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Introduction

The basic problem of the statistical mechanics is the
calculation of the partition fumction Z
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where E (&) are the eigenvalues of the Hamiltonian.So,in order
Strycharski Z, E17 - 197 to perform such calculations one should diagonalize the Hamiltonian.

Two Exactly Solvable lsotropic Heisenberg Models This is not easy task and in the case of the Heisenberg epin model

The connection between the permutation group representation
and the isotropic Heisenberg models is used for the solution of two < J:: 6.6 /2/
of them: the quantum Curie-Weiss model and the model with the H = —ZJ T

nearest neighbour interaction, Lii>

—

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,

this problem is still uneolved.In our previous paper [%] we have
found the relation between irreducible representations of symmetric
group SH and any isotropic Heisenberg Hamiltonian for spin 1/2
| i for the lattice with N sites.
| This relation allows one to reduce any of these Hamiltonlans
to the quasidiagonal form.
In this paper we shall describe the exact solution for two
models based on our previous results.(Gne of them is the quantum
- Curie-Weiss model [4] with Hamiltonian
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and the second one is the N nearest neighbours model/NNNM/

H=-35 &.5, . /a/

-

The quantum Curie-Weiss model ig especially interesting since 1t is

the simplest model exhibiting the phase transition [4] .

1.The relation between symmetric group and Heigenberg Hamiltonian

We can write any isotropic Heigenberg Hamiltonian for s=1/2
in the following form

S E.e = . . P Sl
H= =23 85 = 223 By + Sl /5/
where P‘j are elements of symmetric group 3, in soms reducible
representation X with the dimensionality 2§

The X representation can be reduced in the following way:

X= (w)a=n & (N-) FE=1 @ (N-3) =T g ..

/6/
%]
= P (N-2+1) [N'k‘kj’ -
k=0 [!} . g e N odd
z ) N even ,

N

where [N-\]) = denotes the irreducible representation S
and (B means the direct sum of representations .

From formula /6/ it follows that gur general Hamiltonian
/5/ can be reduced to the quasidiagomnal form.

N)

8]
H =& (N-2ee0) Wy i1/
=0

where

— 8
B, = _Zzg;j p‘r + S, /8/

P{Jk are the representatives of the transpositions of the i-th
and j-th sites in the representation [Nt k] .We denote +the
unit matrix in the same representation by A% .

2,The N nearest neighbours Heisenberg model (NNNM[

The Hamiltonian /4/ can be rewritten in the form containing
transposition operators

et et

H-= ‘JZE{'EN = ‘2:}2 Pin + J(N~1)
L=t

]

/9/
H' = a(n-1) .

1]

= {_23:2;': Prw + 23(n-01) = I(N-04

Such a partition of the Hamiltonian is worthwhile since the ground
state energy of H' venishes. '

Now we shall calculate the eigenvalues of H and their degenera-
tions.The use of /8/ yields

S
= @ H, (a0,

k<o

/10/
1 =l
H,,. = '232 P": + 23 (N-1) 4K,
L=
Hence we see that this Hamiltonian can be represented by the
quasidiagonal matrix S Lo 0
. n
AN /1t/




To each block there corresponds one of the Hamiltonians {Hk‘} .

Let us recall a few basic facts about the representations of

the symmetric group.The diagonalization of H.,_' is based on them.

i/ All transpositions P.‘l’ belong to the one class (1"*2).

ii/For any irreducible representation the sum of elements of the
(1"“2) class is proportional to the unit matrix.The coefficient
of proportionality is given by the formula

MO 2T) = 500 (A -2i41), 112/

iii/ The dimensionality of representation (d+.c) ig equal to

N (N-Zkfl) /13/
(N-ls)t L] :

In the decomposition /6/ only the representations {cN—k. 1‘]3
are present, thus

k‘\: N -k ')«.,_:k ')3='Ak=.~:ﬂ =0.

~

The proportionality coefficient A is also the eigenvalue of
the operator,being the sum of all transpositions

[n-k, &)

— w

= 2, P{l‘
1€UQIEN

For the class of representations [iN-k, &)

N

Aty ) = Son-b) (veeen) +2L(e-3), /144

Using the above informations we can transforn the Hamiltonian/10/
to the form

He = - 23 3 Py 4 23(n-0) 4% o 715/

=1

«— [ 4 X e
= -22 {Z, Py = 2 By 3 + 23(n-1) At

1SL < EN AETCjEnN

The operator“%:;.'j contains only transpositions belonging
Seey
to the subgroup SH_1,so the representation (M-¢.t) becomes now

reducible
[Nv-v k] = [N-k-1, k) @ Cn-w -1 . 116/

In these representations the operator z P{l' is diagonal.

1.‘1Lj‘-~"

Using Egqs./14,15,16/ the Hamiltonlan /15/ can be cast 1n
the final form

W, = *23{{ TG 3 k(e3) - L (e k) —
S3ken) - wa §AEee) @ oo +

+ 5 kle-3) - 3 (M- (vE-1) = 4 1) (emn) -N+1?I 4([,._.‘,;..]).}

= xJ dven)) @ (v-k)3d &([N—Lt-l]).
N1/

]
Thus, the Hamiltonian H . contains only two different eigen-

valuss E: = kJ and E,,_z = (M+H)J with the degenerations

Qu-1)! (~-2) (-0t (n-2et2)
(v-)! bt and (OO () respectively.

/
Our results for the whole Hamiltonian H are presented 1n
fig.1.



Using the
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Fig.1.

Energy spectrum and degenerations for NKNM.

eigenvalues and their degenerations, one can easily

calculate the partition function and the free energy.
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These formulas allow one to study the thermodynamic 1imit

Kt

-1 - b 'hMZN = fa2 +i{,‘3+h~d~(§3 .

T Nve 2

In this limit the free energy of this model coincides with
the free energy for one-dimensional Ising model.It means that
in both models the thermodynamical functions are the same.

3 ,.The quantum Curie-Weiss model ZQCWM(

Now we shall diagonalize the Hamiltonian for QCWM.There
exists many exact results for this model,but only in the thermodyna-
mic limit [s).In particular,it was shown that the mean-field
approximation is exact in this limit.But nobody sucoeeded in the
calculation of the energy spectrum and partition fumction for
finite N for this model.We shall show that using the results
of sections 1 and 2 we can solve this problem.

In terms of the transposition operators the Hamiltenian
reads

] 2 = - 23 P.. i
N ace KN l N 4%]‘4!0\\) MEACAOLE
/18/
CL:J LIRS
© @ e (B AT L 2
k=0

We see that Hamiltonian /18/ contains the whole sum.
Helpfully from /11/ 1t follows that this sum is already
diagonal in irreducible representations f w3y | Hence,
in faoct we have found the solution of our problem.
Similarly as in the case of NNKM we can visualize the pro-
perties of the energy spectrum in figure 2.
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Fig.2
Energy spectrum and degenerations for QCWM.

The partition function can be transformed fo the form

) v (31 r_lie1)
_ < ~pEe Fm-n X ! 2v (k- ke
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This form resembles the Kac result [4] .dence.we can use his

ingenious method of calculating the term under derivative.
Using the identity

¢ = T‘_—u__\‘-:g).exr("igl*'wag)dg /20/

one has

oy

—2(3+8) =
S PO R- PRICT R o SO

—o

- ";.!“*i'i) d‘-al i LI L3 .
e é%&@lg@ e Zk))"*g- e

k=0

One can now perform the sum over the K independently of
the result that

-3 0344) T i
P 2y 1 Ni S z § 5 N
Z,~ e N 2 By e ch,(grg)ag 22/
The change of variables g-(g = vlm gives

~F3+) TN - -:1.4!” ~ =
= N w9 Chag (¥ +2 N /23/
“uce 2 ST e e ]

N N+

and application of Laplace’s method /i.e., the saddle-point
method / shows that for large N

1
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where 3((,!_) is the Kac function for classical Curie-Weiss
model

K(£)= mox [6_’{”‘ chle? ]
~v<0|<o°

The equation for maximum of K gives the well-known solution
for mean-field approximation.

'Y\:W"&klvlw /26/

Let us mention that in quantum case the argument % of ¥

1s equal to half of olassical argument of ‘X’ . It means that
in quantum case the oritical temperature is twice as large as
in olassical one.

Summary
We have shown that using some results of the symmetrie group
one can rather easily diagonalize the Hamiltonians of a elass
of Heisenberg models.Our results are valid not only in thermodyna-
mic limit but also for any number of sites.In particular,
the comparison of the results for both considered models and the
corresponding to them classical Ising models,shows that these,

12

quite different for N finite, models coincide in the thermcdynamric
limit.Thus,we are faced with astonishing properties of the thermo-
dynamic limit. We believe that the symmetric group,one of the best
known in mathematics,could give solutions for more sophisticated
models which does not correspend to the mean-field theory.

The author is very indebted to Dr J.M.Kowalski for
drawing his attention to the QCWM and to Dr T.Paszkiewicz for
useful discussions.
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