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On the Surface Electrical Resistivity of Thin Semiconducting
and Semimetallic Films

In the effective-mass approximation taking into account the
image forces the low-energy electronic states in thin crystalline films
and transport relaxation time of current-carriers and electrical
resistivity of the flims are calculated when the scattering mechanism)
is connected with the randomly distributed on their boundary surface
screened Couwlomb and electric dipole impurity centres. It is shown
that in some cases of thin solid film materials the image forces
influence essentlally the electronic states and their surface electricall
resistivity,
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I. INTRODUCTION

Recently, considerable attention has been paid to the investi-
gation of electrical, optic, galvano-magnetic and other properties
of thin film semiconducting and semimetallic materials, as well as
to the surface layers of many semiconductors with size-quantized
motion of the current-carriers (see, e.g., surveys 1-37y, nie
concern is related with the presence of a number of specific quan-
tum size effects and new possibilities for investigating the phy-
sical properties of crystals, as well as with the continuosly in-
creasing needs of practice and mostly microelectronics.

The electrical resistivity of thin crystalline films is of
special interest, as well as its dependencé on their thickness and
on the scattering mechanisms of the current-carriers within them,
A lot of theoretical/4'10/ and experimental/II'Ia/ papers have
been davoted to the investigation of these problems (see also the
survey and papers, mentioned there) snd, moreover, a consider-
able part of them have been published quite recently.

Ag is well known (cf./I/), under the accomplishment of defi-
nite conditions for the transport relaxation time and ecurrent-
carriers’ concentration in some sufficiently thin semiconducting
and semimetallic films, including conditions for the temperature
and homogeneity of the films elong their thickmness, one can ob-
serve experimentally quantum size effects which are a result from
the quantization of the current-carriers transversal motion and
are expressed in oscillating dependence of the electrical resis-
tivity end other macroscopic characteristics of the films on their
thickness. In the case of some thin film materials other interest-
ing features of their electrical resistivity as a function of their



thickness have been observed/lz/. As a rule, the theory of these
phenomena is built in the effective-mass approximation with a
suitable choice of the current-carriers’ potential. The most
frequently used model for this potential represents the film

(in transversal direction) as a rectangular pit with infinitely
high walls/I 4,19,20/ and, naturally, the wave function of every
current-carrier at the film’s boundaries vanishes. The problem of
the kind of potentiel in the film and boundary eonditions for the
current-carriers’ wave functions in the film is discussed in
detail in/I’II/. In/ZI/ the potential within the film is assumed
to be zero, while on its boundaries it changes in such a way that
the normal derivative of the wave functions equals zero. A con-
siderable study of the conditions which must satisfy the envelo-
pes of the electronic wave functions at the crystals boundaries
has been recently accomplished in 2‘ . Besides, note that in all
mentioned cases the obtained solutions for the states of current-
carriers in thin films are non-self-consistent, which, in its
turn, expresses their approximate character.

, see als,o/8 14 Ig/) have done
calculations of the electrical resistivity of thin film materials
or of the tranaport relaxation time of the current-carriers with-

A number of authors (see

in them when accounting the electron-phonon interaction or scat-

tering from point-defects in the volume (most often described by

5 -like potential). When the scattering mechanism is associated

with surface Coulomb and electrical dipole centres, corresponding
calculations can be found in/4’7’23—26/.

The present paper is concerned with calculations of the low-
energy states and transport relaxation time of current-carriers
(conductivity electrons and holes) in thin semiconducting and
semimetallic films and the electrical resistivity of the latter
accounting for the influence of image forces and when the scat-
tering mechanism is due to screened Coulomb and electric dipole
centres which are randomly distributed on the boundary surfaces
of the films. The investigation is carried out in the effective-
mass approximation with isotropic dispersion law of the current-
carriers and potential model with infinitely high walls. More-
over, the energy-band bending in the films, due to other reasons
besides the image forces, is neglected. It is also assumed that

the average concentration of the scattering centres is not very
great so that each of them can practically scatter independent
of the others. The scattering amplitudes are calculated in Born
approximation.

2. IMAGE FORCES AND LOW-ENERGY ELECTRONIC STATES
‘IN THIN SOLID FILMS

First we will calculate the low-energy electronic states in a
thin erystalline film assuming that the image forces have a con-
siderable influence on them. The description will be epne with
respect to a Carteslan orthogonal co-ordinate system ;~T;/Z with
origin at the centre of the film and Z axis perpendicular to its
gurfaces. In the same way as in/27/, we will use an approximate,
but sufficlently precise, representation of the potential VYZ) of
the image forces acting on everyone of the current-carriers in
the film with electric charge f€, namely

Vm =

Taet ¥-x
S 8iax v (1)
Here [ﬂ is a constant with value close to unity (Ln/27/ it is
set [ = 0,795), (U is the fllm half-thicknees, while X and .U
are the permittivities of the f£ilm and the surrounding medium,
respectively. Note that in expression (I) X and X, have to
represent the high-frequency values of the permittivities of the
corresponding media/ze’“g/. It can be seen from the same expres-
sion that the influence of the image forces will be considerable
when X is small, and ¥, is large, or when x> 2,41%,.. Fol-
lowing what was said in the Introduction, we will consider that
outside the film the potential has an infinitely large value.
So, the stationary states of the current-carriers (eonductti-
vity electrons or holes) im the film will be defined by the wave

equation P
/\— 2}%/1 . —E)y(f) 0 (2)

and the boundary conditions

where




V(xy,ta) = 0; (3)

770 is the effective mass of the considered current-carrier. Be-
sides, further in our paper, the energy of the conductivity elec-

trons and holes will be accounted from the low and upper end,

respectively, of their energy bands in specimens of the consider-

ed material in the absence of quantum size effects. We will con-
ditionally assume that the form of the film in the plane (Jl L/ is

rectangular with dimensions L., and L., along the axes X and L; ’

respectively, and L & & LuLz , the film volume \- veing } =
Za L_, Lz' Then, setting '
P ' RS
Vo= A o T (4)
VI L,

and substituting it in (2) and (3), we obtain

Cr pf X ) :
- i Q, v {s)
( et e € U= <
for ] ) K
Y(ta)= ¢, e:E~;—(n+/‘z)' (6)

The equation (5) under the boundary conditions in (6) has a
solution for 7 only for discrete values of €. With the help
of the variation method we will find approximate solutions for
:2_/ , corresponding to the first two smallest values of E and
denoting them by ¢, and ti . This will be done first for the
function of the ground state 2’0 (Z{), choosing it of the form, as

follows
V.2 = e
PR - —_—
¢ \,Cl L

where /?‘ is a variational paremeter, and the constant (0 is
determined by the normalizing condition

wz @ . (8

From (8) (after approximate calculation of definite numerical
s
coefficients containing the number J/ */) we obtain

iz
) eus (£ ) (?)

~ /

¥
/ Similer calculations will be done further in the paper
without mentioning them.

o #
C. = (1+ 0615, +0,0445) (9)
/50 = dz/o‘- (10)

For the quantity E from (5)-(7) we find

for

eoz [2%7 £ 9,438 +
(0645 +08;f5o()/3 +(0(41/+0/76o/)/] (ID)
wheréd daz%d— o

and (from the condition 6 to have nininal value for (7) and (8))

- [(4250 +0,394,Y - 0,094, ] (4,250 +0,182,)
/3" - 0,327 + 0,029, ’

In the seme way we determine the function Z1 (Z) and its cor-
responding eigenvalue 61 . For this reason, set

A (@) = (1+ 5’”22),5772(//2) (14)

where Y' is a variational parameter, and C is a normalizing
constant. From the normalizing condition for ZJ (Z) and from (5),
(6) and (14) we obtain

= (1+0565, +01t4 &/) (15)
¢ =atf,
22
€, = M [987(0+3!/4do

(13)

(Is)

2
+ (5580 +2,229d0) K +(2,257 +0599,)§, ]
o ¢ - [ (0,565 +0,0534,)" 0,0250(0] (0,5 e5+009;4)
0 0,320 + 0,028 L,

In such a way, for the energy in the first two sub-bands
(corresponding to the ground and first excited state of the

I17)

transversal motion of the current-carriers), according to (6), we



will have 2

%
Ey ) = € + g (4K, =01, (18)

where €, and €, are defined by (9)-(I3) and (I5)-(17).
Further, we will assume that practically there are current-~

carriers only in the first energy sub-band (&= 0), i.e.,we will

consider that the absolute temperature T of the film satisfies

the condition
PT < € -¢, (10)

( g is the Boltzmann constant) and, naturally, the Fermi energy
6} has a value, smaller than that of €,

€< E,. (20)
For example, for /= 0,795, X= 2,4, X,=1, Q= 10" cm and
M= 0,1M,( 7, is the free electron mass), from the formulae
obtained above, we find

€,=1,085.10"2 eV, £ =13,881.10"2 eV, T" . 330°K,
and for 77 =7, and under the same values of the other parameters
€,=0,188.1072 oV, €,=0,406.10"2 v, T £ 35,7%.

Since the seattering of current-carriers from defects situated
on the film boundary surfaces will be more substantial for X<)¥,,
then we will give as an illustration the vslues of 6~ and €,
and the temperature condition for [ = 0,795, X = 2,%, =16,

@ = 10 ca and 7 = 0,177, , which follow from (I),(9),(II)-(I3),
(15),(18),(17) and (I19),

€,=0,723.1072 ¥, £, =3,482.1072 ¢¥, T £ 320%
while for M =7, and when the other parsmeters regt, the same
€,=~0,120.1072 ¢¥, ¢, =0,089.10"2 ¢V, 7" < 25,3%K.

Finally, note that the image forces in a number of cases of
thin crystalline films have a considerable influence on the
energy spectrum and wave functions of the current-carriers with-
in them, which is the reason, in particular, for them to contri-
bute to the change of the energy gap and the film electrical
resistivity.

3.TRANSICHT RELAXATION TIME OF CURRENT-CARRIERS

Now, using the results obtained above, we will calculate the
transport relaxation time ‘ZJ of the current-carriers in the
first energy sub-band, assuming that of essential importance is
only the scattering mechanism connected with screened Coulomb or
electric dipole centres distributed on the boundary surfaces of
the considered thin film. We will also suppose that scattering
from centres on the one surface of the film practically takes
place without the influence of the ones on its other surface.
Then, it will be sufficient to consider the case when scattering
centres with average concentration _/ can be found only on the
one surface of the film, and this will be done further in the
paper, and we will consider this surface to be Z+({l= 0. Under
these asssumptions and the ones mentioned in the Introduction, for
the inverse transport relaxation time 4«f4k) of a current-carrier
with two—dimensional quesi-wave vector K, = (Kyy hyy €3 (paral-
lel to the plane [ lq ) and energy in the framszﬁrk of the f%;at
sub-band (,5 = 0) according to Baskin and Entin ),
we have

(ace also

—

/ O e -, Ve oy o
L AT 7 U (R, ¢ B

Here‘:...\z means averaging on the orientation of the scattering

centres, @\ ‘is the Dirac function and

/Z(q,g)\,, K, )= gc/ 4 /90/( (£) Z4¢3) zc». (<) (22)

Vs > -V
where [{(f) is the operator of the interaction energy of the
current-carrier with one scattering centre (choosen to lie on the
Z exis), and the functions %ga(f)are defined by (I),(4),(7),
(9),(10),(I2) and (I3).

In the considered cases of Coulomb and electric dipole cen-

tres (when their screening radius () is emaller than the film
thickness 261), we can approxinately 'rite for the firat ones

7{ (%) =1 6 Po (23)



and for the second ones/aol

_t
—»
Up (7) = - 52 (1+ AR (24)
:,r t |

where ,

"o £ 2 21 2 2
- [J: gt (zra)* |7, Fleq
and Ze and (§ are the magnitude of the electric charge of the
Coulomb centre and the electric dipole moment of the dipole
centre,respectively.

Consider first the case of scattering from Coulomb centres.

Then, by substituting (4),(?7) and (23) in (22) and integrating
along the coordinates, we obtain

2,0 . z
(e (F) = 2 @ZM% e _ (ﬁ Mz) Jow)y e
where

ﬁ //’ ’ .\v: \/rqa:z'f‘p:{’ ,LSZ,: j/je ; /7://‘]’/ (26)

Tov) = Sh (aw)

\ - 2 L
S (FBwrE W
Now, substituting (25), for (26) and (27), in (2I) and passing to
polar coordinates K,: and (fl,

Kl =\ViFrKt, ¢'= atma(’;’K’(") K=Kl s (28
[[RAY

when integrating along k, and ‘(1 , and then integrate along K,, ,
we find

(27)

L - WVVZZ@//CO[I (90( u)?

J'C\c(kj”’) - gﬁ,zisxzaz (29)
where ZdW
(Q(‘(Kl/) - 7\,1— g 6/47 W [(‘“/3 z\v’z) J(H )] (30) |
for 75T ’
= \/E"#//Cﬁs’/fz :f’— . (31) ’

Obviously, when the condition

L0,

KIQ <« (32)
holds, where Kc 1s a characteristic value of K“ (for instance,
for the strongly degenerated statistics of the current-carriers
EKC will be the Fermi quasi-momentum), according to (26) and
(31), instead of (30) we will approximately have

dars FEa

() = 0 ch (33)
- 2 - ’é\i 2 T Z
Go=e * [U */’%'2-,42*> . Cg")] ) (34)

The calculations are carried out in an analogical way for the
scattering from electric dipole centres. Then, from (4),(7),(22)

and (24) we find
(4” ] (1 21’& J ( 1(35)

?/ ( -el, C e [
be “ohea
where % ,j: I,2,3, are the Cartesian coordinates of the vector
2 , and we have eet[” ( C{/ q/ 0 ), while tbe quantities F’
¥ , 5 end J-(W, are determined by the corresponding formul ae
in (26) and (27). Further we will assume that the longitudinal
(i.e., parallel to the fi_l'm’s surfaces) component " of the
electric dipole moment of the scattering centres has random
digtributionz of orien?ation, and the average values of ”1 and
Q,3 are (% ) and Zl;:,\ ,respectively, and they will be consi-
dered as known values. Under these conditions, by substituting
(35) in (2I) end taking into account (26) and (27), by averaging
along all pogsible or{entations of % and along a&ll possible
values of z , and after that using the polar coor-
dinates K,, an Y , according to (28), when integrating slong
K1 and k , and integrate along K” , we obtain

1 wethc! T, : 1o 2 /A
TAG) "R R [ > () 2GR G )|

for

! 2awil, At 2 2
C{?(K,,) —ﬁ— (/ft e a”[(Hﬁ,‘;‘ﬁZz) J(w;,)], (37)



[
t‘f// (Ki/) =

/ "h’,l,‘ s «‘:ﬂ\Qgi. {f \2 T .72
= : il i /I, {38)

RPATIAY. o)
where W, is given by (3I) and, as in (30), the magnitude b}(l%)
is obtained from (27) by the change of W with W, . When condi-
tion (32) holds, instead of (37) and (38) we will approximately
have

. nﬁ ~~/
( (}/1/ = (Qg, /LK,, :’2— 4\ ((I[ 7 (39)

&,
where (1o is given by (34).

Here we will note that the conditions for velidity of the
consideration of electric dipole centres as point (ideal) dipcles
and ot the first Born approximation for the scattering, might be
written in the following way, respectively=

! J/
Koo < 4, <=7

is the distance between the centres of the positive and

W
7
where (

negative electric charge in the dipoles, while the distance ‘fc
for scattering from Coulomb and electric dipole centres is deter-
mined by the corresponding equations:

e
M

Le o ~2 AT 2
c, & fo o & inZe and te C: e d,
ALES ﬂkﬁ
For example, for [ =0,795, X = 2, 4 x,=1, A ~‘Z|.O'6 cm,
m =o,1m,, V=10%2 e_m‘z Z»I Q2> = (6{; 94 %, 7 =1017

en™3 (7 1s the average econcentration of current-carriers in the
film) and 7144 90°K, (32) will hold comparatively well and hence
from (29) and (33) and from (36) and (39) we approximately find

A - Y
¢ = 0,560.10°10 o, 9 _ 5 gge.1077 o (40)

while for X = 2, X,=16, 7 =7,, T 4 10°K, and when the other
parameters rest the same

s - R -
(¢ = 1,021,107 5, C° =1,498.1076 5. (4I)
If the image forces are not accounted ( { = 0), then, instead of

-I0

s < -
(40) and (41) we will have '/ ‘= 0,562.1c"0 o, 7% = 0 g74.10"7

kS

o~e - tr\.‘
s and ¢ =0,311,1077 5, L = 4,548.1076 ,,
We will meke a further remark that the presence of electric

dipole centres as defects in a close proximity to the boundary

surfaces of the crystals may be due to different reasons, such as
association of oppositely charged electric centres (ions),
adsorption of dipole molecules, induction of dipole moments in
physicaelly adsorbed atoms and molecules on the surface of solids,
etc.(see, for example,/al'asl).

4. ELECTRICAL RESISTIVITY

Under the conditions mentioned in the Introduction and when
the inequalities (I2) and (20) hold for the surface electrical
resistivity _9 of the film (for an applied consteat and hemoge-
neous electric fileld parallel to its surfacea), we have approxi-
nativoly/4'7/ )

p= _ 6 gzv/'(,, k) 50/5 OK(E)A%E E(K,,) (42)

Eiez

where #i(E) is the equilibrium function of Fermi-Dirac distribu-

- fe)=] trem (%,—)]f (a0)

while E;(R;)is determined by (I8) in the considered problem. So,
in order to find the surface electrical resistivity of the film
for scattering of the current-carriers from screened Coulcmb or
electric dipole impurity centres, distributed on one of the
film’s boundary surfaces, we have to substitute (I8) end (43) and
(29)-(8I) or (31) (36)-(38) in (42) and then calculate the integ-
rals along §', y Ky and £ . However, since this is a dif-
ficult problem from the point of view of technique, we will
restrict ocurselves to the case when condition (32) holds and the
current-carriers’ statistics is strongly degenerated, i.e.,we

have }5_60— }23(3?),27?)2/5
kT T em kT (44)

¢ }bis the value of the chemical potential E for [ = 0), Then,
using (33) and (39) instead of (30), (37) and (38), for scat-

tering from screesned Coulomb and electric dipole centres, we

{ «

7 Here, for simplicity, the electric conductivity of the
film is sssumed to be unipolar.



obtain, respectively,
> mA et 92C (/ (45)
929 = 2f 22 a(6€) te

. € ’)77/1/6}1/ 27)7,0 7@
X (0 = : €)% + <421 (46)
9 (vac ot 22 (s, -€,) (fo ) CI/ l}
where G{O is given by (34). loreover, as is known, because of
(44), we have for the screening radius P

< (47)
§ = z,,,,ez (w) ’

For example, under the same conditions for which the results
(40) and (41) were obtained, from (45)-(47) we findizrespiftively,
0 = 2,88, 10710, ¢ = 1,71, 10713 ana 0= 14,82.1071%, =
1,0I1.107 ~13 (1n units of a/ca). If the image forces are not taken
into account, instead of these valuig, we get: Q‘ -2i69 J107
¢ =1,78.10712 ana 0 =4,86.107°%, 0 = 0,33.107
’ Practically, of importance is the case of a thin film with
bipolar electric conductivity (imtrinsic semiconductor or semi-
metal) with scattering impurity centres on its two boundary sur-
faces. If for such a film the conditions for the problem consi-
dered up to now hold in every other respect, then it is clear
that in the general case the inverse transporg,relaxation time of
eny current-carrier with a quasi-wave vector K" will equal the
sum of inverse transport relaxation times of the same current-
carrier under its scattering separately from the unitype
(gcreened Coulomb or electric dipole) impurity centres on the one
and the other boundary surfaces of the film. Thege inverse trans-
port relaxation times are determined by the obtained formulae
(29)-(3I) or (3I) and (36)-(38) after substituting the current-
carrier’ effective mass and the corresponding characteristics of
the considered type of scattering impurity centres ( Z or ZQ&
and zfq , A/) for each one of the two boundary surfaces separa-
tely. Besides, the screening radius _Q (in De?ye-ﬂﬁckel appro~
ximation) will be determined by tho fo;pula

o -

where 7. , &e and 7, , gh are the average concentrations and
chemical potentials of the conductivity electrons and holes,

respectively, in the film in the absence of scattering centres.
By determining in this way the transport relaxation time ¢ [Q(A )
of the conductivity electrons and that ‘( s (A”) of holes, we can
use them one by one together with the corresponding Fermi-Dirac
distribution function and energy E; (i:) (according to (I8)) to
calculate with the help of(42)the surface electrical resistivity 0
and 9& , the first one being connected only with the conductivity
electrons, and the second, only with the holes. Then the surface
electrieal resistivity ? of the film will be

et
Naturally, for the validity of the final formulae for elec-

trical resistivity {’ in the problem, it is further necessary
for every type of current-carriers ,{ (,zzze,h) to fulfill the
condition » P e )
e 53 , z ’
g Etﬁ O —1 & €y -C,
/”41
where 2”1 is the effe?tive mass of a current-carrier of the type
1, while é;( end Cy Y are determined from (I1)-(I3) and (IZ2),
(16) and (17), respectively, for W/ =7/;.

5. CONCLUSIONS

The calculations carried out in this paper show that in a
numper of cases of thin film crystalline materials the image
forces can considerably influence the low-energy states of the
current-carriers within them and their low-temperature electrical
resistivity when the latter is due to scattering mechanisms re-
lated to their boundary surfaces. Relatively, the influence of
thege forces is substantial when the thickness of the film is
sufficiently small and for a not very small effective mass of the
current-carriers, and for one and the same scattering centres it
leads to a greater electrical resistivity when the permittivity
of the thin film material is smaller than that of the surrounding
medium compared to the electrical resistivity in the inverse case.
The obtained results for the transport relaxation time of the
current-carriers and for the electrical resistivity when the
scattering mechanism is connected with the screened Coulomb and
electric dipole centres are of interest both in the presence or



absence of image forces. The applicability of the results is res-
tricted by the requirement for the screening radius to be smaller
than the thickness of the film material, but this does not concern
the formulae for the electronic states in the absence of scattering
centres. Note that the inaccuracy of these formulae because of the
non-self-consistency of the electronic states, is expected to be
relatively smaller when the thin film materials are intrinsic se-
miconductors or semimetels with close in magnitude effective mas-
ses of the conductivity electrons and holes. Moreover, the image
forces cause an additional change of the energy gap of the film
material, which ecould play a considerable role, for instance, in
the case of low temperatures and semiconducting materials with a
sufficiently small energy gap.

The influence of the image forces on the optic, galvano-magne-
tic and other quantum size effects in thin film materials will be
analogical to the one considered in this paper.
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