ОБЬЕАИНЕННЫЙ ИНСТИТУТ ЯAEPHЫX ИССАЕАОВАНИЙ

АУБНА

Z-21

$2403 / 2-78$

KRAMERS-WANNIER TRANSFORM FOR $Z(n)$ SYMMETRIC SYSTEMS

$$
E 17-11305
$$

Al.B.Zamolodchikov
KRAMERS-WANNIER TRANSFORM FOR Z(n) SYMMETRIC SYSTEMS

```
    3amолодचRхо⿱ An,E,
                        E17-11305
        Преобразоваппе Краморсл-Ванпье пля спстем с спммотрвей Z( 口)
```



```
Иаквга.
    Paбота рыполгега в Лабораторгк пдерньт прпблем ОИЯИ.
```



```
    Zamolodchikov Al.B,
                                    E17-11305
            Kramgrs-Wannier Trangform for Z(a) Symmetric Symtems
    Dually relationm analogous to the Kremers-Wannler symmetry
or the plane lsing model are stated for the spin and geuge systems
with Isotopic aymmetry Z(a).
The Investigation has been nerformed at the Laboratory of Nuclear Problens, IINR.
```

Propint of the Joint Inatitute for Nucloar Reseorch. Dubno 1978

Kramers and Wanniar ${ }^{1)}$ have noted that the plane Iaing model possesses an exact symetry relating low and high temperature phases of this model. It turns out that the model can be equivalently described both in termb of the epin varieble σ defined on the lattice (ozder parameter) and in terms of the dual variable M (disorder varlable ${ }^{2}$), which is asociated with the dual lattice and is a spin variable too ($\mu= \pm 1$). The description of the low temperature phase in terms of 6 is identicsl to that of the high tempersture phese in terms of μ and vica vorse.

Thers are two possible directions in which the KramersWannier ($K-W$) eymmetry can be generalized. The firet is a wide class of models with the same isotopic eymetry as the Ising model ($Z(2)$ eymmetry*): These models may be called generalized gauge Ising madels (gee raf. ${ }^{3}$). Consider a oimple cubic lattice in the d - dimensional space. The dual lattice is a aimple cubic one too, ite sites being situated in the centers of the initial latice cells. Inttice olements of different dimensionality $0 \leqslant q \leqslant d$ may be considered (they are bites for $q=0$, links for $q=1$, plaquettes for $q=2$ and so on), and the dual relation can be etated between the elementa of the initial lattice of dimensionality q and $d-q$ dimengional ones of the dual lattice. Por example, in the case of $d=3$ the sites of the initial lattice are the conters of the celle of the dual one, and the initial lattice links pase through the centera of the dual lattice plaquetter. Generalized gauge Ising modele are defined an follown: "Generelized gauge rield ${ }^{* *}$) A (which is a spin variable $A= \pm 1$) is

[^0]defined on the 9-1 dimensional lattice element a and ngeneraliked intensity" F which is associated with the q dimencioneil lattice element is defined as a product of A 'a caresponding to all $9-1$ dimensional elements that bound this q dimensional one. Defining a field σ on the $q-2$ dimessional elements of the lattice one introduces the "generalized gauge transformation" as a multiplication of A taken from a certain 9-1 dimensional element by 6's taken from all its $q-2$ dimensional bounds. As a result of this gauge transform the intensity F is twice multiplied by each σ (because any boundary is of no boundary), therefore, the field intensities F are invariant under the generalized gauge transformations.

For these models the $K-W$ symmetry is stated as follows: the model with intensities F defined on 9 dimensional elements of the lattice is dual to that with field intensities F defined on the corresponding $d-q$ dimensional ones of the dual lattice. For example, the three-dimensional Thing model is dual to its gauge analog; in four dimensions the pure gauge Ising field is selfdual. Analogous relations cen be stated for different mixed models; e.g., the model of lIming spins ($q=1$) interacting with the Icing gauge field ($q=2$) is aelfdual in three dimensions, because the spin' field is dual to the gauge field and vice versa. The survey of the problems considered can be found, org., in ref. ${ }^{4)}$.

The second way of generalizing the $K-W$ symmetry is to consider systems of other commutative symmetry groups. It turns out now that the symmetry group of the dual system is not generalty the same as that of the initial one. For example, the models of internal group $U(1)$ are dual to those of eymmetry $Z^{*}{ }^{*}$)5-7).

The present paper is devoted to demonstration that the models of internal symmetry $Z(n)$ are dual (in the sense mentinned above) to those of the same symmetry $Z(n)$. Under the special choice of the interaction between aping the duality turns out to be exact, 1.e., $K-W$ transform reduced to the change in temperature only as in the case of the Iaing-like models.
*) Z is a group of integers, the group multiplication being the numerical summation.

For the sake of simplicity at first consider a spin system of the global $Z(n)$ symmetry on the plane square lattice. Lattice bites will be numbered by the variable $X=\left\{X_{1}, X_{2}\right\}$ where
X_{1} and X_{2} are integers. Dual lattice is a simple square one too, its sites are situated in the centers of the initial lattice cells and will be numbered by pair $\tilde{x}=\left\{\tilde{x}_{1}, \tilde{X}_{2}\right\}$ of halfintegers. Furthermore we define two "unit vectors" $\Lambda X_{\mu}, \mu=1,2$ as $\Delta x_{1}=\{1,0\}, \Delta x_{2}=\{0,1\}$ and a dual pair $\Delta \hat{X}_{\nu} \cdot \hat{K}_{\mu} \epsilon_{\mu \nu} \Delta x_{\mu}$ $\epsilon_{\mu \nu}$ is the antisymmetrizator $\epsilon_{\mu \nu}=-\epsilon_{\nu \mu} ; \quad \epsilon_{/ 2}=1$. The links of the initial lattice which ends in x and $x+\Delta X_{\mu}$ will be lettered by the pair $\underset{\sim}{X}, \mu$ and the dual lattice links with ends in \tilde{x} and $\tilde{x}+\widetilde{\Delta x} \mu$ by the pair $\tilde{x} \mu \tilde{\mu}$. Note that link x, μ is dual to link \tilde{x}, μ provided $\tilde{x}=x+\{1 / 2,1 / 2\}$ We shall repreront the elements of group $Z(n)$ associated with the lattice site x by numbers $e^{i \phi_{x}}$, where $\phi_{x}=\frac{2 \pi}{n} K_{x}$, $K_{x}=0,1, \ldots n-1$; in this case the group multiplication coincides with the usual production of these numbers. The configuration of the system will be denoted by $\left\{\phi_{x}\right\}$. Of course one should not distinguish between configurations which differ in $2 \pi m_{x}$, where m_{x} are integers. Partition function of the model has the form

$$
\begin{equation*}
Z(T)=\sum_{\left\{\phi_{x}\right\}} \exp -U\left(\left\{\phi_{x}\right\}, T\right) \tag{1}
\end{equation*}
$$

where T is a temperature-1ike parameter. For the function $U\left(\left\{\phi_{x}\right\}, T\right)$ we take

$$
u\left(\left\{\phi_{x}\right\}, T\right)=-\sum_{x, \mu} \ln \sum_{m_{x, \mu}=-\infty}^{\infty} \exp -\frac{1}{2 T}\left(\phi_{x}-\phi_{x+\Delta x_{\mu}}-2 \pi m_{x, \mu}\right)_{(2)}^{2}
$$

The reason of such unusual and complicated choice of U is that in this case its functional form remains unchanged under $K-W$ transform except for the parameter T transformation*).

[^1]Note, that as $T \rightarrow 0$ and $\phi_{x}-\phi_{X+\Delta x_{\mu}}$ are mall

$$
\begin{equation*}
u\left(\left\{\phi_{x}\right\}, T\right) \rightarrow \frac{1}{2} \sum_{\left.x_{1}, t\right)}\left(\phi_{x}-\phi_{x+2 x_{x}}\right)^{2} \tag{3}
\end{equation*}
$$

and therefore it is natural to call T the temperature.
Assuming (2) we have

$$
\begin{equation*}
Z(T)=\sum_{\left[\phi_{x}\right\}} \sum_{\left.m_{y}, \mu\right]} \exp -\frac{1}{2 \pi}\left(\phi_{x}-\phi_{x+\Delta x_{y},}-2 \pi m_{x_{x}, f}\right)^{2}, \tag{4}
\end{equation*}
$$

more the configuration of integers associated with all the links is denoted by $\left\{m_{x, \mu}\right\}$. It is convenient to define augrencations $\theta_{x, \mu}=\phi_{x+\Delta x_{\mu}}-\phi_{x}$ associated with the links of the lattice $x_{\text {find to sum }}$ over $\phi_{X_{0}}$ (where x_{0} is an arbitrary initial site) and over all configurations $\left\{\theta_{x, \mu}\right\}$. of course, the following restriction should be aetisfieds

$$
\begin{equation*}
\left(R_{0} t \theta\right)_{\tilde{x}}=\theta_{x, 1}+\theta_{x+1 x_{2}, 2}-\theta_{x+4 x_{2}, 1}-\theta_{y_{2}}=2 \pi l_{\bar{x}}, \tag{5}
\end{equation*}
$$

which takes into account the necessary requirement that the circulation of "the vector" $\theta_{x, \mu}$ around each lattice cell results in the initial group element. In gog. (5) the lattice "rotor" (Rot θ) \tilde{x} and the integers $\ell_{\tilde{x}}$ are attached to the \quad item of the dual lattice.

It is cary to check that)

$$
\sum_{p=0}^{n-1} e^{i p \phi}=\left\{\begin{array}{lll}
n & \neq & e^{i \phi \phi_{A 1}} \\
0 & \text { if } & e^{i \phi} \notin(n) \text { but } t e^{i \phi} \neq 1
\end{array}\right.
$$

F) Ea. (6) in a particular example of the general formula $\sum_{n e r} X_{V}(G)= \begin{cases}n & \text { it } G=I \\ 0 & G \neq I\end{cases}$
where V numbers all the imeducible repranantations of the point group G, N is a number of its igaonte and $X,(G)$ are characters of theme representations. This formula together with the analogous one for the cate of continuous group permits one to apply the method presented to yyteme with an arbitrary oommatetive eymetry.

Therefore the summation in eq.(4) can be carried out over $\left\{\theta_{x, \mu}\right\}$ provided the summand is multiplied by

$$
\begin{equation*}
\Gamma_{\tilde{x}} \frac{1}{n} \sum_{P_{x=0}^{n-1}} e^{i P_{x}(\operatorname{Rot} \theta)_{x}} \tag{7}
\end{equation*}
$$

Now eq. (4) mas be written in the form

$$
\begin{aligned}
& Z(T) \sim \sum_{\left\{\theta_{x, \mu}\right\}} \sum_{\left.m_{x, \mu}\right\}\left\{p_{\tilde{x}}\right\}} \sum_{x, p-\frac{1}{2} \sum_{x, \mu}\left(\theta_{x, \mu}-2 \pi m_{x, \mu}\right)^{2}+} \\
& \quad+i \sum_{x, \mu} \theta_{x, \mu}\left(p_{x}-p \tilde{x}+\widetilde{\Delta x_{\mu}}\right)
\end{aligned}
$$

In on. (8) $\{P \tilde{x}\}$ means the configuration of integers
$P_{\tilde{x}}=0,1, \ldots 12-1$. The summation over m_{x}, μ can be carried out and one obtains (the notation $\frac{2 \pi}{2} \mathcal{K}_{x, \mu}=$ $=\theta_{x, \mu}+2 \pi m_{x, \mu}$ is used):

$$
\begin{align*}
& Z(T)-\sum_{\{P \tilde{x}\}} \sum_{\left.K_{y \mu}\right\}} \exp \left\{-\frac{2 \pi^{2}}{T n^{2}} \sum_{x, \mu} K_{x, \mu}^{2}+\right. \tag{9}\\
&\left.\quad+\frac{2 \pi i}{n} \sum_{x, \mu} K_{x, \mu}\left(P x-P \tilde{x}_{x}+\widetilde{\Delta x}_{\mu}\right)\right\}
\end{align*}
$$

Doing the well known identity

$$
\begin{equation*}
\sqrt{\alpha / \pi} \sum_{m=-\infty}^{\infty} e^{-\alpha m^{2}+i m \phi}=\sum_{n=-\infty}^{\infty} e^{-\frac{1}{4 \alpha}(\phi-2 \pi n)^{2}} \tag{10}
\end{equation*}
$$

one obtain.

$$
Z(T) \sim \sum_{\left\{\chi_{\tilde{x}}\right\}\left\{\ell_{\left.\tilde{x}_{\tilde{x}}\right\}}\right\}} \exp -\frac{1}{2 T^{*}}\left(\mathcal{X}_{\tilde{x}}-\mathcal{X}_{\tilde{x}+\Delta \tilde{x}_{\mu}}-2 \pi \ell_{\tilde{x}, \mu}\right)_{,(11)}^{2}
$$

where $\left\{\ell_{\tilde{x}, \mu}\right\}$ denotes the configuration of integers associated with ail the links of the dual lattice and we uss the notations

$$
\begin{align*}
& \mathscr{X}_{\bar{y}}=\frac{2 \pi}{n} \rho_{\tilde{x}} \quad \text { and } \\
& T T^{*}=\frac{4 \pi^{2}}{n^{2}} . \tag{12}
\end{align*}
$$

Finally, the following remark should be mentioned. Throughout the calculations presented the summation over $\phi_{x_{0}}$ (which can be reduced to the multiplication by n) was systematically dropped, one superfluous summation over \mathcal{X} was performed. To understand the latter point, imagine the lattice to be finite and to form a closed figure, bay a torus. Now single out any lattice cell. The condition $\operatorname{Rot} \theta=O$ in all other cells automatically ensures it in the cell taken and one of the summaions over P is in eq. (7) turns out to be unnecessary. This summation results in the multiplication by N only, because the dual system is $\mathcal{Z}(n)$ symmetric.

The derivation of the duality relations in the cage of the generalized gauge systems with symmetry $\mathcal{Z}(n)$ can be made in a similar manner. Note at first that under the generalized gauge invariance one should not distinguish between configuration g which differ in gauge transformation only. Therefore in the partition function the summation over the "potentials" A can be replaced by that over the "intensities" F provided its lattice "rotor" is constrained to be zero. The latter ia esaociated with the $9+1$ dimensional lattice element e and can be attached to the dual d-q-1 dimensional elements as well. Ensuring the constrain by the expressions of the type (7), where P is are fundtions of $d-q-1$ dimensional elements of the duel lattice, one immediately gets the required ralations.

Note that for $N=2$ model (1) is reduced to the plane Iaing model, the parameters T and $K(K$ is the inverse temperature of the Inning model) being related by

$$
\begin{equation*}
e^{-2 k}=\frac{\sum_{m=\infty}^{\infty} \exp -\frac{x^{2}}{2 T}(2 m+1)^{2}}{\sum_{m=-\infty}^{\infty} \exp -\frac{2 \pi^{2} m^{2}}{T}} . \tag{13}
\end{equation*}
$$

It is easy to check that $T \leftrightarrow T^{*}$ corresponds to $K \leftrightarrow K^{*}$, where $\operatorname{Sh} 2 K \operatorname{Sh} 2 K^{*}=1$.

The plane Ising model reveala a aingle phase transition point, its poaition can be therefore determined from the equation $K=K^{x}$. For the caee $n \geqslant 3$ the situation seems to ba different: there are two phase transition pointe, their positions $T_{C}^{(1)}$ and $T_{C}^{(2)}$ being related by $T_{C}^{(1)} T_{C}^{(2)}=\frac{4 \pi^{2}}{n^{2}}$. The presumable phase diagram in the $T-M$ plane is dramin the figure. Under the $K-W$

transform the upper and lower phases (shaded regions in the figure) turn into each other. In the lower phase the symmetry is broken and amall fluctuations occur around a certain group element and in the uppor phase the symmetry of the dual aystem is broken. Between theee two phases there in en intermediate region $T_{c}^{(1)}<T<T_{c}^{(2)}$. It looke like true that the properties of this phese are analogous to those of Berezinaki phase 7) of the $X Y$ - model, i.e., the symetry is not broken but the system posecsses a trensverse rigidity and large distance asymptotice of all the correlation functions are power-like, the exponents being the continuous functiong of the temperature. In this case the phase transition at $T=T_{C}^{(2)}$ corresponds to vaniohing the tranaverse rigidity and analogoue to that of the $X Y$ - model.

The author is grajeful to Alexander Zemolodchivov for useful diecuasions and remarks and to prof.L. I. Lapidua foz hia interest to the work.
Rererencen

1. H. A. Kramers, G.H. Wansier, Phys.Rev. ,60, 252(1941).
2. L.P.Kadanoff, H. Cava, Phys.Rev., B3. 3918 (1971) .
3. F.J.Wegner, J. Hath. Phys., 12, 2259 (1971).
4. R.Balien, J.M. Drouffe, C.Itzikson, Phye.Rev, D11, 2098 (1975).
5. A.M. Polyakov, Nucl. Phye. B120, 429 (1977).
6. B. F. Baaquie, SLAC-PUB-1989 (1977).
7. V.L. Berezineki, JEFF, 59, 907 (1970).

> Received by Publishing Department
> on Februaiy 71978 .

[^0]: *) The group $Z(n)$ may be defined ac a eet of integers $0,1, \ldots n-1$, the group multiplication being the modulo n eummation. **) The fields under consideration are certain formal generalizations of the gauge field. However, the geometrical intarpretation of these fields ia not clear. For $q=2$ the generalized gauge field is an ordinary one with the gauge aymetry $Z(2)$. Note, that all the gauge theorien of commutative symmetry cen be formally generalised in the dame manner.

[^1]: TJ All the following considerations remain true under any other choice of the interaction energy, but the K-W transform leads to the change in the functional form of $\mathcal{U}\left(\left\{\phi_{\mathrm{R}}\right\}\right)$

