNETIC PERTURBATION FIELD

Let us consider an interacting electron-phonon
system placed under the action of a strong radia-
tion field that can be presented in the well-known
approximation by an oscillatory electric field

> dA, (1) o>

1 0 .
EO (t) = *‘—g at = EO Slnmot. (2)

For arbitrary electron energy dispersion
@(p_ﬁ_},o () and in the presence of the external
c

field E‘:O (1), the Hémiltonian of such a system intro-
duced in (1) takes the form:
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Here v(p) = i:?)_. is the electron velocity., All

/1,

other notatioriag are the same as in
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Introducing the "quantum distribution function" in
the form

B' q,0 Y (
4)
+
n (t)= <a»a->> |,
p p p t

one can obtain, using the Hamiltonian (3), the linea-
rized equation of motion for f(p+q,p,t) as:
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Following the work /3/,we shall consider n, () as
an equlibrium Fermi distribution function.

Now we must solve the complete system of Max-
well equations with charge density p and current
density j expressed through the function f as fol-
lows:

pla.t) = eXf(p+q,p,t), (6a)
p
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where the following notations have been introduced:
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E. 5 —E _(J_,(g *2p1)“) __10 Pp=mvy is the electron Fermi momentum, Jp is
a the Bessel function of the first kindin , n” , ¢
o2 [ , Py , {1 are integers.
Q @)= Q" (m)— £ s 2 (r,l)Jp,(r;2)Jp (n ), (n.) < In obtaining (7a,b) we have set p<<l | B <1
(m(’q) p 1 r - and also taken into account the fact that quantities
(03,5 =0y )pip; R (<1, QY 1<<1 when i4j as they represent the
X = = ! T Small contribution of nonparabolicity effects, In agree-
Epnq’ _E[;""'(y 2 1)“’0"10 ment with this only the terms linear with respect
: to the mentioned quantities have been retained.
i,j=x,y.,2 \
B - &) FCES ( p> 12epp)? 3 e°E} ‘ 3. INSTABILITY ANALYSIS FOR COUPLED
b M2 nE "8 mE e ELECTRON-PHONON SYSTEMS
0 g -,0
F In this section, proceeding from Eqs. (7a,b)
obtain the dispersion relations for electrostatic and
N eE o e o electromagnetic waves in an electron-phonon system
f,'l-;nt(’p) = —;E—Q—g[p&(eo-p)‘(p +Q)~(eo-(p +a)) |, and solve for possible instability growth rates of
moHgoq these waves in different cases.

We shall work in the rectangular system of
coordinates with z —axis being parallel to the wave
vector d and the electric field vector E lying in



Xz -plane, As the parameters A IR PR in-
volved in Egs. (7a,b) are much smaller than 1,

in further calculations only terms linear in them will
be retained and in accordance with this one will
have JoA)=Jy(p) =~1.

The analysis will be done in the high-frequency
long wave-length limit (Qp<<w, 9<qp. = w  /Vp )
and in the so-called "two-mode approximation"

(see ref, "1 ),

For zero external field (E_=0) one can obtain
from the system (7a,b) the expression for the fre-
quencies «; o of the two longitudinal (electrosta-
tic) and “’1,2(6) of the two transverse (electromag—
netic) eigenmodes involving the terms due to nonpa-
rabolicity effect, Thus, one has:

olw? - /e 1
0 2l 1GR402)+ @ 0?1y 200l Umcule) (%
1,22 p L p "L ~2_ 22 (8
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where oy, is the longitudinal optical phonon frequen-
cy and
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The expression for m'? 2(@) has the same form as
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For E 40 ,a|]}§0 the system (7) leads to un-
coupled dispersion equations describing longitudinal
and transverse waves, The equation for longitudinal
modes is:
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e(w) is the lattice dielectric function that yields

the growth ratey (the resonant coupling modes are:
W=y, ©) -0 = and SO W) =w; +t®y w1<w2)
in the form
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For transverse modes (a):wl(d'), © o = o 2({{))
we have the dispersion relation
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(note that Qf* =@'Y =@ for ||E; ). The growth
rate in this case is expressed by the formula
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As is seen, in the case of parabolic energy
dispersion the growth rates (10) and (12) coincide
with those calculated in’/1/, .

We now turn to the case of { LEj.Eqgs. (7) show
that there exist the purely electromagnetic (trans-
ver‘se) perturbations polarized perpendicularly to

O(E)..LEO) and the coupled electrostatic (with
L Eg )-electromagnetic (with B il EO ) ones with
"mixed" polarization. The usual procedure leads to
the following growth rate formula for the purely
transverse modes (with o = cuz((f) , 2(»0—@ ::Q)l(_a) ):
2 wh

[0 5@) ~02]w 2 -6 2(D)] i
fw[cuz(Q)-mf((i’)]

© (@) w,(d)

y ==

(13)

(13) shows that the excitation in this case is caused
essentially by the nonparabolicity effect, For the
coupled plasmon-polariton modes (w = wo ,mo—w-ml(a))
the growth rate ¥ has the form

2 -
eqEg wp (mg —w%)[w',gr—cuf(q)] 1

dme  wylo @ +w,l 01 @ wy 02 0XAq)- w(D)]

(14)
p?,
xit-2p%- L -2 “2_y
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The numerical values of the threshold fields
are estimated in the same way as is shown in
r'ef./ ’ For this purpose the sample of n—-InSb crys-
tal was taken, This is a typical narrow gap semi-
conductor that may be described by the electron
energy dispersion formula (1), The results are:

1) for the longitudinal modes with ¢ ||B

3 -
Eom =35:10° X ¢ q-5.10° em~!,  (15)

2) for the coupled electrostatic~electromagnetic
modes with q 4

12

e

\

6 3 —~
Egn =107 — for ¢ =5.10° em~1. (16)

Here the following data have been employed (see
refs, 1®"): n= 10 cm , m= 001m B=0234eV, ¢ =9 ,
€g-R7 , w L"IO sec; wp =210 3seclthe damping constants:

Tpn =7 100sec 1 for phonons and I' pl =1,7.10'% sec~!

for plasmons,

Comparison of (15)<(16) with the results obtained
in refs. !*®*" shows that the nonparabolicity effect
makes the threshold field values lowered by several
times in all cases,

4, SINGLE ELECTRON SYSTEMS

‘The problem of parametric excitation in single
electron plasma can be treated using Egs. (7) with
e(w)=1,

The plasmon frequency ¥ in the absence of any
external influence is then obtained from €(w)=0 and
has the form

p S@plify (17a)

while the frequencies of electromagnetic modes are
determined by A*w)=0 and are

2,5 L2 22

wJ_(q)—w +q7c” . (17b)

The 1nstab111ty analysis in the presence of the
radiation field EO (t) is carried out analogously to
the case of electron-phonon systems., The results for
instability growth rates and threshold fields are
(n 1017¢m -3 yo =2,7. 1014 se ‘l,and the effective col-
lision frequency of electrons y., =6- 1011 sec—1
have been taken’3’ ):

1) for the plasmon-mode =w;

when @y = ¥ :

with 4| Eg
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p2 %

mE ) (18)

E =~9.10° -V,
oth cm

y=3 B2, 0-

2) for the purely electromagnetic mode o Q)

with ¢||E , when +
2 2.2
=l.32 “p a-L1 _iﬁl‘_‘___)
oD % m%@) (19)

>

ELE (0=, (@):

, 3) for the electromagnetic mode @, (@) withq | ﬁO’

2 2p2
® q®p
y=%_32.__2_(1+_;_ F

a 5 e ) (20)
~ 4V _ 8 am—1.
Eoth~5-10 —C—-mfor g=5.10°cm~";

4) for the coupled electrostatic-electromagnetic
mode a); with ¢ LE (cu0=cu*p), the growth rate y
and the threshold field E ,, are determined by (18),

As is seen from (18)-(20), the results for the
growth rate expressions coincide with those calcu-
lated in ref,”’3/ is the thermal motion effect is neg-
lected. So it is clear that this effect has made the

threshold field values somewhat lower than ones
obtained in ref,/3/,
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