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1..Introduction 

In this paper we want to show that unnormable locally con
vex topologies on tho «--algebra of local observables of a sta
tistical system may be more appropriate to describe the dynamics 
and equilibrium states in the thermodynamical limit than the 
С -norm topology in the usual algebraic approach to statistical 
physics. In section 2 we describe the quasi-uniform topologies 
on algebras of unbounded operators and in section 3 we show that 
the dynamics of the BCS-model in the thermodynamical limit is 
given by a one-parameter group of transformations on the comple
tion of the algebra of local observables with respect to the 
locally convex topology I generated by uniform topologies. 

Let me first repeat the scheme to handle equilibrium states 
of infinite systems in the algebraic approach / 3 / . The basic 
object is the «-algebra Of -- (J Of,, of local observables, 

c V * 
where °< v is the observable ((-algebra related to the bounded 
region (box) V . Since Я v ci 0t v, for V <=. V , the «-alge
bra ОТ is well-defined. We do not assume M to be a normed 
algebra. Describing equilibrium states in statistical physics 
one usually starts with the "Oibbs Ansata" . Por this one takes 
a Hilbert space X. „ (Pock space) for every finite volume V 
and realizes the «-algebra 01 „ as a * -algebra of (unbounded) 
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operators on X y . The interactions, which are characteristic 
for the physical situation we want to describe are concentrated 
in the Hamlltonian Ну , which is an unbounded self-adjoint 
operator on Tf. „ known explicitly from ordinary quantum mecha-

V V nics. The Hamlltonian is in general of the form H„ » H • Hi nt" 
V V 

- /tN , where H' is the free Harailtonian, H. . ,the interaction 
part, /*,the chemical potential and It, the number operator. 

The "Gibbs Ansatz" consists in writing 
Wy(A) = Tr e~ PH"A / Tr e" * HV , A€ Oly , (1.1) 

where f>~ = kT , к, Bolt2mann constant, T,temperature. We as
sume that the traces on the right-hand side of (1.1) are finite. 
Ш У is then a linear, 
* -algebra ffi^ , i.e. 

i) "Чу linear functional on И , 
ii) Wy(A +A)»0 for I t Oty , (1.2) 
iii) Wy(I) = 1 . 

We assume Of to contain a unite element I , which is also an 
element of each 01 у . 

The dynamical evolution of the system in volume V is 
given by 

«lU) = e i Hv* А е - 1"** , t t H 1 . (1.3) 

We assume 0£y to be сповеп so that °(Г(А) 6 01 f o r Ae Of 

Now one has to take the thermodynamical limit , i.e.,the 

w(A) = lim to (A) (1.4) 
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exists. If all Ot v are С -algebras, then there exists a natural 
C*-norra on Ott and we can form the completion OL = Ol̂ to.i]. 
Now we can ask whether for every A 

ч (A) = lim <*Z(A) (1.5) 

exists in Of .If so and if the limit exists with respect to 
the norm topology on Ot , then <K.. is a one-parameter group 
of *-automorphisms of Ot , describing the dynamics of the yhy-
sical system in the thermodynamical limit. The equilibrium state 
ш (1.4) on 01 satisfies the KMS-condition (Kubo-Martin-
Schwinger boundary condition) with respect to X f i.e.,if 
we form both the functions P A B(t) = ">(В<* (A)) , G A ] J(t) = 
= u>(<*,(A)B) then for a dense set of elements А,В in 01 there 
exists an analytic function u

Ag(z) in the strip 0 « Im z ̂  ijb , 
continuous on the boundary so that 

PAB ( t> - W * > 
(1.6) 

G A B ( t ) " W A B < * * P i ) ' 

The importance of the dynamical one-parameter group c*,. consists 
in the fact that one can characterize the equilibrium states of 
the statistical system by the KMS-condltion (1.6). Also if <j 
ie uniquely determined by (1.4) there can exist yet other mis
states for a fix ft , which are interpreted to describe other 
phases of the statistical system. 

The existence of the dynamical automorphism group Ш . 
can be proved for lattice models for a wide class of Interactions 
/ 3 /. But already for the simple nontrivial BCS-model a dyna
mical automorphism group in the above described sense does not 
exist / 44 t 4-2./ and this seems to be the genera] situation 
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(see also / Z / ) . A method to overcome these difficulties was 
introduced in / Л /, where it was shown that undor some condi
tions for every equilibrium state со there is a one-parameter 
automorphism group o< ̂  on the W -algebra Г и (01)'' » ot, , 
where Жи is the GNS-representation of <л> and to satisfies 
the KMS-condition on Ot with respect to o( . This result 
makes it possible to get structure results on the state ю .which 
are connected with the KMS-condition. Since « ^ depends on 
the state w , this result is still too weak yielding the fa
mous charaoterization of all equilibrium states of the infinite 
system by the KMS-condition with a fixed and uniquely determined 
automorphism group. 

In what follows we shall discuss another method to get the 
dynamics as a one-parameter group of transformations of a more 
extended algebraic object 01 . We get this in the following 
way. First we choose an appropriate locally convex topology J 
on И so that 01 L?l becomes a topological +-algebra and 
form the completion Ot » Ot.t-S] . Then we have 

i) OL is a dense subspace of Of , 
ii) for А С 01 t В «01 the products AB -dim k±) В , 

BA m В (lim A^) are uniquely determined, where 
A, e 0[, is a sequence tending to A , 

iii) the involution A -* A + is uniquely determined on GJ . 

Let us remark that 0? ie in general not a topological 
algebra since the multiplication cannot ever be extended to 
Ot . This would be possible,e.g., if the multiplication А,В —> AB 
in OtX.%1 is Jointly continuous in both factors. 

Now it may happen that for A«0l lime<+(A) = en .(A) 
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exists in 01 . If moreover « t(A) is continuous on Ol̂  , then 
<*ЛА) can be extended to Ot . Furthermore, if the topology 
| is chosen appropriate it may happen that °< + (А) is a conti
nuous one-parameter group of linear transformations and we can 
look for states ю satisfying the KMS-condition (1.6) for a 
dense set of A 6 0t and В е Й . 

In the next section we introduce different unnormable to
pologies on algebras of (unbounded) operators. In section 3 
we shall show that with the help of these topologies the dynamics 
of the BCS-model is given by a one-parameter transformation 
gvoup on the completion of the alfe«bra of local observables. 

2. Topologies on Unbounded Operators 

In this section we devote to some properties of unnormable 
topological *-algebras. First we Introduce topologies on alge
bras of unbounded operators which generalize the uniform topo
logy (norm topology) on С -algebras to the case of unbounded 
operators. 

Let Л be a unitary space (incomplete Hilbert space) 
with the scalar product <.,.> , ft its completion. By -i,*(X)) 

we denote the set of all endomorphisms A e End С for which an 
A + * End С exists with <"f ,Аф> =. /А +Ч,^> for all $,Jb£ • 
£+(JD) is a*-algebra with the usual algebraic operations with 
operators and the involution A -»A + . If D » У ,then £*(»)= 
- 2>(X) the С -algebra of all bounded operators on If • *e 
call a * -subalgebra Л of £ f ( » ) containing the identity 
Op -algebra. 
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On £ we define a locally convex topology t by the 
following system of seminorms 

t : !|ф1д = ВАфН , А 6 £,+(*>) . (2.1) 

A domain in Ĉ i s called a closed domain , if X) I.t] is a 
complete space. Then JD «• l \ Я (A) , where 2)(A) is the 
domain of the closure A of the operator A . 

The dual space of #ltl we denote by 3)'{t'\ , where 
t 1 is the strong topology on Л . The Hubert space It. is cano
nical imbedded into JD'lt'1 . Hence, any dense domain 5 c V . 
defines in a canonical way a rigged 'filbert space 

3>lfL —*• It — > »'tt'] , (2.2) 

whprp the scalar product <F, ф> is defined for P i i \ Ф&-0 . 
Ir; what follows we regard only such Д) for which Д {t"[ is 
a reflexive space. Let £ (JD ,i') be the linear space of all 
continuous maps of J)i.t1 into 2>'\_t'J « Further we write i_ (X))= 

= i.(£,&) and £ ( JD«) » £0)",JO') . These last two spaces 
are algebras with respect to the usual operations with maps. 

Lemma 2.1 Let Я [t"J be a reflexive space. Then 
1) if A € £ (D,X>'> , so the adjoint operator A +6 £ (8, A') 

is uniquely defined by <Аф,Ч> = {k*«Y , ф> and 
A -* Л is an involution on Л ( £ , J)' ) , 

ii) £ lu ) , -i <л') d Ktl.t') and £ ( » ) * = £(i>'), 

iii) £ + ( Л ) is a subspace of t, (.0 ) and it is 

Proof: i) is a consequence of the reflexivity of -0 \x~[ . 
ii) Since the topology t is stronger than t' , this statement 
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la obvious. The second part is a consequence of the reflexivi-
ty of -Dltl . iii) By definition of t , any At £ +(8) ia a 
continuous шар of -BIt! into itself and therefore £*(£) ) <= 
, = £. (t> ) . The last statement is now a consequense of i) and 
ii) . 

Let ua still remark that for D » К we have £ + ( £ ) = 
= I (D) =» t (-&') - i(i.i)') - S> (X> , but if Л * t and 
J) \.t"\ reflexive, then all these spaces of operators are mutu
ally different. 

If E, P are two locally convex spaces, then the topolo
gy У of uniformly bounded convergence on i. (E,F) is defined 
by all seminorras 

q ц (A) = sup р.(Аф ) , (2.3) 

where т> runs over the seminorme defining the topology of P 
and Л. runs over all bounded sets in E , 

The topologies of uniformly bounded convergence on the spa
ces £(£,£') ,£(*>) and £ C / ) we denote by Ĵ  , r°and j-»'. 
Let us describe the seminorms determining these topologies more 
explicitly / i , * /. 

T. s |A| - sup . 1<АЧ, ф>1, dC bounded in alt! 

У* » ЦА1* 1* - чир ЦВАфИ , В t £ +<» ), Abounded in J) It] 
.л' rf'ot • * * 
3"° : ПAH ' = sup | < A Y , * > | , «At bounded in » | < ] 

**fe,K, ^'bounded in *'ttM 
44ЧГ 

This definition of the topologies makes sense also for 
non-reflexive £ЙЙ. 

Leama 2.2 / i , f-/ Let » Ы be reflexive. Then 
i) the topology у Й is given by the seminorms |A|+' = ЦА+|) \ 
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where В runs over all operators of -£ (3) ) and JA. over 
all bounded seta of Ь \i\ , 
ii) £.(») L* pl , £(»') lar*'j are topological algebras 
of operators, 
iii) A - ? A + is a bisection between I ( » )Ьг1 and $_ (tDl^l 

i v ) £ +(£> ' ^ 1 i s a locally convex #-algebra. 

bet us still introduce X«° = шах ( J-s, т*>') on £ + ( £ ). 
Then -£ +(S) becomes a locally convex #-algebra with respect 
to the topology 1\~ • The relations between the different li
near spaces of operators and their topologies are expressed by 
the following scheme. 

"~^ .£ (*')1У°'] ^ * 

where — * denotes a continuous injection. If 2) = IS then 
all four spaces coincide with S> (У ) and all topologies with 
the operator ,iorm topology. Between the four topologies у 
plays an exceptional role / f , iO/. Therefore we call it the uni
form topology on£*(fc). The other topologies are called quasi-
uniform topologies. 

Now let 1 ^ 1 be a selfadjoint operator in Tf .We form 
Ь°° = Л -Э(М к) , where 8 (M k) is the domain of the opera-

tor M . The canonical topology t on Ь" 1в then defined by 
the norms 

H l k » Ц м к фИ , к- 0,1,2,.. . (2.6) 

Д)** If] is a F-space, i.e.,a complete metric space. The faet that 
any A«Jt+(X) ) is already a continuous operator with reepect to 
the topology defined by the norms (2.6) is a consequence of the 
closed graph theorem. 
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Let us describe the locally convex space JHtl and its 
dual space a little more explicit. If II = j X dE is the speo-
tral decomposition of 11, so we put P/ . « E ^ _ E , n = 1,2,.. 
Let л,*/•**"• be the set of all natural numbers for which Pt -
" P<*tl+ ° ' T h e n J = 2 P e . We put "Kf = Рг X . Any ф t X 
has a unique decomposition Ф » X 4t with t t*V, . "0°° contains 
exactly all ф with 

"/ 
H i ( k ) - (z. H t nV t

i k ) <") к = ° ' 1 > ? ( 2 - 7 ) 

Since for * t « X t /,e*'0 t̂H £ ЕМ к*|* (/у^'У"8 g e t f o r e v e r y 

fct-D"" 1*1,, £Ш « Л И . » ile"ce, both the systems of norms (2.6) 
and (2.7) are equivalent and define the topology t . 

Lemma 2.3 Let a..5 a„^ a--̂  ... ^0 be a decreasing se
quence of positive numbers so that 51 at м * <*= for 
every k- 0,1,2,... . Then ^ ( a j - (Ф - ^ a

n K i " M ^ J 
is a bounded set in t) \t] . The system of all such sequen
ces (an) we denote by P'K „ [J/.,a^i (an)fc ^ M \ 
1B a total system of bounded sets in l)*°ltl • 

Proof t Since I <^-(a ) l| (ic) ^ 2 a* yn t
l k < 00 j', is bounded. 

How let <JH be an arbitrary bounded set. 'He put a' = sup JP фЦ . 
Let к > 0 be arbitrary, then a^ p* < ЦлЦ| <«»for all n . We 
put a » 2. aJ . Then a is decreasing and STL о,Г" /и ^ 

*4 ( x f*cl) ~ :»< к ч! /.;*k*̂  < - T h u s 4 >fe p м '•"Now l e t 

ф = 'x . Ф, « tAt.Then l* tU«o ('< <,, and therefore J C c d / { ( a ^ . 

Lemma 2.4 The l i n e a r f unct lonals P е У Lt'"[ a re exact ly 

given by the sequences P •= l^i,^ ,Y } , •••• I \ ( \ ' w i t h 

I H ( a ) = 3 £ . И ^ а г <•«> , ( a n ) & f'jj and i t i s for 



Ф «• й°°Ъ] <Р, ф> - £.<Vtl$t>. The seminorms ЦР||(а }, 
(а ) 6 Р„ , define the topology t' . 

Proof: It is easy to see that any such sequence F m i\\ de
fines a continuous linear functional on S*°Lf] . Let P be 
an arbitrary element of JD .We construct the corresponding se
quence \ . \ \ • ^ р,ф > is a linear continuous functional on 
HLta ф" ard therefore it is of the form <P, <^> - <"Yt A > with 
"t ttK t . Furthermore <P, ф> < с-Ц^|| for a certain к and 
therefore |<%,^>^сд Щ. Thus «%« <6 = /*£ *•**• Tl\l*t< «> 

for every (a ) fe Г„ . Kow it is straightforward to show 

Let M, t \ be an arbitrary bounded set of Lemma 2.3 . 
Then sup |<Р,ф>1 - s u p 1£.<ЛЛ>1= Н ЦР l2.\<1iA>l* 
- 2. atB4tll » H p H ( a ) • Since the system JjL^ j is total, 
the seminorms IIP I , \ define the topology t 1 . 

If we put P. P - 4, , then the projektions ?t are con
tinuously extended to projections of Л onto ~t, . 

Lemma 2.5 For Afc £ {0"1Я"1) we define the matrix A » 
(A l k) of operators A l f c : 1t k-* V г by A l k = PjA P k , 
Then 

IU 1 ( a } - Х 1 л 1 к 1 a ^ * " for (aje Гм>(г.8) 

where lA^k' l a * n e u a u a l norm of the bounded operator 
A-k . Vice versa, any such matrix ^*it' " A *1*ПЦА||» •, 

< o> defines an operator of :£ (0~ Jf"} . The system of 
seminorms И A || / \ defines the uniform topology f _ • ^all^ 3 

lit "- % Lemma 2.3 and 2.4 this Lemma can be proved by stan
dard estimations as in the proof of Lemma 2.3 • 
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Quite analogous we get serainomm defining the other topo
logies of the spaces (2.5) Namely 

rb , Ы ( 0 - 2. |Alki| в Л 

jC , / | A 1 | C a n ) , m , J". HA l kll 1 % 

T 0 ' : I U I I +

( a « ) ' m = 5 U l A l k » k m

S l

 < ? # 9 ) 

i j « || A || Ю . " " = 5" . jA l k f l ( 1 ш а к + к т

а 1 ) 

where (a ) runs over a l l sequences of ' M and ra * 0 , 1 , 2 , . . „ 

Using the es t imat ion max{II A. kll a i a

k i ^ \ A И ( a ) i 
^ ( ^ . / Г 1 ) raax(jAlkll <»i A i ) ( a k A k ) J we see t h a t the topolo
gy T - i s a l so defined by the seminoma 

Jb 

T c . I'.A l ! { ' a J = max !'.A l kll а Л , (a„) с " „ . ( 2 . 1 0 ) 

In the same way we can a l so s u b s t i t u t e the sum by the maximum 

in (2 .9) . 

We end up t h i s sec t ion with the following Lemma, which cun 

be proved with the help of the aerainorms (2 .9) (РЭР a l so /S, 6 / ) . 

Lemma 2.6 

i) All four locally convex spaces of operators in (?»5) 
are complete for J)°". 

ii) l*(.iT) is dense in t (гГ.гГ') Lr i . 

3. The Dynamics of the BCS-Model 

In this section we show that the dynamics of the BCS-Model 
is given by a one-parameter group of linear transformations °< t 

of a locally convex space ОТ , which we obtain from the algebra 
И of local оЬзегуаЫез by completion with respect to a certain 

13 



locally convex topology . In deriving this result we shall make 
extensive use of the treatment of Thirring and Wehrl /-ff.-tt/ 
on the BCS-modpl. 

We shall use the quasi-spin formulation in which the BCS-
Hamiltonian is 

Sl_ is the number of pair statee, g,an interaction constant, 
£, the kinetic energy which we assume to be independent of p . 
6" = (6X, 6^, S* ) are the Paul! matrices, e* - i («"tier') 
and £s" , 6* il " 0 for p ̂  p , If we introduce the total spin 
S > j- t f . « (SĴ  ,S^ , S^) the Hamiltonian becomes 

H A = E (Л. - 2 Sj> - X f Si - Si (Si • D ) . (3.2) 

Let У „ « ТГ ® C^ be the infinite tensor product of the 
P P 

2-dimensional spaces /f/. Following fA\/ we choose special 
unit vectors in 1С,,. For a real unit three-vector n= (n^rij.n,) 
we denote by |n> a vector in С which is characterized by 
(6" n) \ n> - |n> . This determines )n> up to a phase factor. 
The scalar product of two such vectors is given by 

Г" <n|n-> - ,И jf 1 * Спи'). (3.3) 

where (n n") » nnn^ +...+n,n4 . Let (n\ • (n.,,n?,...} be 
a set of such three-vectors then by 

\{n\> - 1Г*1пр> (3.4) 
we denote unit vectors in "K w. Further Ttin. denotes the sepa
rable Gilbert space generated by all vectors \(л'\ > which are 
equivalent to Цп^> /f/. One can choose a special base in 
Tt{„\ which one gets from \{ъ\У by flipping a finite number of 
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1 2 

spine. Рог th i s one chooses two three-vectors n , n which 

form together with n an orthonormal base and put n' -JCu' i in*) . 

Then (ff n + ) |n> = О and i f we put lm,n> = (ffn~) |n> then 
(<rn) |m,n> = ( - 1 ) m |m,n> , m » 0,1 . (3 .5) 

How Um\<nJ> = ir»lm p ,n p > , mp - 0 , 1 , £11^ < «*, , form 

a denumerable orthonormal base ia T£, , , On l t n we define 

the se l f sdjo int operator И by 

II |<mHM> - ( Xmp+D | < m H n \ > . (3 .6) 

Let J) s XT- Д » ( " к ) a"d Z^ -2)(]y{n^ By Tw = 
= T we denote the uniform topology on £, (A . »&(n\' • 

Let Or, be the * -algebra of lokal observablee generated 
by all 8Tp , i • x ty,z . 01 is in a natural way realized as 
an operator algebra ra 5, , and 0[, с / , f.5 \. Therefore we 
have on 0l e the uniform topology T,_, . 

Let Q be the system of all rectors ]{nj> for which 

liJ>i jr Z n » « n , Os ч 4 1 , n » (n 1 fn,,n,) (3.7) 

exists. On 0tf we define the locally convex topology 

S « sup J-.,-, » (3.8) 

tbe weakeet locally convex topology which is stronger than all 
S*, . , {n\ fc Q . Now we can state our main theorem. 

Theorem 3.1 Let И = C£4tJ3 be the completion of 01, 
with respect to the locally convex topology | . For 
every local observable A 6 01 it exists 

lim e13*-* A e"111-** » ^ t ( A ) e 01 . (3.9) 
4L-ee» » 

<*. is an one-parameter group of linear transformations on 01. 
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We prove this Theorem in some steps. First we prove a Lemma 
which strengthens Lemma 1 of /11/. 

Lemma 3.2 Let (n} 6 Q and s_^« i s j u • t h e n 

2 Й , 5 - - H« i n f + ( \ i>4^ • 
Proof: For s i m p l i c i t y we drop the index i = x,jr,z of the spin 

coord ina te . Since -n, (6Ч1) * X ti~ C6"<l*) * l n * ( f » - | = 6Г 

we get for Um}> s. |{mHn\> a j j m f r * ( Л*+Д^Ч Л.*) \ { т \ > , 

where 

£U«\> - (jklc-D'f nf) Цш1> 
AfUm\> - ( i S ^ ^ l « f < r v . * t « \\n\, (3 .10) 

1 P«1 A/ 
Let I . II/ ) be a seminorm (2.8) for the topology S". , . 
Since M hae the eigenvalues 1,2,3,... the ( a „ ) 6 ̂ JJ satis
fies the condition 2_ a. k r <. «o for every r « 0,1,2,... . 

K. K 

By !A И , k we denote the norm of the operator P,A P, = A,. . 
Prom (3.10) it Is easy to see that 

Sow let ф » 2. x,_ vUmV>witb UmY>t"l{v . Then 

The coefficients of the quadratic fonn are only 0 or 1 , where 
гчпу ray or column of the coefficient matrix contains at most 
к times the 1 . Therefore the largest eigenvalue is less than к 
and we get 

Hence || Д*' I) ̂  / ~\ *•. Quite analogous one proves ЦД J ̂  (egl) . 1 V 1-й-» V 
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These three estimations together give us 

' •-." Jf» " ю * f a i 2 1 д | » р - $t» I • i%*i f-ek k • 

Since the right-hand side of the last formula tends to 0 for 
St- -boa, the Lemma is completly proved. 

Lemma 3.3 
i) ŝ _ > i = x,y,z, JL= 1,2,... , is a set of equicon-
tinuous maps on Л, ,Lt3 • 
ii) If JK is a bounded set in J)jniltl > then there exists 
a bounded set <M- so that e„ J/i<=-M. for all i, -0- . 

Proof; It is straightforward to see that for any fe there exists 
a constant с independent of p so that V Г 6" <p|| *»c 4 * <f II • 
Therefore Цв^ф|| ^ c/2 V фU ̂  for all i,-C . This ps-oves i). 
ii) is a consequence of i) о 

Lemma 3.4 The "mean quasi-spin" Sj^ converges in 0£ 
to s with respect to the topology I . 
furthermore, lim (s„ ) n » (s ) n for every degree n = 
ж if?,... . 

Proof» Since s^ is a Cauchy sequence with respect to eve: у 
topology T, (Lemma 3.2), it is also a Chauchy sequence with 
respect to f . Therefore lim e^ " в exists in 0[ . 
How let JH be a bounded set Jn S, , Ltl and 1. II „ the corre
sponding aeminorm for the topology Y,n, . Then 

ii4- - i v К-<-л.- "̂  >»* • »4,- v ) "Л»л 

where «A, — »M. f iM.' and iM. is the bounded set of Lemma 3.3 ii). 
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Therefore ŝ , la also a Cauchy sequence with respect to the 
p 2 topology | . Thus lim s * a exists In 0( . Рог the 

higher powers one proves the convergence by induction. 

bet из still remark that the powers (s ) n in Ot are 
defined by the limit. Aa we outlined in the introduction we 
have not в product of two arbitrary elements of 01 . 

Now we are in the position to give the proof of Theorem 3»1. 

where ̂ , в-р1 n + 1 = lH A, L H
A . «Tpl n 1 and £., Л , el-,.] 

is the usual commutator. It is straightforward to check that 

LHJO. • S'pl n * H n ( s V а-а- 5' w h e r e R n ( * ' - ) i s a P o l v n o m o f 

dpgree not higher than n in every variable (see also I Alt). 

Prom Lemma 3.4 we get « n( 6" , s A ) -* H( б'р.в) for Л.-"><*> • 
If U 'Uj, ia a Si-'tninorm of the topology 3", , j then R( 6" ,s ) 
г: с' where с is independent of _o_ . Therefore «, *(£"_) 

ь P 
converges in OL to a limit which we denote by o( ( 6"„) . 

Tt p 

One can yet check by quite analogous consideration» that ot i B 

an one-parameter group of transformations on Ot . 
Finally let us remark that the cornmvtator of s with 

any local observable A 6 OV ie well-defined and t,e>A3 » О . 
So we have the situation that the completion 01 of 01,Li^ con
tains elements commuting with every element of the algebra (ft , 

although the centre of 01 is trivial . 
Aknowledgement. The author is indebted*»A. Uhlmann for stimu
lating discussions. 
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