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Kramsrs-Wannler Transform for Z(1) Symmetric Systems

Duality relations anslogous to the Kramers-Wannier symmetry
bt the plane Ising model are stiated for the spin and gauge systems
with isotopic symmetry Z(n).

The investgation has been verformed at the Laboratory of
Nuclear Problems, .EINR.
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Kraemers and lannier” have noted that the plene Ieing model
possesses an exact symmetry relating low and high temperature
phases of this model. It turns out that the model cun be equi-
valently described both in terme of the epin varisble & defined
on the lattice (order parameter) and in terms of the duel
varieble M (disorder variable?)) which is aesociated with
the dual lattice =nd is a spin variable too ( M= *4{ ). The
description of the low temperature phase in terms of ¢ is
identicel to thet of the high temperature phese in terms of j-(
and vice versa.

There are two poesible directions in which the Kramers-
Wannier ( K’W ) symmetry cen be generalized. The first is a
wide class of models with the same isotopic pymmetry ms the
Ising model ( Z(Z eymetry')). These modeles may be called
generalized gauge Ising models (see rer.? ). Consider a simple
cubic lattice in the d ~ dimensional space. The dual lsttice
is & simple cubic one too, ite sites being situated in the
centers of the inilkiel lattice cells. Lattice elements of
different dimensionality (< qé a may be considered (they
are pites for q= O , links for q =41 , plaquettes for

=2 and soc on), and the dusl relation cen be stated

between the elements of the initial lattice of dimensionelity
and d —q dimensional ones of the dual lattice., For example,
in the case of d = 3 the sites of the initial lattice are the
centers of the cells of the dual one, and the initial lattice
links pasa through the centers of the dual lattice plaquettes.
Generalized gauge Ising models are defined as followm: "Genera-
1ized gauge fiela""" A (which is & spin variable A=%1 ) is

*) wne group Z(n)may be defined as a set of integers O,il... n—i,
the group multiplication being the module ¥ summation.

e The fields under consideration are certain formal generaliza-
tions of the gauge field. However, the geometrical interpretation
of these fields is not clear. PFor e=2 the generalized geuge
field is an ordinary one with the gduge symmetry Z(2). Note,
that a1l the gauge theoriem of commtetive symmetry cen be formal—
ly generalised in the same manner.



s

defined on the -4 dimensional lattics elementis and "genera-
lized intensity"™ [~ which is associated with the q dimensio-
nal lattice element 1is defined as a product of ‘s corres-
ponding to all q-i dimensional elements that bound this
dimensional one. Defining a field O  on the q-Z dimen-
pional elemente of the lattice one introduces the "generalized
gauge transformetion® as a multiplication of A taken from
a certain q-i dimensional element by 6's taken from
all its @ -2 dimensional bounds. As a result of this gauge
traneform the intensity F  1a twice multiplied by eech S
(becauss any boundary is of no boundary), therefore, the field
intensities F are invariant under the generalized gauge
trensformations.

For these models the K-W symmetry is statea as follows:
the model with intensities F  definea on q dimensional
elemente of the lattice is dusl to that with field intensities
F defined on the corresponding d— dimensional ones of the
dual lattice. Por example, the three-dimensional Ising model is
dual to its gauge analog: in four dimensions the pure gauge
Ising field is selfdual. Analogous relations can be stated for
different mixed models; e.g., the model of Ising spins ( q:i )
interscting withi the Ising gauge field (q= 2 ) is selfduel in
three dimensiong, because the spin’ field ie dual to the gauge
field and vice versa. The survey of the problems considered can
be found, e.g., in ref.”’.

The second way of generalizing the K'W symmetry ie to
conaider systems of other commutative symmetry groups. It turns
out now that the symmetry group of the dual system is not general-
ly the same as that of the initial one. Por example, the models
of internal group LL(i) are dual to those of eymmetry Z *)5-7),

The present paper is devoted to demonstration that the
models of internal symmetry Z(n,)are dual (in the gense men-
tioned above) to those of the same symmetry ZO‘L). Under the
special choice of the interaction between spins the duality turns
out to be exact, i.e., K—W transform reduced to the change
in temperature only as in the case of the Ising-like models.

b Z is a group of integers, the group multiplication being
the numerical summation.



For the sake of simplicity at first coneider a spin system
of the globsl ZCYL) symmetry on the plane square lattice.
Lattice sites will be numbered by the variable X = X‘,’ X‘z} where

X4 ana X3 are integers. Dual lattice is a simple Square
one too, its sites are situated in the centerg of the initial
lattice cells and will be numbered by pair X = Xilx,_j of half-
integers. Purthermore we define two "unit vectora" AX .£=142
as AXy={10f 4%, = {0,1} and a dual pail‘ﬁp;" € wd Xy
6,” is the antisymmetrizator 6)4,;: -6% 3 Eppn 1 [ 2he
links of the initial lattice which ends in X and X+4X
will be lettered by the pair X /‘4 and the dgual lattice 1links
with ends in X and X"A)l/q by the pair X M . Note
that link X, M is dual to link X, M  provided J(=X+[’/L,}é},
We ghall reprerent the elements of group Z()‘L) asgociated with
the lattice site X by numbers & “Fx , where ¢‘ = Fl:t" .
Ky=04,... 2-4; 1in this case the group multiplication
coineldes with the usual production of these numbera. The con-
figuration of the system will be denoted by [qsx} . Of course
éne should not distinguish between configurations which differ
in ZJme , where )y are integers. Partition function of
the model has the form

Z(n = ) exp-U{ALT), o
%

where T ie a temperature-like parameter. For the function

Lt(f ?5,(}1 T) we take
iy 2
uitdn) L oZ e g 2

The reeson of such unusuel and complicated choice of u is
that in this cese its functionel form remains unchanged under
L]
K-W transform except for the parameter T transformation

*} All the following considerations remain true under any other
choice of the interaction energy, but the K-W trensform leads to
the change in the functional form of u({ﬁ}) .



Kote, that as | * O and ¢ - ¢X+A)I(/,‘r° small

u'({"‘} T) "21- Z (by ~Prrax ) )]

and therefore it is natural to call T the temperature.
Assuming (2) we have

Z(T)= Z}(Z exp 5T (H Puay, 2*‘%;«)2, @

where the configuration of integers associated with all the links
18 denoted by { my } . It 18 convenient to define augmen-
tetions 914 x+4¥ ?5 eesociated with the links of

the lattice dnd to ® ver o (where X, is an arbitrary
initial site) snd over all configurations {9; . of
course, the following restriction should be satisfied:

Rot Oy Bt B~ 122y

which takes into sccount the necessary requirement that the
circulation of"the vector" X, around each lattice cell
results in the initial group element. In 2q.%5) the lattice
“rotor" (Rot 9);' and the integers !; are attached to
the pites of the dual laivtice.

o

It is ecasy to check that‘
lf e '= 1
S et { y 4o
P-o e eZ(n) ht e"'ad

*) 2g.(6) is = pnrt:lculu;r ez&npl- of the general formuls

I

Z X (6) = { Jf G+l
uha:u ¥ rnumbers all the irrsducible repronntntim of the
point group G , /L is & number of its slements and T,(5) are
chmctou of these representations. This formmle together with
the analogous one for the case of continuous group permiis one
to aprly the method presented to systems with an arbitrary
commtative symmestry.
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Therefore the summation in eq.(4) can be carried out over

[ 91‘ /f ] provided the summand is multiplied by
F_LZ 7—/’x<3¢’t9) 1P
X Px =0

Now eq.(4) may be written in the form

Z(T) ex ~rm,
( {éf}{%,}{% prg Gl

In eq.(8) {PX} means the configuration of integers
%= 94,. . The summation over m,ﬂ can
be carried out and one obtains (the notation _-I )C‘/‘

= 9“‘;}“ + 25 mXﬂ 1m used):

2~ Z erl PR Z

lc,gf,} {9)
+ Z—B'Z_)Cxﬂ(f)x PK*AX/M)}
Using the well kuown identity
~otm?, :.'m;ﬁ -a(P-2 <
(%St e aan)t

Me-oo Nna-po

one obtains

sz»%}{z expgrl e iy ny,)



where {E}: } denotes the configuration of integsrs associated
with all the linke of the dual lattice and we use the notations

1,, - 2X p~ and
x nypx N
* 4% (12)
TTY= =5 )

Finally, the following remark should be mentioned. Through=~
cut the calculations presented the sumation over ,Qb,(a {which
can bs reduced to the multiplication by #L ) was systematically
dropped, one superfluous summation over f was periormed.

To understand the latter point, imagine the lattice to be finite
end to form a cloeed figure, eay a torus. Now single out any
lettice cell. The conditien Raf@ =0 in all other cells
automatically ensures it in the cell taeken and one of the summa-
tiong over f'a in eq.(7) turns out to be unnecessary. Thig
summation results in the multipliecation by /L only, because
the dual system is ch) symmetric.

The derivation of the duality relastions in the case of the
generalized gauge systems with symmetry Z(VL) can be made in
a similar manner. Note at first that under the generalized gauge
invariance one should notl distinguish between configurations
which differ in gauge transformation only. Therefore in the par-
tition function the summation over the “potentials® A can be
replaced by that over the "intensitiea” F provided its lattice
"rotor” ie constrained to be zero. The latter ia esaocciated with
the +1 dimensional lattice elements and can be attached to the
dual -G -~4 dimensional elements as well. Ensuring the con~
straint by the expressions of the type (7), where ‘s are func-
tions of -@(-4 dimensional slements of the dual lattice, cne
immediately gete the required ralations.

Note thet for /L =2 model (1) is reduced to the plane
Iging model, the parameters | and K ( K is the inverse
temperature of the Ising model) being related by

2
kTt Rama)

ZexP_gT:J:zhz .

Mms-soc

(13)



It is emsy to check that | <+ T* corresponds to K <= K¥,
where Sh 2K Sh2k*%4,

The plane Ising model reveals a 8ingle phese transition
point, its position can be therefore determined from the equation
K= IC¥ . Por the case 123 the situation eeems to ba different:
there are two phase transition points, their positions TC(’) and
T(J.) being related by 7;“) Téz): _‘1; . The presumable phase

[4
disgram in the J -JL plane is dramn in the figure. Under the {1y

transform the upper and lowsr phases (shaded regions in the figure)
turn into each other. In the lower phase the symmetry is broken
and small fluctuations occur around & certain group element and
in the upper phase the syumetry of the dual system is broken.
Betwean theee two phames there im an intermediate region
7;(')< T< 7;"-) . Tt looks like truse that the properties of
this pheses are analogous to those of Berezinski phase of
the XV - model, 1.e., the symmetry is not broken but the
system poseesses & troensverse rigidity and large distance
asymptotice of all the correlation functions are power-like, the
exponents being the continuous functions &t) the tempersture. In
this cass the phase transition at | = 7; corresponds to
vanishing the transverse rigidity and analogous to that of the

~ model.
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