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MaranTHrie pewenns mopenn Xa66apaa

CymecTsoBanne H yCTOHYHBOCTL AHTHHEDPOMArHHTHBIX H theppoMarun THbIX
pewennt Mopens Xa66apna HCClenoBaHBI B PAMKAX NpHGIHMKEHHS Xaprpu-doka,.
MMokasano, uro Monem Xa66apna nomyckaer ans npocToit Ky6udeckolt peweTxn
A ompenejIeHHLIX NapaMeTpoB B KOHEYHOH 06GaCTH TemnepaTyp ycToHgmphie
MariuTHele pellensd, RaXe B TaKHX CiydasX, M€ AVsi 3THX MAPAMETDPOB MpH
T=0 MarHETHeM NOPANOK He CymecCTBYeT.
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Magnetic Solutions of the Hubbard Model

Existence and stability of antiferromagnetic and of ferromagne-
tic solutions of the Hubbard model were imrvestigated in the frame.
work of Hartree-Fock approximation, It was found, the Hubbard model
for simple cubic lattice and certain parameters admits stable magne-
tic solutions in a finite temperature range, even in cases, where for
these parameters at T =0 no magnetic ordering exists (so—called
heat magnetization),

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1. Introduction

The aim of this paper is to investigate antiferromagnetic (afm)
and ferromagnetic (fm) solutions of the Hubbard model using
Hartree~Fock approximation. From the numerous papers on magnetic
golutions of the Hubbard model we only refer to the papers /1/,
/2/, /3/. We calculated the Néel and Curie temperature, respec-
tively, the temperature dependence of the order parameter, the
static zero-field susceptibility and the free energy for a
gimple cubic lattice and we found among others, that for nearest
neighbour overlap and non half-filled bands magnetic ordering can
appear in a finite temperature range even if for the temperatu-

re T=0 no magnetic ordering exists.

2. Hartree-Fock- approximation

In Hartree-Fock — approximation the Hubbard Hamiltonian can
be written as

H=-Z tircde, + UZ {npg) niy - /".Z i ,
Wje | ' ‘e
(1)

where C;;. and Cloy are creation and annihilation



operators for an electron with spin ¢ in a Wannler state of

the i~th atom . f;i is the kinetic energy in the band,U i3 the

repulsive interaction between electrons of the same atom and‘/t is

the chemical potential. In the following we restrict ourgelves
to a simple cubic lattice.
For the average occupation numbers of electrons with spin &

or - g of a Wannier state we use the following ansatz
= B

{nigg) = ./i‘ (ntve 't ;},

(2)
no= N L ({nig) + {nie) (3)
being the average occupation number of electrons per atom,
_ , i K
Yy = ((“m’) (V\”-c?)(’— ? (4)

—
is the order parameter,R; is the position vector of the i-th

atom and N is the number of atoms in the lattice. For ?1’- '?:/L

( -vector of the reciprocal lattice) we get afm or paramag-

netic (pm) solutions and /MBX' ( /“B -  Bohr magneton)
is the sublattice magnetization per lattice point. For ? = 0
we obtain fm or pm solutions and the /M9 ¥ is the magneti-
zation per lattice point.

Using the retarded Green funotion

Gglz.lw) = Legy cz.: Vo =

(5)
/
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(6)
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we get in the afm case tﬁ'z« 7&,’/&,, the following self-consis-

tent equations for the quantities N and Y

N"%“{[E,(I)J) ¢ fLELELT) o

¢ - N2 1%:(1(%”;”' femnf o
§

f(w ; T ) denotes the FPermi function

flu;TI - (peebr]” (9)

(7) and (8) ere in accordance with the system given by Langer

et al /1/.
For x>0 the ega. (7) and (8) beoome two coupled equations

for the Néel temperature T&

ne N"zrf,('l%'/"'el!} v ,

and the chemical potential/u :

(10)

p=N'g ucw *poeni WU poee i Tl

In the fm cage ( a » 0 ) one obtains from (2)

n __N“E{4(Ef(EI;Tl+4(E4,(m;T)’ (12)

T ALEARLT) - f(E LK) T
v k u f | ( 0 | (13)
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with
b
(Bl=2(ngxrl-p-¢
2 L VTR (14)
and from thege for x =0 (and therefore T —» Tc , where Tc is

the Curie temperaturé) the equations
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(For T,~> O one gets from (16) the well-known Btoner criterion).

Since the self-consistent equations (7), (8) and (12), (13) al-
ways admit the solution x=0 (i.e.yparamagnetism), one has to
dipcuss the stability of solutions x * 0, if they exist.
To this end we calculate the response of the system to an*oxter-
KAR) = he TN
nel static magnetic field of the form (2
For the static zero-field susceptibility

o . YMLg
g1 =
’/(1 i e (19

with

M(ﬁl = M ' Zl(ﬂ.f) (“.;))Pj(‘ '/M,N Za(ckc _.)

(18)

we get in the afm case (E{= E/L)

gnd in the fm case ( 3 = 0 )

B T e
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The mean values in (18) are calculated by means of Green func-

-
tions, which differ from G r ' (w) according te eq.(5) by

the replacement of %Y by (%r +ﬂﬂd A ).
Negative values of the function X ( q ) indicate instability

of the pm phase compared with afm ( ? - ; 74 )orfm (§'=0)
spin ordering, respectively. The transition temperatures are
obtained by the vanishing of the denominator in (19) and (20).
One sees that one gets again the equations (11) and (16) for the
Néel and the Curie temperature.

Since among several magnetic phases that of the lowest free
energy F is stable, we give the free energy per lattice point
Fﬂ

for the afm phase & and for the fm phase ﬂ‘

E,(E)
=-l( TN“{}M(A+Q 1{7 )+/,m-—(n X)

(21)
(.El( ‘:) according to (6)),

F/r : Etlzi ( y
~t=-k TN"Z I [ A +e KT n- g -
N 9 Ko /M (22)

-
( Eq (k) according to (14)).
The chemical potential M is determined by n .

Without external magnetic field the equations (8) and (13) for
IF

b )y A‘n
what is evidently the case., With that is also shown, that in the

the order parameter have to result from the conditlon(

framework of Hartree-Fock approximation the different methods
for determination of the Néel or Curie temperature yield the

same result.



3. Discuseion

For the numerical evaluation we restricted ourselves for the
moment to nearesti-neighbour hopping. All the energies are rela-
ted to the band width W, Pig. 1 shows k,,T/ W as a function
of U /W for different values of the mean occupation number
n. One pees that for non half-filled bande there are double
gsolutions for the Néel temperature in some parameter regions,
i.e.yto fixed values of n and u//H/belong two different values
of the Neel temperature. (The values for TN=O are in accordan-
ce with thoese given by Penn /4/). Furthermore appesmrs, that for
nonhalf-filled bands an afm golution only exists above some
value of U /W . Fig. 2 shows once more that theése double solu-
tions for TN also exist for U 4 W, where ore should believe,
that the Hartree-Fock approximation ies applicable.
The existence of the double solutions is also reflected by the
temperature dependence of the order parameter » , plotted in
Fig.3 for several combinations of the parameters: if for fixed
values of W and H there are iwo values of the Neel tempe~
rature then afm ordering ( x # 0) is possible only between these
two temperaturee.Moreover one sees that with increasing corre-
lation energy %, the order parsmeter x increases and the
temperature range of afm ordering enlarges.
Fig. 4 shows the static.zero-field susceptibility /Y (qs ?/1)
for the same parameter values. In the region, for which is
x¢ 0, is 2«(5’- i'/.uco, i.e.,the pm phase is unstable and
therefore the afm phase stable. (¥e remark that for this para-
meter range no fm phase exists. A numerical evaluation of
eqe. (15) and (16) shomed that fm ordering for all n is
only possible for éa Z 0.57). Pig. 5 represents the diffe-

rence of the free energy of the pm and of the afm phase. The
free energy of the afm solution is always less than that of the
pm solution, i.e.,the afm solution is stable and no phase tran-
sition of the first kind exists. Besides numerical calculations
showed that also in the case of Curie temperature TC double solu-
tione may exist for certain combination of n and u ,/IV

and for nearest-neighbour hopping. Taking into account next-—
-nearest neighbor hopping we get double solutions for TN and

T; even in the case of an half-filled band (n=1). Moreover ,
then afm solutions exist only above a certain value of u /W
for n=1, too.

Therefore we have concluded, that the Hubbard model for
s.c.l., if Hartree-Fock approximation is used, admits magnetic
ordering for certain parameters in a finite temperature range,
even in the case, that no magnetic ordering exists for these
parameters at T=0. Kitano and Trammel /5/ and Berdyshev /6/
found the pame phenomenon (so-called heat magnetization) for

an effective spin Hamiltonian like we found for the band case.
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‘Fig. 5.
Difference of the free energy per lattice point of the
pm and of the afm phase versus temperature T in units

of k5 // H/ for the same parameters as the order para-

meter x in PFig.3.
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