СООБЩЕНИЯ ОБЪЕАИНЕННОГ О ИНСТИТУТА
 Я \triangle ЕРНЫХ ИССАЕАОВАНИЙ

АУБНА

QUASI-UNIFORM TOPOLOGIES
ON LOCAL OBSERVABLES

E17•11408

G.Lassner

QUASI-UNIFORM TOPOLOGIES
 ON LOCAL OBSERVABLES

Көазиравномерные топологии на локальных наด̆юдаемbх
В работе введены кввзиравномерные топологии на влгебрах локальных наблюдаемых. Для БКШ-модели показано, что с помощью этил толо логнй можио получить пополнение алгебры локальных наблюдаемых, ня хотором динамика опнсывается однопараметрнческои группой иреобразовянии.

Работа выполнена в Лаборатории теоретнческод физики ОИЯН.

Сообщевне Объеднненного пнститута яперных исследовании. Дубна 1978

Lass ner G.
Quasi-Uniform Topologies on Local Observables
In this paper quasi-uniform topologies on algebras of local observables are introduced. For the BCSmodel it is shown that with the help of the se topologies one gets a completion of the algebra of $1 r$ zal observables on which the dymamics is given by a one-parameter group of transformations.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubno 1978
1.- Introduction

In this paper we want to show that unnormable locally convex topologies on the * -algebra of local observables of a statistical sygtem may be more appropriate to deacribe the dynamics and equilibrium atates in the thermodynamical limit than the c*-norm topology in the usual algebrajc approach to statistical phyaics. Ir section 2 we describe the quasi-uniform topologiss on algebres of unbounded operators and in section 3 we show that the dy namics of the BCS-model in the thermodynamical IImit is given by a one-parameter group of transformationa on the completion of the algebra of local observables with respect to the locally convex topology generated by uniform topologies.

Let me first repeat the scheme to handle equilibrium states of infinite ayatems in the algebraic approach /3/. The basic object is the *-algebra $o_{e}=\bigcup_{V} a_{v}$ of local observables, where G_{V} is the observable $A_{-a l}$ gebra related to the bounded region (box) V. Since $\sigma_{V} \subset \sigma_{V}$ for $V \subset V^{\prime}$, the *-algebre $O C$ is well-defined. We do not assume $O T$ to be a normed algebra. Describing equilibrium states in statistical physica one uaually starts with the "Gibbs Ansatz" . For this one takea a Hilbert apace \mathbb{K}_{V} (Fock apace) for every finite volume V

operators on \mathcal{X}_{V}. The interactions, which are characteriatic for the physical situation we want to deacribe are concentrated in the Hamiltonian H_{V}, which is an unbounded self-adjoint operator on \mathcal{X}_{V} known explicitly from ordinary quantum mechanice. The Hamiltonian is in general of the form $H_{V}=H_{o}^{V}+H_{i n t}^{V}{ }^{-}$ $-\mu \mathbb{N}$, where H_{o}^{V} is the free Hamiltonian, $H_{i n t}^{V}$, the interaction part, μ, the chemical potential and N, the number operator.

The "Gibbs Ansatz" consists in writing

$$
\begin{equation*}
\omega_{V}(A)=\operatorname{Tr} e^{-\beta H_{V A}} / \operatorname{Tr} e^{-\beta H_{v}}, A \in \mathcal{L}_{V} \text {, } \tag{1.1}
\end{equation*}
$$

where $\beta^{-1}=\mathrm{kT}, \mathrm{k}, \mathrm{Boltmmann}^{\mathrm{Constant}} \mathrm{T}$, temperature. We assume that the traces on the right-hand side of (1.1) are finite。 ω_{v} is then a linear, positive and normed functional on the *-algebra or V, i.e.
i) w_{v} linear functional on o_{v},
ii) $\omega_{V}\left(A^{+} A\right) \geqslant 0$ for $A \in C_{V}$,
iii) $\omega_{V}(I)=1$.

We assume σ_{l} to contain a unite element I, which is also an element of each $O L v$.

The dynamical evolution of the system in volume V is given by

$$
\begin{equation*}
\alpha_{t}^{V}(A)=e^{1 H_{v} t} A e^{-1 H_{v} t}, t \in R^{1} \tag{1.3}
\end{equation*}
$$

We assume \mathcal{O}_{V} to be chosen so that $\alpha_{t}^{V}(A) \in \mathcal{O}_{V}$ for $A \in \mathcal{I}_{V}$.
Now one has to take the thermodynamical limit , i.e., the limit of ω_{V} when $V \rightarrow \infty$. Let us assume that

$$
\begin{equation*}
\omega(A)=\lim _{\nabla \rightarrow \infty} \omega_{V}(A) \tag{1.4}
\end{equation*}
$$

exista. If all of v are $C^{*}-a l g e b r a s$, then there exists a natural C^{*}-norm on O_{e} and we can form the completion $O L=\overparen{O a_{e}[11 \cdot v]}$. Now we can ask whether for every A

$$
\begin{equation*}
\alpha_{t}(A)=\lim _{v \rightarrow \infty} \alpha_{t}^{V}(A) \tag{1.5}
\end{equation*}
$$

exiats in \mathbb{O}. If so and if the limit exists with reapect to the norm topology on σ, then α_{t} is a one-parameter group of *-automorphisms of of , describing the dynamios of the physical syatem in the thermodynamical limit. The equilibrium state w (1.4) on OL satiafies the KMS-condition (Kubo-MartinSchwinger boundary condiian) with respect to α_{t}, i.e., if we rorm both the functiona $P_{A B}(t)=\omega\left(B \alpha_{t}(A)\right), G_{A B}(t)=$ $=\omega\left(\alpha_{t}(A) B\right)$ then for a dense set of elements A, B in O there exiate an analytic Punction $U_{A B}(z)$ in the strip $0 \leqslant \operatorname{Im} z \leqslant i \beta$, continuous on the boundary so that

$$
\begin{align*}
& \mathbb{P}_{A B}(t)=U_{A B}(t) \\
& G_{A B}(t)=U_{A B}(t+\beta i) . \tag{1.6}
\end{align*}
$$

The importance of the dynamical one-parameter group α_{t} consists in the fact that one can characterize the equilibrium states of the statistical syotem by the KHS-condition (1.6). Also if ω is uniquely determined by (1.4) there can exiat yet other KMSetates for a $f i x \beta$, which are interpreted to deacribe other phases of the statistical system.

The existence of the dynamical automorphiam group α_{t} can be proved for lattice models for a wide class of interactions / 9 /. But already for the simple nontrivial BCS-model a dynamical automorphism group in the above described aense does not exist/11,12/and this seems to be the general situation
(see also / 2). A method to overcome these difficulties was introduced in $/ 1 /$, where it was shown that under some conditions for every equilibrium atate ω there is a one-parameter automorphism group α_{t}^{ω} on the $W^{*}-a l$ gebre $\Gamma_{\omega}(0)^{\prime \prime}=\sigma^{\omega}$, where π_{ω} is the GNS-representation of ω and ω satisfies the KMS-condition on σ^{ω} with respect to α_{t}^{ω}. This result makes it possible to get atructure results on the state ω, which are connected with the KMS-condition. Since α_{t}^{ω} depends on the state ω, this result is still too weak yielding the famous characterization of all equilibrium states of the infinite system ty the KMS-condition with a fixed and uniquely determined automorphism group.

In what follows we shall discuss another method to get the dynamicsas a one-parameter group of transformations of a more extended algebraic object $O \mathcal{L}$. We get this in the following. way. First we choose an appropriate locally convex topology ξ on O_{e} so that $a_{e}[\xi]$ becomea a topological $*$-algebra and form the completion $O L=\widetilde{O_{e}[\xi]}$. Then we have
i) \mathcal{O}_{ℓ} is a dense subspace of $O q$

1i) for $A \in O Z B \in O O_{e}$ the products $A B=\left(1 i m A_{i}\right) B$. $B A=B\left(l i m A_{i}\right)$ are uniquely determined, where $A_{i} \in O_{C}$ is a sequence tending to A.
1ii) the involution $A \rightarrow A^{+}$is uniquely determined on O.
Let us remark that $O f$ is in general not a topological algebra since the multiplication cannot ever be extended to 0 . This would be possible, e.g., if the multiplication $A, B \rightarrow A B$ in $\mathcal{L}_{2}[\xi]$ is jointly continuous in both factors.

Now it may happen that for $A \in \sigma_{C} \underset{H \rightarrow \infty}{\lim _{t \rightarrow \infty}^{V}(A)=\alpha_{t}(A)}$
exists in σ. If moreover $\alpha_{t}(A)$ is continuous on θ_{c}, then $\alpha_{t}(A)$ can be extended to $O($. Furthermore, if the topology \} is chosen appropriate it may happen that $\alpha_{t}(A)$ is a continuous one-parameter group of linear transfomations and we can look for stetes w satisfying the KMS-condition (1,6) for a dense set of $A \in O$ and $B \in \mathcal{U}_{C}$.

In the next section we introduce different unnormable topologies on algebras of (unbounded) operators. In section 3 we shall show that with the help of these topologies the dynamics of the BCS-model is given by a one-parameter transformetion group on the completion of the alsebra of local observablea.
2. Topologies on Unbounded Operators

In this section we devote to some properties of unnormable topological *-algebras. Pirst we introduce topologies on algebras of unbounded operators which generalize the uniform topo-
 operators.

Let D be a uiltary space (incomplete Hilbert space) With the scalar product $\langle, \cdot\rangle$, \mathcal{X} its completion. $B_{Y} \mathcal{L}^{+}(\mathbb{D})$ we denote the set of all endomorphiams $A \in E n d$ for which an $A^{+} \in$ End D exists with $\langle\psi, A \phi\rangle=\left\langle A^{+} \psi, \phi\right\rangle$ for all $\phi, \Psi \in D$. $\mathcal{X}^{+}(D)$ is ax-algebre with the usual algebraic operations with operators and the involution $A \rightarrow A^{+}$. If $D=X$, then $\mathcal{L}^{+}(D)=$ $=B(X)$ the C^{*}-algebra of all bounded operators on \mathcal{H}. We call a*-aubalgebra A of $\sum^{+}(D)$ containing the identity op^{*}-alzebra.

On D we define a locally convex topology t by the following system of seminorms

$$
\begin{equation*}
t: \quad\|\phi\|_{A}=\|A \phi\|, A \in \mathcal{L}^{+}(D) \tag{2.1}
\end{equation*}
$$

A domain in \mathcal{X} is called a closed domain , if $\mathbb{D}[t]$ is a complete space. Then $D=\bigcap_{A \in L^{\prime}(D)} D(\bar{A})$, where $D(\bar{A})$ is the domain of the closure \bar{A} of the operator A.

The dual space of $D[t]$ we denote by $D^{\prime}[t]$, where t^{\prime} is the strong topology on D^{\prime}. The Hilbert space \mathbb{X} is cancnical imbedded into $\mathcal{L}^{\prime}\left[t^{\prime}\right]$. Hence, any dense domain $D \subset \mathcal{X}$ defines in a canonical way a rigged ililbert space

$$
\begin{equation*}
D[t] \rightarrow X \rightarrow D^{\prime}\left[t^{\prime}\right], \tag{2.2}
\end{equation*}
$$

where the scalar product $\langle F, \phi\rangle$ is defined for $F \in D^{\prime}, \phi \in D$. In what follows we regard only such D for which $D[t]$ is a reflexive space. Let $\mathcal{L}\left(D, D^{\prime}\right)$ be the linear space of all continuous maps of $D[t]$ into $D^{\prime}\left[t^{\prime}\right]$. Further we write $\mathcal{Z}(D)=$ $=\mathcal{L}(D, D)$ and $\mathcal{L}\left(D^{\circ}\right)=\mathcal{L}\left(D^{\prime}, D^{\prime}\right)$. These last two spaces are algebras with respect to the usual operations with maps.

Lemma 2.1 let $0[t]$ be a reflexive space. Then 1) if $A \in \mathcal{L}\left(D, D^{\prime}\right)$, so the adjoint operator $A^{+} \in \mathcal{L}\left(D, D^{\prime}\right)$ is uniquely defined by $\langle A \phi, \psi\rangle=\overline{\left\langle A^{+} \psi, \phi\right\rangle}$ and $A \rightarrow A^{+}$is an involution on $\mathcal{L}\left(D, D^{\prime}\right)$. ii) $\mathcal{L}(D), f\left(D^{\prime}\right) \subset \mathcal{L}\left(D, D^{\prime}\right)$ and $f(D)^{+}=L\left(D^{\prime}\right)$. iii) $\mathcal{L}^{+}(D)$ is a subspace of $\mathcal{L}(D)$ and it is $L^{+}(D)=L(D) \cap L\left(D^{\prime}\right)$.

Proof: 1) is a consequence of the railexivity of Dit]. ii) Since the topology t is stronger than t^{\prime}, this statement

Is obvious. The second part is a consequence of the reflexivety of $D[t]$. iii) By definition of t, any $A \in \mathcal{L}^{+}(D)$ is a continuous map of Dit] into itself and therefore $\mathcal{L}^{+}(0)=$ $=f(D)$. The last statement is now a consequence of i) and ii).

Let us still remark that for $D=X$ we have $\mathcal{L}^{+}(D)=$ $=L(D)=\mathcal{L}\left(D^{\prime}\right)=\mathcal{L}\left(D, D^{i}\right)=B(X)$, but if $D \neq X$ and D [t] reflexive, then all these spaces of operators are muirally different.

If E, F are two locally convex spaces, then the topolo$g y$ of uniformly bounded convergence on $\mathcal{\ell}(E, F)$ is defined by all seminorgo

$$
\begin{equation*}
q_{\alpha, k}(A)=\sup _{\phi \in K} p_{\alpha}(A \phi) \tag{2.3}
\end{equation*}
$$

where η_{x} rum over the seminome defining the topology of P and $\mathfrak{d l}$ runs over all bounded sets in E.

The topologies of miformy bounded convergence on the spacen $\mathcal{L}\left(D, D^{\prime}\right), \mathcal{L}(D)$ and $\mathcal{L}\left(D^{\prime}\right)$ we denote by $j_{D}, 5^{D}$ and $5^{D^{\prime}}$. Let us describe the seminoms determining these topologies more explicitly /6,7/6
$F_{20}:\|A\|_{M}=\sup _{\phi, \psi \in \mathcal{L}}\left|\left\langle A^{n} \psi, \phi\right\rangle\right|, \mu$ bounded in $D[t]$
$5^{D}: \quad\|A\|^{\mu, B}=\sup ^{N}\|B A \phi\|, B \in L^{+}(D), M$ bounded in $D[t]$

This definition of the topologies makes sense also for non-reflexive Dit].

Lemma 2,2/6,7/ Let o lt] be reflexive. Then
i) the topology $\mathrm{r}^{s^{\prime}}$ is given by the seminorms $\|A\|_{+}^{\mu, 8}=\left\|A^{+}\right\|^{k, B}$
where B runs over all operators of $\ell^{+}(D)$ and \mathcal{L} over all bounded nets of $S[t]$.
ii) $\mathscr{L}(D)\left[5^{2}\right], \mathcal{L}\left(D^{\prime}\right)\left[r^{\prime \prime}\right]$ are topological algebras of operators,
iii) $A \rightarrow A^{+}$is a bijection between $\mathcal{L}(D)\left[J^{D}\right]$ and $\mathcal{L}\left(D^{\prime}\right)\left[J^{d}\right]$,
iv) $\mathcal{L}^{+}(D)\left[\mathcal{T}_{0}\right]$ is a locally convex $*$-algebre.

Let us still introduce $\quad T_{*}^{D}=\max \left(5^{D}, 5^{D^{0}}\right)$ on $\mathcal{L}^{+}(\mathbb{N})$. Then $\mathcal{X}^{+}(0)$ becones a locally convex $*-a l g e b r a$ with respect to the topology \mathcal{F}_{*}^{D}. The relations between the different linear spaces of operators and their topologies are expressed by the following scheme.

$$
\begin{align*}
& \mathcal{L}^{+}(D)\left[x_{*}^{0}\right] \rightarrow \mathcal{L}(D)\left[x^{0}\right] \rightarrow \mathcal{L} \rightarrow \mathcal{L}\left(0, x^{\prime}\right)\left[x_{0}\right] \tag{2.5}
\end{align*}
$$

where \rightarrow denotes a continuous injection. If $D=\mathbb{X}$ then all four spaces coincide with $B(X)$ and all topologies with the operator sorm topology. Between the four topologies γ_{0} plays an exceptional role/4,10/. Therefore we call it the uniform topology on $\mathcal{L}^{\text {(}}(\mathrm{D})$. The other topologies are called quasiuniform topologies.

Now let $M \geqslant I$ be a selfadjoint operstor in \mathcal{K}. We form $D^{\infty}=\bigcap_{k} D\left(H^{k}\right)$, where $D\left(N^{k}\right)$ is the domain of the operator k^{k}. The canonical topology t on D^{∞} is then defined by the norms

$$
\begin{equation*}
\left\|\phi I_{k}=\right\| w^{k} \phi \mathbb{\|} \quad, k=0,1,2, \ldots \tag{2.6}
\end{equation*}
$$

$D^{\infty}[t]$ is a F-space, i.e., a complete metric space. The faet that any $A \in \mathcal{L}^{+}(D)$ is already a continuous operator with respect to the topology defined by the norma (2.6) is a consequence of the closed graph theorem.

Let us describe the locally convex space $0^{50}[\mathrm{t}]$ and its dual space a little more explicit. If $w=\int_{1}^{\infty} \lambda d E_{\lambda}$ is the spectrail decomposition of M, so we put $P_{(n)}=E_{n+1}-E_{n}, n=1,2, \ldots$ Let $\mu_{4}<\mu_{l}<\ldots$ be the set of all natural numbers for which $P_{e}=$ $=P_{\left(\mu_{e}\right)} \neq 0$. Then $I=\sum_{c} P_{e}$. We put $\mathcal{H}_{e}=P_{e} \mathcal{K}$. Any $\phi \in \mathbb{X}$ has a unique decomposition $\phi=\sum_{l} \phi_{l}$ with $\phi_{e} \in X_{l}, D^{\infty}$ contains exactly all ϕ with

$$
\|\phi\|_{(k)}=\left(\sum_{e}\left\|\phi_{e}\right\|^{2} \mu_{e}^{2 k}\right)^{1 / 2}<\infty, k=0,1,2, \ldots
$$

Since for $\phi_{e} \subset X_{e} \quad \mu_{e}^{*}\left\|\phi_{e}\right\| \leqslant \mu M^{k} \phi_{e} \| \leqslant\left(\mu_{e}+\right)^{k} \phi_{2} \phi_{\text {Fe }}$ get for every $\phi \in D^{\infty}\|\phi\|_{(k)} \in\|\phi\|_{k} \leqslant 2^{2}\|+\|_{(k)}$. :lance, both the systems of norms (2.6) and (2.7) are equivalent and define the topology t.

Leman 2.5 Let $a_{1} ; a_{2} \geqslant a_{3} \geqslant \ldots \geqslant 0$ be a decreasing sequince of positive numbers so that $\sum_{l} a_{e}^{2} \mu_{l}^{2 k}<\infty$ for every $k=0,1,2, \ldots$. Then $H_{\left(a_{n}\right)}=\left\{\phi=\sum_{n} a_{n} \phi_{n} ;\left\|\phi_{n}\right\| \leqslant 1\right\}$ is a bounded set in $D^{\infty}[t]$. The system of all such sequin.cos (a_{n}) we denote by $\Gamma_{i}^{i},\left\{\mathcal{H}_{\left(a_{n}\right)} ;\left(a_{n}\right) \in \Gamma_{M}\right\}$ is a total system of bounded sets in $D^{\infty}\lfloor\mathrm{L} j$.
Proof: Since $\left\|M_{\left(a_{n}\right)}\right\|_{(k)}^{2} \leqslant \sum_{l} a_{l}^{2} \mu_{e}^{2, k}<\infty d_{\left(0_{n}\right)}^{1 \text { is bounded. }}$ Now let μ be an arbitrary bounded aet. We put $\varepsilon_{i}^{\prime}=\operatorname{qup}_{\phi \in M}\left\|P_{n} \phi\right\|$. Let $k \geqslant 0$ be arbitrary, then $a_{n}^{\prime} \mu_{n}^{k} \leqslant\left\|_{\mu}\right\|_{(x)}<\infty$ for all n. We put $a_{n}=\sum_{i=n}^{\infty} a_{i}$. Then a_{n} is decreasing and $\sum_{k} a_{e}^{2} \mu_{e}^{2 k} \leqslant$ $\leqslant \sum_{e} \mu_{e}^{-2} a_{e} \mu_{e}^{2 k_{n} \sum_{2 k}} \leqslant c \max \left\{a_{n} \mu_{n}^{2 k+2}\right\}$. But $a_{n} \mu_{n}^{2 k+2} \leqslant \sum_{i=n}^{\infty} a_{i}^{\prime} \mu_{i}^{2 k+2} \leqslant$ $\leqslant\left(\sum_{i} \mu_{e}^{-2}\right) \quad \max _{i}\left\{a_{i}^{1} \mu_{i}^{2 k+4}\right\}<\infty$ Thus $\left(a_{n}\right) \in \Pi_{M}$. Now let $\phi=\sum_{e} \sum_{p_{2}} \in \mathcal{M}$. Then $\left\|\phi_{e}\right\| \in a_{e}^{\prime} \in a_{e}$ and therefore $\mu \in \mathcal{M}_{\left(a_{n}\right)}$.

Lemma 2.4 The linear functional $F \in \boldsymbol{D}^{\infty \prime \prime}[t$ ' $]$ are exactly given by the sequences $F=\left\{\psi_{4}, \psi_{2}, \psi_{3}, \cdots\right\}$, $\psi_{e} \in \psi_{l}$, with $\|F\|\left\|_{\left(a_{n}\right)}=\sum_{l}\right\| \psi_{c} \|_{e}<\infty \quad,\left(a_{n}\right) \in \Gamma_{M}$ and it is for
$\phi \in D^{\infty}[t] \quad\langle P, \phi\rangle=\sum_{e}\left\langle\psi_{\ell}, \phi_{e}\right\rangle$. The seminorms $\left.\|F\|_{\left(a_{n}\right)}\right\rangle$ $\left(a_{n}\right) \in \Gamma_{M}$, define the topology t^{\prime}.
Proof: It is easy to see that any such sequence $F=\left\{\Psi_{e}\right\}$ defines a continuous linear functional on $D^{\infty}[t]$. Let p be an arbitrary element of $\boldsymbol{D}^{\infty 1}$. We construct the corresponding sequince $\left\{\psi_{e}\right\}$ - $\left\langle F, \phi_{e}\right\rangle$ is a linear continuous functional on $\mathcal{H}_{e}=\mathfrak{D}^{\infty}$ and therefore it is of the form $\left\langle F_{i} \phi_{e}\right\rangle=\left\langle\psi_{l}, \phi_{e}\right\rangle$ with $\psi_{e} \in \mathbb{R}_{\epsilon}$. Furthermore $\langle\boldsymbol{F}, \phi\rangle \leqslant c \cdot\|\phi\|_{(t)}$ for a certain k and therefore $\left.\left|\left\langle\psi_{e}, \phi_{e}\right\rangle\right| \leqslant c \mu_{l}^{k}\right\rangle \phi_{l} \|-$ Thus $\left\|\psi_{c}\right\| \leqslant c \mu_{e}^{k} \quad$ ie. $\sum_{e}\left\|\psi_{c}\right\|_{e}<\infty$ for every $\left(a_{n}\right) \in \Gamma_{\mu}$. Now it is straightforward to show $\langle F, \phi\rangle=\sum_{l}\left\langle\psi_{e}, \phi_{l}\right\rangle$.

Let $\mathcal{M}_{\left(a_{n}\right)}$ be an arbitrary bounded aet of Lemma 2.3 .
Then $\sup _{\phi \in 火\left(a_{n}\right)}|\langle P, \phi\rangle|=\sup _{\phi \in \mathcal{M}_{\left(a_{n}\right)} \mid}\left|\sum_{e}\left\langle\psi_{l}, \phi_{e}\right\rangle\right|=\sup _{\ell \Omega_{l} \in 1}\left|\sum_{e} a_{e}\left\langle\psi_{e}, Q_{e}\right\rangle\right|=$
$=\sum_{e} a_{e}\left\|\psi_{c}\right\|=\|P\|_{\left(a_{n}\right)}$. Since the system $\mathcal{M}_{\left(a_{n}\right)}$ is total, the seminorms \|FI($\left.a_{n}\right)$ define the topology t^{\prime}.

If we put $P_{e} F=\psi_{e}$, then the projections P_{e} are continuously extended to projections of $D^{\infty 1}$ onto $\mathcal{X}_{\mathcal{L}}$.

Leman 2.5 For $A \in \mathbb{Z}\left(D^{-}, D^{\infty}\right)$ we define the matrix $A=$ $\left(A_{1 k}\right)$ of operators $A_{1 k}: X_{k} \rightarrow X_{1}$ by $A_{1 k}=P_{1} A P_{k}$ Then

$$
\|\wedge\|_{\left(a_{n}\right)}=\sum_{k, 1} \|_{1 k} a_{1} a_{k c}<\infty \quad \text { for }\left(A_{n}\right) \in \Gamma_{M},(2.8)
$$

where $\left\|A_{1 k}\right\|$ is the usual norm of the bounded operator $A_{1 k}$. Vice versa, any such matrix $\left(A_{1 k}\right)=A$ with $\|A\|_{\left(a_{n}\right)}$ $<\infty$ defines an operator of $\mathcal{L}\left(D^{-} \cdot 0^{\infty}\right)$. The system of seminorme $\|A\|\left(a_{n}\right)$ defines the uniform topology r_{0}. $\mathrm{L}_{\mathrm{r}} \cdots \mathrm{g}$ Lemma 2.3 and 2.4 this Lemme can be proved by stanfard estimations as in the proof of Leman 2.3 .

Quite analogous we get seminorms defining the other topfogies of the spaces (2.5) Namely
$J_{0}:\|A\|_{\left(a_{n}\right)}$
$=\sum_{k, 1}\left\|A_{1 k}\right\| \quad a_{1} a_{k}$
$5^{0}=\|A\|^{\left(a_{n}\right), m}=\sum_{k, i}\left\|A_{1 k}\right\| 1^{m} a_{k}$
$5^{D^{\prime}}:\|A\|_{+}\left(a_{n}\right)_{s m}=\sum_{k, i}\left\|A_{1 k}\right\| \quad k^{m} a_{1}$
$T_{*}^{D}: \quad\|A\|_{*}^{\left(a_{n}\right), m}=\sum_{k, 1}\left\|_{1} A_{1 k}\right\|\left(I^{m} a_{k}+k_{a_{1}}^{m}\right)$

Where (a_{n}) runs over all sequences of Γ_{M} and $m=0,1,2, \ldots$.
Using the estimation $\max _{1, k}\left\{\left\|A_{1 k}\right\| a_{1} a_{k j} \leqslant\|A\|\left(a_{n}\right) \leqslant\right.$ $\leqslant\left(\frac{\sum}{e} \mu_{e}^{-2}\right)^{2} \max _{\alpha_{1}}\left\{\left\|A_{1 k}\right\| \quad\left(a_{1} \mu_{1}^{2, k}\right)\left(a_{k} \mu_{k}^{2}\right)\right\}$ we see that the topolog. J_{∞} is also defined by the seminorms

$$
J_{\varepsilon}=\quad\|, A\|_{\left(a_{n}\right)}^{\prime}=\max _{1, k}\left\|A_{1 k}\right\| a_{1} a_{k} \quad, \quad\left(a_{n}\right) \in \Pi_{n}(2.10)
$$

In the same way we can also substitute the sum by the maximum in (2.9).

Te end up this section with the following lear, which can be proved with the help of the seminorms (2.9) (ep $91 \pi 0 / 5,5 /$).

Lemma 2. 6
i) All four locally convex spaces of operators in (?.5) are complete for D^{∞}.
ii) $\mathcal{L}^{+}\left(\mathscr{D}^{*}\right)$ is dense in $\mathcal{L}\left(\mathcal{N}^{\infty}, \mathscr{N}^{-1}\right)\left[J_{\infty}\right]$.
3. The Dynanfes of the BCS-Model

In this section we show that the dynamics of the BCS-Model ia given by a one-parameter group of linear transformations α_{t} of a locally convex space $O L$, which we obtain from the algebra σ_{f} of local observables by completion with respect to a certain
locally convex topology. In deriving this results we shall make extensive use of the treatment of Shirring and Heir rl/1f,12/ on the BCSmodel.

We shall use the quasi-apin formulation in which the BCSHamiltonian ia

$$
\begin{equation*}
H_{R}=\varepsilon \sum_{p=1}^{0}\left(1-\sigma_{p}^{2}\right)-\frac{2 g}{a} \sum_{p, p^{\prime}=1}^{\infty} \sigma_{p}^{-} \sigma_{p}^{+} \tag{3.1}
\end{equation*}
$$

C is the number of pair states, g, an interaction constant, ε, the kinetic energy which we assume to be independent of p 。 $\sigma_{p}=\left(\sigma_{p}^{x}, \sigma_{p}^{y}, \sigma_{p}^{*}\right)$ are the Pauli matrices, $\sigma^{ \pm}=\frac{1}{2}\left(\sigma^{x} \pm i \sigma^{y}\right)$ and $\left[\sigma_{p}, \sigma_{p^{\prime}}\right]=0$ for $p \neq p^{\prime}$. If we introduce the total spin $S_{e}=\frac{1}{2} \sum_{p=1}^{0} \sigma_{p}=\left(S_{\Omega}^{\pi}, S_{\Omega}^{】}, S_{\Omega}^{Z}\right)$ the Hamiltonian becomes

$$
\begin{equation*}
H_{\Omega}=\varepsilon\left(\Omega-2 S_{\Omega}^{2}\right)-\frac{2 g}{\Omega}\left(S_{\Omega}^{2}-S_{\Omega}^{2}\left(S_{\Omega}^{2}+1\right)\right) . \tag{3.2}
\end{equation*}
$$

Let $X_{\infty}=\prod_{p} \otimes c_{p}^{2}$ be the infinite tensor product of the 2-dimensional spaces /8/. Following /11/ we choose special unit vector g in $X_{\text {a. }}$. For a real unit three-vector $n=\left(n_{1}, n_{2}, n_{3}\right)$ we denote by $|n\rangle$ a vector in c^{2} which is characterized by $(6 n)|n\rangle=|n\rangle$. This determines $|n\rangle$ up to a phase factor. The scalar product of two such vectors is given by

$$
\begin{equation*}
\left\langle n \mid n^{\prime}\right\rangle=e^{i g} \sqrt{\frac{1+\left(n n^{\prime}\right\rangle}{2}} \tag{3.3}
\end{equation*}
$$

where $\left(n n^{\prime}\right)=n_{1} n_{1}+\ldots+n_{3} n_{3}^{\prime}$. Let $\{n\}=\left\{n_{1}, n_{2}, \ldots\right\}$ be a set of such three-vectore then by

$$
\begin{equation*}
\left|\left\{n\left\rangle=\prod_{p} \odot\right| n_{p}\right\rangle\right. \tag{3.4}
\end{equation*}
$$

we denote unit vectors in \mathcal{X}_{0}. Further $\mathcal{X}_{\{n\}}$ denotes the seafable !albert space generated by all vectors $\left|\left\{n^{\prime}\right\}\right\rangle$ which ere equivalent to $|\{n\}\rangle / 8 /$. One can choose a special base in $X_{\{n\}}$ which one gets from $|\{n\}\rangle$ by flipping a finite number of
spins. For this one chooses two three-vectors n^{4}, n^{2} which form together with n an orthonormal base and put $n^{ \pm}=\frac{1}{2}\left(n^{4} \pm i n^{2}\right)$. Then $\left(6 n^{+}\right)|n\rangle=0$ and if we put $|m, n\rangle=\left(5 n^{-}\right)^{m}|n\rangle$ then

$$
\begin{equation*}
(\varepsilon n)|m, n\rangle \quad=(-1)^{m}|m, n\rangle \quad, \quad m=0,1 . \tag{3.5}
\end{equation*}
$$

Now $\left|\left\{m|\{n\}\rangle=\prod_{p}\left|m_{p}, n_{p}\right\rangle, m_{p}=0,1, \sum m_{p}<\infty\right.\right.$, form a denumerable orthonormal base in $\mathcal{K}_{\{n\}}$. On \mathcal{X}_{∞} we define the selfadjoint operator x by

$$
\begin{equation*}
\underline{M}|\{m\}\{n\}\rangle=\left(\sum_{p} m_{p}+1\right)|\{m\}\{n\}\rangle \text {. } \tag{3.6}
\end{equation*}
$$

 $=J_{D_{d n\}}}$ We denote the uniform topology on $\mathcal{L}\left(D_{\{n\}} D_{\{n\}}^{\prime}\right)$.

Let σ_{c} be the $*-a l g e b r a$ of local observables generated b_{y} ail $\sigma_{p}^{i}, 1=x_{1}, y, z$. OL is in a natural way realized as an operator algebra on $D_{\{n\}}$ and $\alpha_{c} \subset \mathcal{L}^{+}\left(D_{\{n\}}\right)$ Therefore we have on T_{ε} the uniform topology $T_{\{n\}}$.

Let Q be the aystell of all vectors |\{n\}>for which

$$
\lim _{R \rightarrow \infty} \frac{1}{e} \sum_{\rho=1}^{n} n_{p}=\eta^{n}, 0 \leq t \leq 1, n=\left(n_{1}, n_{2}, n_{3}\right)
$$

exists. On Ole, we define the locally convex topology

$$
\xi=\sup _{\{n\} \in Q} T_{\{n\}}
$$

the weakest locally convex topology which is stronger than all $\mathcal{T}_{\{n\}},\{n\} \in Q$. Now we can state our main theorem. Theorem 3.1 Let $\sigma=\widetilde{\sigma_{e}[\xi]}$ be the completion of a_{e} with respect to the locally convex topology $\boldsymbol{\xi}$. For every local observable $A \in \mathcal{O}_{2}$ it exists

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty} e^{i H_{\Omega} t} A e^{-i H_{\Omega} t} \quad \text { as } \alpha_{t}(A) \in O L \tag{3.9}
\end{equation*}
$$

α_{t} is an one-parameter group of linear transformations on 0 .

We prove this Theorem in some steps. First we prove a Lemma which strengthens Lemma 1 of /11/.

Lemma 3.2 Let $\{n\} \in Q$ and $g_{\Omega}=\frac{1}{d} S_{\rho}$, then

$$
\lim _{2 \rightarrow \infty} s_{e}=\frac{1}{l} \eta n \quad \text { in } \quad L^{+}\left(D_{\left\{n_{\}}\right.}\right)\left[r_{\{n\}}\right] .
$$

Proof: For simplicity we drop the index $i=x, y, z$ of the spin coordinate. Since $n(6 n)+2 n^{-}\left(6 n^{+}\right)+2 n^{+}\left(6 n^{-}\right)=\sigma$ we get for $\{\{m\}\rangle \pm\{\{m\}\{n\}\rangle \quad a_{n}|\{m\}\rangle=\left(\Delta_{1}^{\ell}+A_{2}^{\Omega}+\Delta_{3}^{\Omega}\right\rangle|\{m\}\rangle$, where
$\Delta_{1}^{a}|\langle m\}\rangle=\left(\frac{1}{2!} \sum_{p=1}^{0}(-1)^{n_{p}} n_{p}\right)|\{m\}\rangle$
$\left.\Delta_{2}^{\Omega}\left|\langle m \mid\rangle=\left\langle\frac{1}{e} \sum_{p=1}^{\frac{n}{1}} \frac{1-(-1)^{m p}}{2} n_{p}^{n}\left(5 n_{p}^{n}\right)\right\rangle\right|\{m\}\right\rangle$
$\Lambda_{s}^{\beta}|\{m\}\rangle=\left(\frac{1}{a} \sum_{p=1}^{0} \frac{1+(-1)^{m p}}{2} n_{p}^{+}\left(5 n_{p}\right)\right)|\{\pi\}\rangle$.
Let 1. $\|_{\left(a_{k}\right)}$ be a seminorm (2.8) for the topology $5_{\langle n\}}$. Since M has the eigenvalues $1,2,3, \ldots$ the $\left(a_{n}\right) \in \Gamma_{M}$ satisfief the condition $\sum_{k} a_{k} k^{r}<\infty$ for every $r=0,1,2, \ldots$. By $\|A\|_{1, k}$ we denote the norm of the operator $P_{1} A P_{k}=A_{1 k}$. From (3.10) it is easy to see that

$$
\left\|\Delta_{1}^{a}-\frac{1}{2} \eta n\right\|_{1, k} \leqslant \quad \delta_{1 k}\left(\left|\frac{1}{2 \Omega} \sum_{p=1}^{Q} n_{p}-\frac{1}{2} \eta n\right|+\frac{k}{a}\right)
$$

Now let $\phi=\sum_{\langle m\}} x_{\{m\}} \mid\left\{m| \rangle\right.$ with $|\langle m\rangle\rangle \in H_{k}$. Then
 The coefficients of the quadratic form are only 0 or 1 , where any ray or column of the coefficient matrix contains at most k times the 1 . Therefore the largest eigenvalue is less than k and we get

$$
\left\|P_{1} \Delta_{2}^{\ell} \phi\right\|^{2} \leqslant \frac{k}{l^{2}} \sum_{\{\Delta \mid \rho}\left|x_{\{\pi\}}\right|^{2}\left|n_{p}^{-}\right|^{2} \leqslant \frac{k}{\Omega}\|\phi\|^{2} .
$$

Hence $\left\|\Delta_{2}^{Q}\right\|_{i k} \leqslant\left(\frac{k}{\Omega}\right)^{\frac{4}{2}}$. Quite analogous one proves $\left\|\Delta_{3}^{\Omega}\right\|_{1 k} \leqslant\left(\frac{x_{k}+1}{\Omega}\right)^{\frac{1}{2}}$ 。

These three estimations together give us

$$
\begin{aligned}
\left\|a_{e}-\frac{1}{2} \eta n\right\|_{\left(a_{k}\right)} \leqslant & \sum_{1} a_{1}^{2}\left|\frac{1}{2 a} \sum_{p=1}^{0} n_{p}-\frac{1}{i} \eta n\right|+\frac{1}{a} \sum_{z} a_{1} \sum_{k} a_{k} k+ \\
& +\frac{1}{\sqrt{k}} \sum_{1} a_{1} \sum_{k} a_{k}(\sqrt{k}+\sqrt{k+1}) .
\end{aligned}
$$

Since the right-hand side of the last formula tends to 0 for \& $\rightarrow \infty$, the Lemma is completly proved.

Lemme 3.2

i) $\mathrm{s}_{\Omega}^{1}, i=x, y, z, \ell=1,2, \ldots$, is a set of equicontenuous maps on $D_{\{n\}}[t]$.
ii) If \mathbb{K} is a bounded set in $D_{\{n\}}[t]$, then there exists a bounded set \mathcal{M}^{\prime} so that $\mathrm{g}_{\Omega}^{1} \mathbb{K} \subset \mathcal{K}^{\prime}$ for all i, e.

Proof: It is straightforward to see that for any k there arista a constant c independent of p so that $\left\|w^{k} \sigma_{p} \phi\right\| \leqslant c\left\|x^{k} q\right\|$. Therefore $\left\|s_{\infty}^{1} \phi\right\|_{k} \leqslant c / 2\|\phi\|_{K}$ for all i, e^{2}. This proves 1). ii) is a consequence of 1)。

Lemma 3.4 The "mean quabi-spin" e_{ρ} converges in O to s with respect to the topology ξ.
Furthermore, $\lim _{\Omega \rightarrow \infty}\left(\theta_{\Omega}^{1}\right)^{n}=\left(s^{i}\right)^{n}$ for every degree $n=$ $=1,2, \ldots$.

Proof: Since sid is a Cauchy sequence with respect to eve: y topology $\mathbb{r}_{\{n\}}$ (Lemma 3.2), it is also a Chauchy sequence with respect to \mathcal{J}. Therefore $\lim _{\Omega \rightarrow \infty}$ sid $_{\Omega}^{\frac{1}{2}}=s^{i}$ exists in $O \mathcal{O}$. Now let \mathcal{H} be a bounded set in $\left.D_{\langle n\rangle} L t\right]$ and I. $\|_{\mathcal{M}}$ the carepodding aeminorm for the topology $r_{\{n\}}$. Then

$$
\begin{aligned}
& \left\|s_{e^{\prime}}^{2}-g_{\Omega}^{2}\right\|_{c_{x}} \leqslant\left\|s_{\Omega^{\prime}}\left(s_{\Omega^{\prime}}-g_{\Omega}\right)\right\|_{u}+\left\|\left(s_{\Omega^{\prime}}-g_{\Omega}\right) s_{\Omega}\right\|_{u} \\
& \leqslant 2\left\|\varepsilon_{e_{1}}-\theta_{\Omega}\right\| \mu_{1} \text {, }
\end{aligned}
$$

where $\mu_{1}=i V^{\prime} \cup \mathcal{M}^{\prime}$ and μ^{\prime} is the bounded set of Lemma 3.3 ii).

Therefore θ_{ρ}^{2} 1e also a Cauchy aequence with respect to the topology ξ. Thus $\underset{\Omega \rightarrow \infty}{\lim } s_{\infty}^{2}=a^{2}$ existe in $O<$. Por the higher powers one proves the convergence by induction.

Let us etill remark that the powers $\left(s^{1}\right)^{n}$ in $O t$ are defined by thi limit. As we outlined in the introduction we have not a product of two arbitrary elemente of O.

Now we are in the position to give the proof of thecren 3.1.
Take $\alpha_{t}^{\rho}\left(\sigma_{p}\right)=e^{i t H_{\Omega}} \sigma_{p} e^{-1 t H_{\rho}}=\sum_{n=0}^{\infty} \frac{(1 t)^{n}}{n!}\left[H_{\Omega}, \sigma_{p}\right]_{n}$,
where $\left[H_{\Omega}, \sigma_{p}\right]_{n+1}=\left[H_{\Omega},\left[H_{\Omega}, \sigma_{p}\right]_{n}\right]_{\text {and }}[., .]_{1} \equiv[., 1]$ is the usual commutator. It is straightforward to check that $\left[H_{e}, \sigma_{p}\right]_{n}=H_{n}\left(\sigma_{p}, s_{\Omega}\right)$, where $R_{n}\left(\rho_{0},.\right)$ is a polynom of degree not higher than n in every variable (see also /42/). Prom Lemma 3.4 we get $k_{n}\left(\sigma_{p}, s_{\Omega}\right) \rightarrow R_{n}\left(\sigma_{n}, \theta\right)$ for $\Omega \rightarrow \infty$. If U. $\|_{w_{k}}$ is a suminorm of the topology $\mathcal{F}_{\langle n\}}$, then $R\left(\sigma_{p}, s_{n}\right)$ $=c^{n}$ where c is independent of Ω. Therefore $\alpha \frac{\rho}{t}\left(\sigma_{p}\right)$ converges in α to a limit which we denote by $\alpha_{t}\left(\sigma_{p}\right)$. ine can vet check by quite analogaus considerations thet α_{t} is an one-parameter group of tranafomations on O.

Finally let us remails that the commetator of g with any local obeervable $A \in G_{\epsilon}$ is well-defined and $[B, A]=0$. So we have the situation that the completion 0 of $q_{e}[\xi]$ containg elements cormuting with every element of the algebra σ_{p}, although the centre of of is trivial.

Aknowledgement. The author is indebtedto A. Whamn for stimuLating discusaions.

References

1. Dabin D.A. Sewell G.: J.Math. Phye. 11 (1970) 2990.
2. Enach G.G. Knopa H.J.P.t J.Math. Phys. 14 (1970) 3008.
3. Kagtler D.: Ingtituto Kaz.di Alta Matem.Symp.Math. Vol. XX (1976) 49.
4. Lagener G. ERop,Math. Fhys. 3 (1972) 279.
5. - " - $\boldsymbol{\beta}$-Topologies on operator algabras. Proc.Int.Symp. Algebres of Operators and their Appl. on Math. Pays. Mareeilie, 1977.
 24,5 (1975) 465.
6. - " Friedrich M. : Rigged Hilbert apaces associated to algebras of operatore. ebenda, to appear.
B. V. Hetmemn J.: Comp. Hath © (1938) 1
7. Rue? 1 D.: Statiaticai Nechenice. Eenjanin,1969.
8. Sch-idigen K. : Rep. Hath. Phyg. 7,2 (1975) 87-99.

9. Thirring Wos Comomath. Fhyt. 7 (1968) 181.

Received by Publishing Department on March 23 1978.

