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ilHMHTpOB X.il. El7 - ll463 

K TeOpHH noaepXHOCTHOrO 3Jl9KTpOCOflpOTHBJ18HHB TOHKHX 
nonynposo.oauxoshiX H nonyMeTannuqecxnx nneaox 

B npu6mnKeHHH MeTOll.a a¢t¢eKTHBHOH MaCChi c yqeToM cun nso5paJ>KeHHSI 
BhfliHCJl9Hbi HH3KOSHepreTH'ieCKH9 3ll9KTpOHHbl8 COCTOSIHHSI B TOHKOii KpHCTan

nnqeCKOfi nneaxe, a TBK*e TpaacnopTHoe speMs penaxcaunn aocnreneH Taxa 
H anexrpoconpornsneaue nneHKH, xorna MexaHH3M paccesHHSI csSI3aH c axpa
HnposaHHhiMH KY.llOHOSCKHMH H 3Jl8KTpH'18CKH-.0HflO.llbHbiMH U8HTP8MH

1 
X08TH'LI8C 

KH pacnonmKeHHhiMH no ee rpaauqHhiM nosepxaocTHM. B pa6oTe noxasaao, 
'iTO B HSKOTOpbiX cnyqagx TOHKOflJlSHO'EJ:HbiX MSTepnanos CHJlbl H306pa>KSHHSI 

BJlHSilOT CYIU8CTB8HHO Ha HX 3Jl8KTpOHHhi8 COCTOSIHHH H nosepXHOCTH09 aneKTPO' 
conpoTnaneHne. 

Pa6ora BbinOJlHeHa B Jla6oparopuu TeopeTn'!ecKol! <j>n3HKH, 0115111. 

npenpHHT 0lheJlKH9HHO!'O HHCTHTyTa l!Jl9pHblX HCCneJlOBBHHA, .Qy6Ha 1878 
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On the Surface Electrical Resistivity of Thin Semiconductin 
and Sem!metallic Films 

In the effective-mass approximation taking into account the 
!mage forces the low-energy electronic states in thin crystalline fi!rru 
and transport relaxation time of current-carriers and electrical 
resistivity of the films are calculated when the scattering mechanlsrr 
Is connected with the randomly distributed on the lr boundary surface 
screened Coulomb and electric dipole impurity centres. It is shown 
that In some cases of thin solid film materials the Image forces 
Influence essentially the electronic states and their surface electrical 
resistivity, 

The Investigation has been performed at the Laboratory of 
Theoretical Physics, JINR, 
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I. INTRODUCTION 

Recently, considerable attention has been paid to the investi
gation of electrical, optic, galvano-magnetic and other properties 
of thin film semiconducting and semimetallic materials, as well as 
to the surface layers of many semiconductors with size-quantized 
action of the current-carriere (see, e.g.,surveys/I-3/). This 
concern is related with the presence of a number of specific quan
tum size effects and new possibilities for investigating the phy
sical properties of crystals, as well as with the continuosly in
creasing needs of practice and mostly microelectronics. 

Tbe electrical resistivity of thin crystalline films is of 
special interest, as well as its dependence on their thickness and 
on the scattering mechanisms of the current-carriers within them. 

/4-IO/ /II-IS/ A lot of theoretical and experimental pap~re have 
been devoted to the investigation of these problems (see also the 
eurvey/I/ and papers, mentioned there) and, moreover, a consider
able part of them have been published quite recently. 

As is well known (cf./11), under the accomplishment of defi
nite conditione for the transport relaxation time and current
carriere• concentration in some sufficiently thin semiconducting 
and semimetallic films, including conditione for the temperature 
and homogeneity of the films along their thickness, one can ob
serve experimentally quantum size effects which are a result from 
the quantization of the current-carriers transversal motion and 
are expressed in oscillating dependence of the electrical resis
tivity and other macroscopic characteristics of the films on their 
thickness. In the case of some thin film materials other intereet
il1£:features of their electrical resistivity as a function of their 
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/I2/ thickness have been observed • As a rule, the theory of these 
phenomena is built in the effective-mass approximation with a 
suitable choice of the current-carriers' potential. The most 
frequently used model for this potential represents the film 
(in transversal direction) as a rectangular pit with infinitely 
high walls/I,4 ,I9 •20/ and, naturally, the wave function of every 

current-carrier at the film's boundaries vanishes. The problem of 
the kind of potential in the film and boundary conditions for the 

current-carriers' wave functions in the film is discussed in 
detail infi,II/, In1211 the potential within the film is assumed 

to be zero, while on its boundaries it changes in such a way that 
the normal derivative of the wave functions equals zero. A con
siderable study of the conditions which must satisfy the envelo
pes of the electronic wave functions at the crystals boundaries 
has been recently accomplished in12~. Besides, note that in all 
mentioned cases the obtained solutions for the states of current
carriers in thin films are non-self-consistent, which, in its 
turn, expresses their approximate character. 

/II /8 I4 19/ A number of authors (see , see also ' ' ) have done 
calculations of the electrical resistivity of thin film materials 
or of the transport relaxation time of the current-carriers with
in them when accounting the electron-phonon interaction or scat
t~ring from point-defects in the volume (most often described by 
6' -like potential). When the scattering mechanism is associated 
with surface Coulomb and electrical dipole centres, corresponding 

calculations can be found inf4 •7 •23- 261. 
The present paper is concerned with calculations of the low

energy states and transport relaxation time of current-carriers 
(conductivity electrons and holes) in thin semiconducting and 
semimetallic films and the electrical resistivity of the latter 
accounting for the influence of image forces and when the scat
tering mechanism is due to screened Coulomb and electric dipole 
centres which are randomly distributed on the boundary surfaces 
of the films. The investigation is carried out in the effective
mass approximation with isotropic dispersion law of the current
carriers and potential model with infinitely high walls. More

over, the energy-band bending in the films, due to other reasons 

besides the image forces, is neglected. It is also assumed that 
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the average concentration of the scattering centres is not very 
great so that each of them can practically scatter independent 
of the others. The scattering amplitudes are calculated in Born 

approximation. 

2. I14AGE FORCE.J AND 10M-ENERGY ELECTRONIC 3TATES 

IN THIN SOLID FILMS 

First we will calculate the low-energy electronic states in a 
thin crystalline film assuming that the image forces have a con
siderable influence on them. The description will be done with 

!.,-, 
respect to a Cartesian orthogonal eo-ordinate system cA.;; Z: with 
origin at the centre of the film and z axis perpendicular to its 
surfaces. In the same way as in1271 , we will use an approximate, 
but sufficiently precise, representation of the potential V(z) of 
the image forces acting on everyone of the current-carriers in 

the film ifi th electric charge ! e , namely 

where 

.{ 'y- \ ---·-, 111= --~~;"" l~ c1. ~-

f'a_ e" 
· '- "' -B //X 

-..... ' ,. ~ 
for t:_ z ct , 

{_ -.:t'o 

l' i .-f~ 
(I) 

Here r is a constant with value close to unity ( ti 271 
it is 

set r= o, 795l, a is the film half-thickness, while ;t and L 
are the permittivities of the film and the surrounding medium, 

respectively. Note that in expression (I) .1: and Y,. have to 
represent the high-frequency values of the permittivities of the 
corresponding media128 •;~g;. It can be seen from the same expres
sion that the influence of the image forces will be considerable 
when .~ is small, and . t'c is large, or when .Y = 2 ,4I -?:c. Fol
lowing what was said in the Introduction, we will consider that 
outside the film the potential has an infinitely large Yalue. 

So, the stationary states of the current-carriers (conducti
vity electrons or holes) in the film will be defined by the wave 

equation 

(~ X v2 c{ -1 -\. 2 m + a z _ zt - E) )' (f) = 0 (2) 

and the boundary conditions 
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1/'( x, ~, :t a) = G j (3) 

11Z is the effective mass of the considered current-carrier. Be
aides, further in our paper, the energy of the conductivity elec
trons and holes will be accounted :from the low and upper end, 
respectively, of their energy bands in specimens of the consider
ed material in the absence o:f quantum size ef:fects. We will con
ditionally assume that the :form o:f the film in the plane O.J. ,·r is 

L r .t 
rectangular with dimensions 1 and '--'2 along the axes X and i; , 
respectively, and f.a~:Ll,L2. I the :film volume r being r=' 
~z,u L1 Lt. Then, setting . 

,..., . - j l (k!X 1- K1. :1) y( ) y· c~) = e .. IL z 
fiT: 

(4) 

and substituting it in (2) and (3) 1 we obtain 

l n_-: cf X. c ) Y 0 :z:! . "~ - -- - ·' + " ..> - '-.. ''L = ' f _.(_ < (( 
~?1: dl- a--l- / (5) 

E t/ ( > J. ~) 
Xc±a)c:-~. E= -zrr: k~'flz. 

:for 

(6) 

The equation (S) under the boundary conditions in (6) has a 
solution :for {' only for discrete values o:f E. With the help 
o:f the variation method we will find approximate solutions for 
'X , corresponding to the :first two smallest values of' { and 

denoting them by t c and t:1 • This will be done first :for the 
:function o:f the ground state .L

0
(2r_), choosing it of the :form, as 

follows 

v . \ c (j .f. ' z.:' \ ~ ' c"'i/f\, 
L.(l 1 =-= 1 , .' Jl(.,-,' ---.;;--:,)' (?) 
, \ a " ~ L l / ., 

·~ is a variational parameter, and the constant l o is where 

determined by the normalizing condition 
,.."+(t q 

( ly '" 1 dr i ll.c(l}j = f. <a> 
-<r 

From (8) (after approximate calculation of definite numerical 
:'- -if 

coe:f:ficients containing the number J/ /) we obtain 

~/ Similar calculations will be done :further in the paper 
without mentioning them. 
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C ( )-~ o = if O,f61(3o + 0, Ol(fj3c2 
(9) 

::. 
j3o =at. for 

(IO) 
For the quantity C0 from ts)-(7) we find 

f{C.t 
Eo= 0 ma0z [2,161 + f/(38 cl.o + 

h. . 

+ ( O,MS + 0,815 d, )j, + ( 0, 6U + 0,176 d,)fd, (II) 

_~ md. 
Vto = -p-

where 

( I2) 

and ( :troJR the condition (
0 

to have miniJRal value for ( 7) and ( s)) 

f
, _ [(1,250 f0;(39d0/-0,0f.9do]lh._(f,J50 f0,18ZdJ ( > 
0 

_ • I3 
0, 3 21 + 0, 0,.('1 clo 

In the SBIDe W83 we determine the function /C {l) and its cor
respqnding eigenvalue t 1 • For this reason, set 

( I4) t(c) = fk (i + rz~);rin (~r)' 
where t is a variational parameter, and cl is a normalizing 
constant. Fro• the normalizing condition for ;:t1 (l) and :trom (5), 

(6) and (I4) we obtain ~ 

C
1 

= (1 + 0,5G5 to + 0,114 Vo~J ,~ 

tor 

'to = a~ r, 
E1 = ftc: [9,8t0 f 3,114 d.o + 

'em at 

+ ( 5,5&0 + 2, 229 do) ro + ('2,251 +0,519 d.)~/] 

(IS) 

( I6) 

- . ]~ (/- _ L (01565 +0,053d0Y- OJOZ5d..0 - (0)565+0,09/.i.) 
~o - 0,3'2 0 + 0

1 
OZ8 do ·<I?) 

In such a way, for the energy in the first two sub-banda 
(corresponding to the ground and first excited state of the 
transversal motion of the current-carriere), according to (6), we 
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will have 

E$ (K! ,k~) 
L n_:<. ( t ~) 
c s + P. m l K1 f K.1. , J' = 0, 1 , ( IB) 

where 6. 0 and t 1 are defined by (9)-(13) and (IS)-07). 

Further, we will assume that practically there are current
carriers only in the first energy sub-band (j = 0), i.e., we will 

consider that the absolute temperature T of' the film satisfies 
the condition 

~ T .( £1- fo ( 19) 

( ~ is the Bol tzm.ann constant) and 1 naturally, the Fermi energy 
eF has a value, ualler than that of' c1 I 

EF <( f1 • (20) 

For example, for r= 0,795 1 X= 2 14, ~0 = I, a= !o-6 em and 

m = 0,11770 ( 11lo is the tree electron mass),' from the formulae 
obtained above, we find 

E:.
0
= I,035.I0-2 eV, 61 =3,881.!0-2 ev, T ..( 330°K, 

and for m = 1'llc and under the same values of the other parameters 

[ 0 = O,Iss.I0-2 eV, (;1 = 0,496.Io-2 eV, T < 35,7~. 
Since the scattering of' current-carriers from defects situated 

on the film boundary surfaces will be more substantial for ~..c.;ro, 
then we will give as an illustration the values of C

0 
and c1 

and the temperature COndition fOr r :: Q 1 795 1 -:x = 2 J X
0

: 1151 

Q= 10-6 C11 and m=O,I7n0 , which follow from (I),(9),(II)-(I3), 
(15),(16),(17) and (19) 1 

[
0 

= O, 723.10-2 eY 1 61 = 3,482.I0-2 eV, T <. 320°K 

while for 'm=='ll?o and whea the other parueters re,t, the sue 

fo = - O,l29.I0-2 eY, (.1 = 0,089.10-2 eV, T < 25,S°K, 

Finally, note that the image forces in a number of cases of 
thin crystalline films have a considerable influence on the 
energy spectrum and wave functions of the current-carriers with

in them, which is the reason, in particular, for thea to contri
bute to the change of the energy gap and the film electrical 
resistivity. 
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3.TRANSI~rtT HE~;TION TIME OF CUHRENT-CARRIERS 

Now, using the results obtained above, we will calculate the 
transport relaxation time 1:' of the current-carriers in the 
first energy sub-band, assuming that of' essential importance is 
only the scattering mechanism connected with screened Coulomb or 
electric dipole centres distributed on the boundary surfaces of 
the considered thin film. We will also suppose that scattering 
from centres on the one surface of the film practically takes 

place without the influence of the ones on its other surface. 
1ben, it will be sufficient to consider the case when scattering 

centres with average concentration ./V can be found only on the 
one surface of the film, and this will be done fUrther in the 

paper I and we will consider this surface to be z +a :=c 0. Under 
these assumptions and the ones mentioned in the Introduction, for 
the inverse transport relaxation time ({'-(171 of a current-carrier 

,_., If. 

with two-dimensional quesi-wave vector K:, = ( ~ 1 , ;, '- , ( ) ( paral-
lel to the plane ( l Zj ) and energy in the framework of the first 

( 1 0 ' 8 d "' /4/ ( /7/) sub-band ,, " I according to ask in an "'ntin see also , 

we have 

i ;j 
'I 

"- -+ - --· 

'I. (k") i(;~ {' \,~ · , ' ,_. -. 2' (~' __.) ·: 'r· ·• ,- ;~,,) 
l~~.,<dcc(k'11 -K11) tLoo Att-kll );tG~~c'K,)-c-e,K·Y(2I) 

Here.( ... ,",: means averaging on the orientation of the scattering 

centres, C\t) is the Dirac function. and 

r) ;-.. -*J ( /1 {,r~* -+ •1/ ·- l .. ' ,... 
~{oolk~1 -K,1 )c::: ) t t 1o~(t) td(! ic~/(z), (22) 

/'[ .. ) ·y 
where L· (t is the operator of the interaction energy of the 

current-carrier with one scattering centre (choosen to lie on the 
2' axis) 1 and the functions J~~(f)are defined by (I) ,(4) ,t 7), 

(9),ti0) 1 (12) and (I3). 

In the considered cases of Coulomb and electric dipole cen

tres (when their screening radius _9
0 

is amaller than the film 
thickneSS 2 a) 1 We Can apprOXimately write for the first ones 

l 2 t 1;tc (i() == i ~ e- Po ( 23) 
xt 
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and for the second one/30/ 

21;; (f) = (24) 

where 

L
- n]r~ q I? i = X.!+tjz + (lta)'< , c"~ {{ 

and l. e and q are the megni tude of the electric charge of the 
Coulomb centre and the electric dipole moment of the dipole 
centre,respectively. 

Consider first the case of scattering from Coulomb centres. 
Then, by substituting (4),(7) and (23) in (22) and integrating 
along the coordinates, we obtain 

/" c - + Ze 2 C~ e- Q\'t' (, ~(/ )~ 
dcc(f')c::- GJ0-".,~w-li+l3bll'2 Jew), (25) 

where 

p = ~~-~;, W= vs/·+p\ ~~~= 1/s~, p=f;]/ <26) 

end 

' r _ Jh {a\~] 
'.r(~\) -cat w~ + lt\\. 

JF.:t 
( 27) 

Now, substituting (25), for (26) and (27) 1 in (21) and passing to 

polar coordinates 1<,: and lf!', 

ltl - \:K,l.J..K't ro'_ a"CCL'''(it,·k:') K =-(K/ (28} 
\ii - I 1 ,- .{ ' '£ - t ,, K K' ' II ,, ' 

1 I 11 II I 
when integrating along k1 end k.t , end then integrate along ){II 1 

we find 

where 

for 

1 
'Leek;) 

(~(' (k/1) = 

Qc{kn)' 

\

§! -2LHVo[ .·t • ]2 i e · 0 ;;: - -
:fl d!f' -vv,;z (i+fcn\~;/) J(lvo) 

0 

\f ;:: v s;{ +4 k/·.1· TIP o o 11 Ill 7il 

"" 
Obviously, when the condition 
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( 29) 

( 30) 

( 3!) 

I 

' 

J 
I 

K_~·(;: <-<: i (32) 
holds, where Kc is a characteristic value of k11 (for instance, 
for the strongly degenerated statistics of the current-carriers 
nKo will be the Fermi quasi-momentum), according to (26) and 
(31), instead of (30) we will approximately have 

(;: '(!(;,) ~ ££ Ci c ( 33) 

for 
"' a [ _ , -,t 9 _ 0 2 

II' - t... B c, "' 
l-rc = e " (1 +./' '?f~~) ._,\ (t.) . (34) 

The calculations are carried out in an analogical way for the 
scattering from electric dipole centres. Then, from (4),(7),(22) 
and ( 24) we find 

:JJ c~ -a\v'r, , cf'PJ] ot 2-1J;o (p) = ;;"" ~ e L q3 - L -t- (i +/' awt) J Clr). <35) 

where ~j ,)= 1,2 1 3, !re the Cartesian coordinates of the vec~r 
iJ 1 and we have set {~11 = ( ctJ , CJ-~ , 0 ) 1 while the quanti ties p , 
'{y 1 f\~ and lf(\V) ere determined by the corresponding formulae 
in (26) and (27). Further we will assume that the longitudinal 
(i.e., parallel to the film's surfaces) component if of the - ~ electric dipole moment ~ of the scattering centres has random 

-v ~ 
distribution of orientation, and the average values of n and 

~ t " 'Ytt fl are ,(. (), / and (.II > ,respectively, and they will be conai-
'Y3 711 -v, 

dered as known values. Under these conditions, b,y substituting 
(35) in (21) and taking into account.(26) end t27) 1 by averaging 
along ell po~sible or~entations of ~ and along all possible 
values of 0"- and () , end after that using the polar coor-

K' }it !O' 'Y1 dinates 11 and ':t , according to ( 28), when integrating along 
I k' k' k1 and .t , and integrate along 

11 
, we obtain 

,~ .z l!c•~t [ , • -:IJ J 1 _ 1!7 e ;r o / ~ , ( ·"- t ., -< ( < 36 > ~(i(,,) - 8jf2fzJxJ.a:t .... q~l' (~.1 (K~) + Z <~~~ Kll (1rt (K/1) 
for 

r:.iJ 1. ('.;";' - z a1f~{ , ,-J t ~ , 7.2 
u~ {Kt) = j~ J dlf' e (1+f't1\~~) LT(Wc)j, (37

) 
0 
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,·// ~I' -~~(\~, 
;.·. 

1 
1\ (,.r.· ~<~ e . '+ 

l (~1 ( ( 1 = ·7- C 'i /! t l? ;;; r.\- ~ i l1 
J{ --- () ..-<. ~ e ~ 

' 0 l"' 
~ !:__~ ~4 ,-, 1 .... 

-_-.',I i /, , I 
CIt, .. / L, I__H: _/ ,4 \ 38) 

where \\~ is given by (31) and, as in (30), the magnitude J (I~~) 
is obtained from ( 27 J b3 the change of \\1 with \i~ . When condi
tion l32) holds, instead of l37) and t38) we will approximately 
have 

- ') .10 -
( r;/.( ) "' If/ I'" f• ... J r;;_ II ;(_-'- /0r = L'to , li. 11 ,X,,)==--;;;- t Uc 1 

() ~ . 
where C!/o is given by (34). 

t39) 

Here we will note that the conditions for validity of the 
consideration of electric dipole centres as point (ideal) dipoles 
and ot the first Born approximation for the scattering, might be 
written in the following way, respective11: 

·1 ZJI 
1\c C < l 1 J ,:.:..:_ K '-' ' 

,l ' l" 

where (' is the distance between the centres of the positive and 
negative electric charge in the dipoles, while the distance 'Cc 
for scattering from Coulomb and electric dipole centres is deter-
mined by the corresponding equations: , . ~ 

~ 7> m Z e t "'- ~ e R ,,.., ?,, 0 {/ 
fc t_" f" - -"'--- and lc - ;:,. '' ,' • 

" - r:.K.z -v A f t, - Ji·Zk<·-.· 
17.. ~,A 1 -fl , o"L 

r ' -6 For example, for :=0,795, X =2,4,Xo=I, a=IO em, · v 13 -2 7 2 < I 'z 17 m_ = 0, I 17:, , I = IO em , L- == I 1 zq/ / = ,( q. '/ = CJ dv , ·n == 10 
3 H ' 

em- ( 11 is the average concentration of current-carriers in the 
film) and T <l. 90°K, (32) will hold c-OJaparatively well and hence 
from (29) and (33) and from (36) and (39) we approximately find 

,.-v(_ c - o ro-Io """'~ -7 - ,569. s, (__ = 0,886.10 s, (40) 

while for -~- = 2' x. = 16' ?1Z == m 0 ' T 4:-<: I0°K' and when the other 
parameters rest the saae 

--v, 7 
'(_ c = 1,021.10- s, ,"-'JJ -6 

L = 1,498.10 s. (41) 

If the image forces are not accounted ( •:-=- 0), then, instead of 
(40) and (41) we will have :;;:, = 0,562.IC-10 s, ~ = 0,874.10-7 

"'-'( 7 "-;I.) 
s and '(, . = o,arr.ro- s, '(., == 4,548.10-6 s. 

We will make a fUrther remark that the presence of electric 
dipole centres as defects in a close proximity to the boundary 
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surfaces of the cr,ystals may be due to different reasons, such as 
association of oppositely charged electric centres (ions), 
adsorption of dipole molecules, induction of dipole moments in 
physically adsorbed atoms and molecules on the surface of solids, 
etc.(see, for example,/ai-35/). 

4. ELECTRICAL RESISTIVITY 

Under tbe conditions aentioned in the Introduction and when 
the inequalities (19) and (20) hold tor the surface electrical 
reeiativi ty _9 ot the fila (tor an applied constant and hoaoge
neoue electric field parallel to its surfaces), we have approxi
•at1vely14• ?/' 

0 l.-1 167i3m" ;, 1.~ ..... 'lifo {E) · .... 
p =- f/e'- [Jcl~, k11 UKu) stiE dE J(E-Eo(Kr,~ ,c 42> 

where fc (E) is the equ1libriUIII function of' Fermi-Dirac distribu-
tion, 

fo (E)= { 1 + exp ( f,f) ]-: (43) 

while fo (k,) is determined by (IS) in the considered problem. So, 
in order to find the surface electrical resistivity of the film 
for scattering of the current-carriers from screened Coulomb or 
electric dipole impurity centres, distributed on one of the 
film's boundary surfaces, we have to substitute (18} and (43} and 
(29)-(31) or {31),(36)-(38) in (42) and then calculate the integ
rals alo!J8 Cf 1

, kJ. , K~ and E • However, since this is a dif'
f'icult problem from the point of' view of' technique, we will 
restrict ourselves to the case when condition (32) holds and the 
current-carriers' statistics is strongly degenerated, i.e.,we 
have 

<(.( _fo- co _ f' (3Ji 212)~h 
{ f<r - 2m !<r (44) 

( to is the val.ue of' the chemical potential } tor T = 0). 'l'hen, 
using (33) and (39) instead of' (30), (37) and (38), for scat-

tering from screened Coulomb and electric dipole centres, we 

* I Here, tor siaplicity, the electric conductivity of' tha 
fila is aesUIIIed to be unipolar. 
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olrtain, respectively, 

"' o mAl lzet .£z C 4 
9 = ~( = 211 ,:{'t a~(fv_;_) {fl_ 0 

(45) 

and 
:: ".c _ tfT/;t ·, ?.m9o""- t 2 A((lf ~ ·' j 

9- _\-d: - 'itt ;;e.t at.(f.-6o) ---v-Cfc-E.)~~/ + <ct_~/ (Z}46l 
where cqo is given by (34). Moreover, as is known, because of 

( 44) , we have for the screening radius £ : 
() 1'. :=: fit)( ( lf7 ) 1: 
)c '!met .112 

(47) 

For example, under the same conditions for which the results 
(40) and (41) were obtained, trom (45)-(47) we findi respectively, 
n° 10-IO no I I - 13 fl

0 I IO- 2 r; 0 

H = 2,66. , M = ,?I. o and rc = 4,82. , y,;e = 
I,OI.IO-I3 (in units of a/ca). If the image forces are not taken 

"' Io-Io into account, instead of these values, we get: '\',· == 2i69. 
n~· -13 no -12 ntJ o . ~ o- 3 
rJ; = I,73.IO and JC = 4,86.IO , 'J'tl:l = ,33.1 • 

Practically, of importance is the case of a thin fila with 
bipolar electric eonductivi.~ ( 1Dtrinsic semiconductor or semi
metal) with scattering iapurity centres on its two boundar7 sur
faces. If for such a fila the conditions for the problea consi
dered up to now hold in every other respect, then it is clear 
that in the general case the inverse transpor~relaxation time of 
any current-carrier with a quasi-wave vector K11 will equal the 
sum of inverse transport relaxation times of the same current
carrier under its scattering separately from the unitype 
(screened Couloab or electric dipole) impurity centres on the one 
and. the other bound&r7 surfaces of the fila. These inverse trans
port relaxation times are determined by the obtained formulae 
(29)-(3I) or (3I) and (36)-{38) after substituting the current
carrier' effective mass and the corresponding characteristics of 
the considered type of scattering impurity centres ( r. or L fl/? 

t AI 'b 
and !_ q,, '? , IY ) for each one of the two boundary surface 11 se para-
tely. Beside a, the screenillg radiua Ji, (in Debye-Htickel appro

ximation) will be determined by the fo~u1af301 
~ = J;f/e 2 

( cine+ d1l") , 
9, .t X 7fe trf... 

where 12e , !e and rl h. , S h. are the average concentrations and 
chemical potentials of the conductivity electrons and boles, 
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respectively, in the film in the absence of scattering centres. 
,'>-(<)( -) By determining in this way the transport r~laxation time C K., 

f he i '7'-th.J(A~) f h o t conductiv ty electrons and that <. 11 o olea, we can 
use them one by one together with the corresponding Fermi-Dirac 
distribution function and energy f:c (?;,) (according to ( IB)) to 
calculate with the help of(42)the surface electrical resistivity~ 
and 9,._ , the first one being connected only with the conductivity 
electrons, and the second, only with the holes. Then the surface 
electrical resistivity f of the film will be 

y ~~ J\ 
~e+C,_ 

Naturally, for the validity of the final formulae for elec-
trical resistivity r in the problem, it is further necessary 
f'or every type of current-carriers ,t ( ,{ = e, h) to fulfill the 
condition 

~ ., ;;< n , (71 • tl) 
::> ' (:-~~a _. _r_ .. { L:.< t_ - t J 
.. c 11/~ 1. IJ 

where 1!?1 is the effective mass o~ a current-carrier of the type 
1 riA.) ti) 
, , while c, and t 1 are determined from (Il)-(13) and (12), 
( 16) and ll7), respectively, for 11( = 11?<. 

5. CONCLUSIONS 

The calculations carried out in this paper show that in a 
numoer of cases of thin film crystalline materials the image 
forces can considerably influence the low-energy states of the 
current-carriers within them and their low-temperature electrical 
resistivity when the latter is due to scattering mechanisms re
lated to their boundary surfaces. Helatively, the influence of 
these forces is substantial when the thickness of the film is 
sufficiently small and for a not very small effective mass of the 
current-carriers, and for one and the same scattering centres it 
leads to a greater electrical resistivity when the permittivity 
of the thin film material is smaller than that of the surrounding 
medium coapared to the electrical resistivity in the inverse ease. 
The obtained results for the transport relaxation time of the 
current-carriers and for the electrical resistivity when the 
scattering mechanism is connected with the screened Coulomb and 
electric dipole centres are of interest both in the presence or 

IS 

~ . I 
I -



absence of image forces. The applicability of the results is res
tricted by the requirement for the screening radius to be smaller 
than the thickness of the film material, but this does not concern 
the formulae for the electronic states in the absence of scattering 
centres. Note that the inaccuracy of these formulae because of the 
non-self-consistency of the electronic states, is expected to be 
relatively smaller when the thin film materials are intrinsic se
miconductors or semimetals with close in magnitude effective mas
ses of the conductivity electrons and holes. Moreover, the image 
forces cause an additional change of the energy gap of the film 
material, which could play a considerable role, for instance, in 
the case of low temperatures and semiconducting materials with a 

sufficiently small energy gap. 
The influence of the image forces on the optic, galvano-magne

tic and other quantum size effects in thin film materials will be 

analogical to the one considered in this paper. 
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