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Magnetic Behaviour of the s- r Two-Band Hubbard Model 

The magnetic phase diagram of a two-band Hubbard Hamilto­
nian as proposed by Jullien and Coqblin in Actinide Metals is con­
structed using the functional integral technique. The direct exchange 
interaction between the localized electron states and the indirect 
one via the conduction electrons is considered. 

The investigation has been performed at the Neutron Physics 
Laboratory, JINR. 

Preprint of the Joint lnsti tute for Nuclear Research. Dubna 1978 

© 1978 061>e/lHBeHHblil HHCTHTYT SlllepHbiX HCCRe/lOBBHHil J1y6HB 

1. Introduction 

The conventional Hubbard model .. 1 / describes the 
physical behaviour of transition metal compounds with 
strongly isolated small energy bands qualitatively well 121 . 

Electron correlation effects in small energy bands also 
are of importance for Rare Earth and Actinide Metals, 
where near the Fermi energy we have strongly correlated 
f -electrons as well as delocalized s - d -conduction 
electrons. In order to explane the magnetic properties of 
the Actinide Metals Jullien and Coqblin 131 proposed a 
two-band Hubbard Hamiltonian without hybridization, whe­
re intraatomic correlation effects within the different 
bands as well as between the bands are taken into account. 

We will start from a similar model Hamiltonian, 

v + l 
u v 

H • l T .. c. c. + -n n + 
i,j,v,a lJ wa JVa i,v,a 2 iva iv-a 

(1) u (2), 
(1) 

uvv' 
+ l 1---n n., + ~n. n , !. 

i,a .v~v ' 2 iva w a 2 1va iv-a 

where c~va , civa and niva are creation, annihila­
tion or occupation number operators, respectively, for 
electrons with spin directions a at lattice point i in 

1 v 2 112 
the band labeled by v = s. f . 11 =(-lIT .. I ) is the 

t/ N h~ j lJ 

bandwidth, Uv the intraatomic Coulomb interaction 
in the corresponding band, uCl) and U <2 ) describe the 
spin dependent intraatomic coupling of electrons in two 
different bands. 
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In order to discuss the magnetic phase diagram for 
this model system, the functional integral technique will 
be used 141 • We aremainlyinterestedinthe case ~/U 8 »1. 
t\ / U r « 1 . where local magnetic moments may arrise 
in the f -band and are coupled directly and via the s -
electrons to give a long range ordered state at low 
temperatures. 

Compared with real systems like Rare Earth and 
Actinide Metals the model Hamiltonian (1) contains the 
following simplifications: 

4 

(i) No hybridization between the two bands, which 
only becomes important a secondary fashion, 
namely between delocalized f -states and d-
s -states 151 . In the following, the densities 

of state of the two bands are characterized only 
by the position of the band centre E1~ ,..,Tfi and 
the bandwidth '~ 1~ . 

(ii) No degeneration of the bands. Especially the 
7-fold degeneration of the f -states will scale 
the magnitude of the atomic moments and the 
magnitude of the coupling between the moments, 
but we assume that the qualitative picture of 
the phase diagram described here is not changed 
if degeneration is taken into account. However, 
istead of the real electron density we must work 
with an suitable effective electron density 
0 :5: n ::; 2 for each band, if comparison with real 
substances is performed. 

(iii) 

Spin-orbit coupling and crystal field effects 
are not taken into account. 

Instead of a rotational invariant exchange term 
J s' s i s' r 1 an Ising-type exchange term bet­
ween the two bands, uC1Lu<2 )=J , is used. A 
consideration of the rotational invariant exchange 
term also is possible within the functional inte­
gral technique. However, as is shown in ref. '6: , 
the qualitative properties considered here are 
only little affected. To discuss the magnetic pro­
perties we will use the one-field scheme to 
linearize the Coulomb interaction terms. 

2. The Functional of Free Energy 
We start with the partition function in an external mag­

netic field 
Z [ B] ~ Tr exp 1- {3 H + l f3 a R in iva l . (2) 

i.v ,a 

which can be considered as generating functional for the 
non-local susceptibilities and other physical quantities, 
see ref. /4/. For Z, an exact expression in form of a 
functional integral can be found: 

6 2 
z [ B],. .r z n dx . . .. dx 6 1. n exp I -77. + X A i n 

0 1 1 n • • 1 n /\""1 • • i,n ' ' ' ' 
l * 

* eJCp!Trln(1-v
1

G 0 f)+Trln(1-v2 G0 r ) + 

OS 
+ Trln(1-v3 G

0 8
) + Trln(l-v 4 G ) (3) 

with i k(R ... i -R . ) , , J 
(Go) vv ,a,a = _L l ~-------8 ,o , o 

i j , nn N k i uJ -{3 (E ... - 11 ) n ,n v ,v a ,a 
and n k,v 

vv',aa" 
v.. , 

1J ,nn 

(-crx1in-n'-c1x3in-n'-c2x5. ,-f3Bl)O .. o ,1) , , , , , ,t,n-n lJ vv aa 

(v=f, a=+) 

(crxt,i,n-n' -c1x4,i,n-n' -C X · '+f3fi.\5: .. ;) ,;) , 2 6,1,n-n 1JV1J vv aa 

(v=f,a=-). 

(-cx21 '+c1 x 3 . , +C2x 6 . '-f3B.)01.o ,Q, s , ,n-n ,1,n-n ,1,n-n 1 J vv aa 
(v= s ,a=+) 

(c x
2

. , +C
1
x

4
. , +C2x

51 
-+f3B.)O .. o ,0 , 

s ,1,n-n ,1,n-n , ,n-n 1 1J vv aa 

(v=S,a=-) 

c = (277{3U ) 112
, c =(277{3U0 ))11? 

v v A 
(4) 

Z0 is the partition function for the system without 
Coulomb interactions. x k,i,n are the fourier componen

1
ts 

of the time-dependent fictitious fields, see ref. 14
· 

Because of the six Coulomb terms at each lattice site, we 
must for linearizing introduce six fictitious fields x 1 ..... x 6 
at each lattice site. However, as follows from (3) and (4) 
the number of fictitious fields can be reduced by a suit-
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able transformation within the six dimensional space of 
fictitious fields x li' ... , x 6 i so that the vli , v2 i , v Si 

appear as a part of a new (nonorthogonal) vector base. 
The other fields can be chosen to be orthogonal and thus 
are eliminated performing the corresponding integrations. 
The final result of this transformation will be given here 
only for the case (U(l) -U(2 )) 2<<U 

8
·Ur . 

Z[Bl~ z0 f ,n dvr. 
I,n .l,n 

dv . 
S,l,ll 

exp I - {3 F ( v r ,v 
s 

, B ]I. 

v2 v2 4(c2-C'2) 
(3F[vr,v ,B]z2rrl__L2 +~2-+ 1 2 v v l-

s c c c2c2 r" r s r s 

a oro 
- L Tr ln [ 1 - a ( v - {3 B ) G 1 -

a r 

a osa 
-L·Trln[1-a(v -{3B)G ]. 

s 
a 

(5) 

In order to evaluate the functional integral we perform 
the following approximations: 

(i) In the static approximation in the trace all non 
diagonal terms in n are neglected. 

(ii) A cluster expansion of F is performed and we 
restrict only to single center and two center 
part, see ref07 ·. 

(iii) A Lorentzian one, respectively, a squared Lo­
rentzian density of state has been used to cal­
culate F1 and F 2 . 

We arrive at the following expressions: 

r s 
(3F[vr ,v

8 
,Bl~ L f3F (v ,B.)+ L{3F 1 (v .,B.)+ 

j 1 f1 1 i S I I 

sf 
+ L{3F1 (vsi'vfi 

i 

+ L {3 F: ( v si ' v sj 
<ij> 

with 

6 

, B i) 
r 

+ L (3 F 2 ( v fi , v fj ) t 
<if> 

(6) 

,l 

' 

.I 
\ 

v 
{3 F 

1 
( v , B , 11-E ] • a ( v 

v v ~ v 
2 

+{3 B) + 

v 

{3~ CJL-E -v 1 (3)2 +/'1..
2 

v 11 -E -V /(3 
+ _vln- v v· v + ~ arctan--v __ -2:::..__+ 

2rr (JL -E ) 2 +;'1,.2 TT /'I. v v v 

2 2 I 

(3t'.v (JL-Ev+v/{3)+/'1.. v JL-EI-,+Vv,f3 
+ --- ln v v- _.1::.. arctan----· 

2rr (JL -Ev)2+Ae rr _/'l,.v 

s r 8rr 2 2 (3F (v ,v 3]. ---(c -c )(vr +{:3B)(v +f3B), 
1 r s c 2c2 1 2 s 

s r 
2 

r 1 /'I. r 
{3 F 2 ( v fi , v fj ) ~ 2; f3"1Jf v fi v fj 

3("2' E 2 s l\s os;3-(JL- s)) 
{3 F ( v , v ) = - --------- v v 

2 si sj 2rr{i (/'1..2+(JL-E )2)3 si sj 
s s 

The discussion of the one center part F'~ of the free 
energy functional yields the condition for the occurence 
of local magnetic moments. For a single band Hubbard 
model this problem has been discussed in ref.' 81 

3. Construction of the Magnetic Phase Diagram 

The expression (6) for the free energy functional can 
be given in a very transparent form in the case 

U Ur 
- ... ~·"< 1 -- '>...., 1 which is of special interest. Than we have 
L S :\ f 

for F 1 

2 TT 2 
{3 F1 [ v r , v 8 , B ] "' ~ v r 

cf 

2 2 
8rr(c1-c2) 

I , 2rr v2 +------- v v . - vrl+__,. s 2 2 s r 
c-s cs c f 
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At low temperatures the integrals over Y r , Y s can be 
evaluated around the minima of the free energy functio­
nal F1 . These minima are situated at 

2 
yo cr Yo - ci-c 2 

f =-

and 
4 77 

' 

s ____ 2 
277 -

(7) 
2 

yO C f yo c~-c2 
f "'---4 77 ' 

= 2 
s 2 77 

The minima are connected with the local magnetic moment 
in the local approximation for F 1. Due to (7), the moments 
are not purely of f -character, but due to the s--f -Cou­
lomb interaction an s -component is mixed in. 

If we consider the case that the lower f -subband 
lies below, the other above the Fermi level, we have the 
case n r =1. The number n s of electrons in the s -band 
is determined by the chemical potential to be 

2 p.-Es 
n =1 + -arctan---

s 77 L'1 
8 

see ref/ 8 /. 

In order to obtain the long range order at least we must 
discuss the two center part F 2 of the free energy func­
tional. Singularities in the q -dependent static suscepti­
bility x (0, q) indicate phase transition to long range 
ordered phases. The nonlocal static susceptibility x e (O) 
can be derived from the generating functional (2), m 

p.2 2 
X (0) ~ ~ 8 ln z [ B ] I 

em f3 8 Be 8 B w BaO 

2 2 
"' ~ ( 4 77 f3) 

2 l + < y re y frn > + + < y n y > + -2 2 < y re y sri 
f3 c c st s rn c c 

f S S f 

4(c 2-c 2 ) 
+ 1 2 < Y .11 Y f + Y nY + 2 Y .<~ Y > I 4 4 It m st s m It s m 

c s c f 

8 

~ 
I 
I 

l 

4 77 {32 2 2 
8 em l -2- (1 +-:-v (c 1 

c f cs 

2 
2 4 77{3 2 2 2) I - c 2 ) ) + --(1 + -~ ( C 1-c 2 ) . 

c2 c 
s r (8) 

The calculation of these correlation functions is not 
directly possible because the integrals at different lattice 
points are coupled due to F 2 • In ref. 19 / a diagram 
technique has been given to evaluate these coupled inte­
grals. In the model considered here the result also can be 
represented by diagrams if expanding with respect to 
F 

2 
• In general, partial summation of geometrical series 

are not possible, but approximately we get for the sus­
ceptibility an expression with a numerator ( z - nearest 
neighbours) 

1+ZA M + ZAfM s o,2 2,o 

for the ferromangetic (FM) susceptibility ( q = 0) 

1-ZAsMo.2- ZAfM2,o 

(9) 

and 

(10) 

for the antiferromagnetic (AFM) susceptibility, where 
we introduce the moments 

-f3F~[vf]-f3Ft[vJ-f3F~f[v 8 ,vf] 

JdY
8
dYr Y; Y ;e 

------
-{3 rf 

JdYsdY fe 

M 
n,m vf)-{3F 1'v )-f3F 8 f[v ,v ] 

s 1 s f 
(11) 

Expressions (9) and (10) explicitly show that two diffe­
rent mechanisms act for the onset of the long range 
order: 

(i) The direct exchange between the f -electrons, 
which is determined by A r . 

(ii) The indirect exchange between the localized f -
states via the s -electrons determined by A 8 

Using the expressions for A8 • A r we get the following 
result: 
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The half-filled f -band favours the antiferromegnatic 
order of the moments. 

The s-band tends, in dependence on the chemical 
potential, to an antiferromegnatic order if i 11-Esi<A.s/v'3 or 
to a ferromagnetic order if IJL-Esl >i\

8
/\ 13". In the 

latter case there is a concurrence between the direct 
and the indirect coupling mechanism. 

4. Discussion 

A phase diagram which is obtained by determining 
the zeros of (9) and (10) is presented in the figure for 
(UO L lf(2))/ As = 0.01, 0.05, 0.10. 

We make the following conclusions: 
If Ins -11 > 11 lf.the indirect exchange interaction via the 
s -electrons gives a ferromagnetic state. The occurence 

of the ferromangetic state is influenced by the magnitude 

,..... 
~ G03 
I 

-::}r 

'-" 

~ • ...:£ 

l=:l .. 002 

0.01 

0 1 -----ns 

Magnetic Phase diagram for the indirect coupling 
of localized f -electrons via the conduction electrons for 
oo rious parameters (UO)- U(2))/ A . 

s 
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of the direct interaction which tends to a antiferromagne­
tic state. 

We can compare the qualitative features of this model 
with the properties of Rare Earth and Actinide Metals. 
It is well known from the properties of Rare Earth Me­
tals, that if we go from the heavier to the lighter Rare 
Earth Metals the tendency from the ferromagnetic state to 
the antiferromagnetic ordering is obtained. This effect 
qualitatively can be described in our model because the 
bandwidth A r of the 4f -electrons is increasing in this 
direction, but remains small compared with Dr , so that 
local 4f -moments can occur for low temperatures / 51 • 

For the light Rare Earth Metals so the direct exchange bet­
ween the localized moments becomes more important. 
The s-d -band for Rare Earth Metals can be filled up to 
12 electrons per atom, but in our case we only have three 
electrons per atom. That means, the s- d -band is 
1 I 4 -filled and for this electron concentration of the 
conduction band, see the figure, for heavy Rare Earth 
Metals a ferromagnetic coupling can occur at low tem­
peratures. 

For the light Actinide Metals the 5 f -electrons are 
delocalized 1111 and the relation of 5f -bandwidth to the 
correlation strength Ur in the 5f -band is so big that 
no long range order can occur /8/ and paramagnetic 
behaviour (PM) is obtained. Following from refsJlO,ll/, 
the heavy Actinides, starting with Plutonium, can be consi­
dered as a second delayed Rare Earth series with strongly 
localized character of the 5f -electrons. For decreasing 
atomic number in these heavy Actinide Metals one also 
can describe the same tendency from ferromagnetic to 
antiferromagnetic ordering, as it is the case for Rare 
Earth Metals. 

The direct antiferromagnetic coupling for half-filled 
f -bands in this direction dominates the indirect ferro­
magnetic coupling for the 114 -filled conduction bands. 
A more detailed description of conduction electrons in 
this model also will give the Ruderman-Kittel coupling 
between localized spins, see ref. 11 21 . 

However, we only would give here a qualitative picture 
of the two-band Hubbard model in order to show, how is 
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within this model the role of Coulomb interactions between 
the different bands as it occurs in Rare Earth and Actinide 
Metals. 
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