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CpaBHeHHe OBYX MOAXOAOB K AHACPAMMHOH TeXHHKe Ans ¢yHKuAR
FpHa CO CNUHOBLIMH OllepaTopaMu

[TocTpoeHne RrarpaMMHOH TeXHHKH ANg ¢yHxuuih [puHa, copepxamiux CHou-
HOBLIEe ONlepaTopsl, SIBAAETCH CJ/IOKHOH NpoblieMoli u3-3a HeOOLIYHHIX NepecTaHo-
BOYHBIX COOTHoweHud, [loka Ang 3Toro cnayuasg He CywleCTByeT OSWENPUHATON
nuarpamMmHoi TexHuku. [aeTcs KpaTkHii 0630p pa3/M4HLIX MOMNBITOK NMOCTPOEHHH
noaxofqdimeit nuarpaMMHoll TexHuku, [loxasaHo, uTo amarpammaas TexHuka H3io-
muua, Kaccana-Oras u CxkpaGuHa NMOCTpoeHa He COBCeM MOC/AedOBATENbLHO.

Pa6ora BuinonueHa B JlaGopaTopuu TeopeTnuecKoii ¢uauku OUAU.
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A Comparison of Two Approaches to the Diagram
Technique for Green Functions Containing Spin
Operators ’

The construction of a diagram technique for Green functions
containing spin operators is difficult due to the complicated com-
mutation relations of spin operators, At present, there is no com-
monly accepted diagram technique for the problem in question.
After giving a short review on several approaches, we show that
the diagram technique of Izyumov, Kassan-Ogly, and Scryabin is
not free of inconsistencies,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1, INTRODUCTION

The application of Green functions (GF) to spin
problems is more difficult than to boson or fermion
problems because of the commutation relations of
the spin operators:
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*
[Sf S =28 S . (1)
The commutator of two spin operators is not a ¢ -
number but again an operator., Further, one has to
take into account that the repeated application of
a ladder operator S+ or 87 yields =zero at a cer-

tain step:

+,R5+1 -, 28+1

(8.) =6,) . (2)
It is difficult to deal with this last property of the
spin operators, too, There are many attempts to
approximately calculate the spin operator GF, the
first of them is due to Bogolubov and Tyablikov/ !/
decoupling of the equation of motion for the one-
particle GF of a Heisenberg ferromagnet. The pecu-
liarities of spin operators, as expressed in eqgs. (1)
and (2), do not allow one to go essentially beyond
the Bogolubov-Tyablikov approximation without un-
avoidable ambiguities, using the equation of motion
method,



On the other hand, a diagram technique allows
an estimate of the accuracy of any approximation,
Therefore, it would be quite useful to develop a
diagram technique for the spin operator GF, The
algebraic properties (1) and (2) of the spin operators
are the main difficulty to overcome, Due to the fact
that the commnutator of two spin operators is again
an operator, Wick’s theorem does not apply to spin
operators,

An analogue to Wick's theorem, valid for spin
operators, was proposed first by Jager and Kiih-
nel’?/ for $=1/2 and by Izyumov and Kassan-Ogly’'3”
and by Haberlandt and Kiihnel "%’ for arbitrary S
E‘o/r;/ar‘bitr‘ar'y S, the analogue to Wick's theorem
is

a a 1
<TGp Spe ) =

a a. Qa,
— G, (r =1, I<T(S, 18,2 18 2>+

(3)

2<8 %

a
+ G (r. -7 )< T(S.% [s% ,8%3]..
2 (7 =)< TS, [8T1 878005 o,

where

Gy (rg =r )= =<T1 Sg(r?)S;(r DI

/
;T - -
(1-e 797 18[1 2<SZ>0e Tp =m0 ;g =7 >0
m { 'm
= ' 4
(uo,'/T -1 z —(TE Yo ( )
—-(1-e ) 8p, <S8 >e , 1, -7 <0

is the zeroth order GF, Relation (3) is written down

a :
for the case Sl1 being Sl+ , only an obvious change
in the arguments of the zeroth order GF is neceséa—

a
ry for the case Sl1 =8 .
There is no doubt in the wvalidity of the analogue
to Wick's theorem (8). However, drawing the diagrams
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for a certain problem, different representations are
used by Izyumov, Kassan-Ogly, and Scryabin
(IKS)’®/ and by Kiihnel/8/ , Trimper /7/, and Haber-
landt and Kiihnel (HK)/4/, In spite of the fact that
it is a laborious and not very profitable task to com-
pare different diagrammatic approaches, we feel it
necessary to have a common view on competing
approaches, It is our aim to find out whether the
diagram technique proposed by IKS and HK for the
Heisenberg ferromagnet are identical, equivalent or
contradictory, Our result will be that the analytic
expressions for the single terms in the perturbation
series are identical in both approaches and the
diagrams of IKS and HK are equivalent to each
other; however, the graphical representation and the
way of summation of diagrams lead to inconsistent
results in the IKS approach.

In Section 2 we present our approach and in
Section 3 we present the IKS approach for the
Heisenberg ferromagnet to an extent necessary
for finding out the essential differences, In Section 4

we show some internal difficulties of the IKS approach

and compare the ways of summation of diagrams in
both approaches.

We do not give the full history of numerous
different diagram techniques for spin operator GE,
but refer to the literature’58/, In earlier papers’89/
we could show that the expressions for the pertur-
bation series obtained in the drone-fermion represen-
tation by Spencer'/w/ and by Izyumov and Kassan-
Ogly '3/ are identical with those of the Pauli opera-
tor approach /287 we proposed for the case of
spin 1/2. However, the summation of the terms in the
perturbation series (summation of the diagrams) is
carried out in difficult ways. A review of the compa-
rison of different diagram techniques has been given
recently /117



2. THE DIAGRANS INTRODUCED BY
HABERLANDT AND KUHNEL

In this paper we shall deal with the Heisenberg
ferromagnet the Hamiltonian of which is

H=Hy,+ H; . (5)
where

H0=—w05r. SrZ' wy = pl,

Hl-—fg Iy (s;s“; +8782). (6)

No intra-atomic exchange shall be pr'esent:Jrf -0,
The first term in H; represents the transverse
interaction, the corresponding wvertex connects two
GEF and will be denoted by a point; the second
term in H; gives the longitudinal interaction and
will be denoted by a wavy line; one end of a wavy
line is linked to one incoming end, one outgoing
GF lme to one broken line representing K%’ =

= <8%s%> -<8™2 or to a circle standing for <Sz

A zeroth order GF (4) is represented by a sohd
line, Additionally, we have a triangle: from one
angle an outgoing line starts, at the second angle
an incoming line ends, and the third angle is put
onto another line without affecting it; all three angles
belong to the same lattice point. A broken line or
a triangle can be introduced between two parts of
a diagram not belonging to the same lattice site,
if it is not ruled out by the relation J, =0 . For
further details, we refer to’4/. Three parts of a
diagram not belonging to the same lattice point
may be connected by a broken double line repre-
s enting the joint part KZOZZ of <SZSZSZ>0 , etc..
The GF to be calculated is defined by

G?m(’ -r)==<TI{§ (rg)s (r )0(1/T)}> /<o(1/T)> . (7)

where o(1/T) is the usual S operator the expansion
of which gives the perturbation series. Up to second
order, one gets the diagrams of Fig. 1.
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Fig. 1. Diagrams up to second order according
to Haberlandt and Kiihnel.

In the case of spin 1/2, the diagrammatic repre-
sentation simplifies due to the relation
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As a consequence, the higher correlation functions
K % | K%ZZ, etc,, may be expressed in terms of GE
lines, vertex parts, and triangles; e.g., one has

Z - -

<sgsfn>0 =<SZ>20 +0 (1-0)8, (9)
where 0, =—Gg% (—O)-<SQ_SE>0 - The diagrams for
5=1/2 are shown in Fig. 2 in the same sequence
as in Fig, 1 for arbitrary spin, In the case of
spin 1/2 we have only the triangle additionally to
the boson case and the prescription to connect
all parts of the diagram which do not belong to the
same lattice point with the help of triangles, In this
way, additional diagrams appear in comparison with
the boson case,

One sees at once, that some of the diagrams
cannot be summed with the help of Dyson’s equa-
tion, Such diagrams are found to vield just the
expansion of 8%>, and the factor <§2 > in the nume-
rator of the zeroth order GF will be replaced by
<8?> as the result of the summation of those dia-
grams 6/,

Let us demonstrate the just mentioned situation
by considering the trace <T{S[’+S;,”(1/T)}>o . Acoord-
ing to our relation (3) we obtain H
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The trace explicitly written doun in equation (10)
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Fig. 2. Diagrams up to second order according
to the Pauli operator approach for spin 1/2.

Z
is the expression for the full <8 "> (except the de-

nominator <¢>  left out in eq.(10)). One finds, that



the higher order correlation functions of zerocth
order appearing in several diagrams become full
functions, too’%’

The remaining diagrams may be summed with
the help of Dyson's equation, If we take into
account in X the diagrams of Fig, 3 we get the
following GF:

G(w et
fo —c (R) (11)

where’

‘1(E)1“ Hi2es®~[J0)-T®K)] +
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Fig. 3. Diagrams included

y 0 O LW z_,J into the self-energy part in
the first order theory.

In equation (12) K(a) _is the Fourier transform of

Kpw im(3)=2<8">0(d), where ¢ (§)=(e <@ 'T-1)"! The
spin wave energy ¢,(k) is now the commonly accept-
ed expression for the spin wave energy of a first
order theory in the sense of Rudoy and Tserkowvni-
kov 1%/ y L.e,, under neglection of the damping of the
spin waves, This result was derived by Plakida’ 13/
it corresponds to the results of Mubayi and Lange !
and Kenan’1%In the case of spin 1/2 the calcula-
tion of <8°>is based upon the relation (8):
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and we get

<8 z>=l- 1

1 2

The term 4<l>2 vields a term proportional to T? in
the low temperature magmtization, and one does not
get agreement with Dyson's result ‘16 .Rudoy and
Tserkovnikov’ 12/pointed out, that only in a scecond
order theory, taking into account the damping of
the spin waves, one may get agreement with Dyson’s
low temperature magnetization in the framework of a
spin operator approach,
In the case of higher spins we use the rela-
tion’
s has-ds (28005 00®5E )

For S>»1 , there is no additional term T? since P51

is at least of the order of T®? and does not

affect either the termT? or the term T4, As a con-
sequence, the case $§=1/2 is the most interesting one
at low temperatures, and we shall see that the
difficulties in the approach of 1KS are most evident
even for spin 1/2.

3. THE DIAGRANS INTRODUCED BY IZYUMOV,
KASSAN-OGLY, AND SCRYABIN

Izyumov, Kassan-Ogly, and Scryabin 5/ obtained
the same expressions for the single terms in the
perturbation series as we did’4% .We could show
that there is a one-to-one correspondence between

1"



the diagrams of IKS and ours., Figure 4 shows
the diagrams of IKS in the same sequence as the
diagrams in Figs., 1 and 2,

The diagrams in Fig. 4 have the following
meaning: A solid line stands for a zeroth order GF,
a wavy line represents the longitudinal or the trans-
verse interaction, The additional symbol =mmm._comes
from the unusual commutation relations, An oval
indicates that all parts of a diagram enclosed in it
belong to the same lattice site, If an oval encloses
1,2,3,...disjoint symbols, then the corresponding
expression is multiplied by b=<8%> b’b/.and by
the appropriate product of Kronecker §'s indicating
the coinciding lattice points, All the other diagram-
matic rules are as usual,

As a first remark we mention that one free end
of the last but one diagram in the third line has
been lost., This lack of one free end is very un-
usual and may raise difficulties in a consistent sum-
mation of diagrams. In any case, the number of free
ends - two for the one-particle GF - is a fixed
number during any calculation, and so the graphical
representation in the form of the mentioned diagram
is very dubious,

The second remark is concerned with the unusual
ovals around some parts of the diagrams, These
ovals are an expression of the fact that IKS did
not really. overcome the difficulties with coinciding
lattice points in their graphical representation., In
fact, the ovals stand for an infinite number of sym-
bols representing the factors b,b’b,, and the corres-
ponding product of Kronecker §'s; in our represen-
tation, we used in Fig., 1 a broken single line,

a broken double line, etc., in this connection, In
more complicated diagrams these ovals produce
an infinite number of new wvertex parts, The use of
the term "vertex part" is unusual in IKS., In the
usual sense, they do not have five vertex parts -
as they claim to have - but an infinite number, as
it is clear from our representation,
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Fig, 4. Diagrams up to second order according to
Izyumov, Kassan-Ogly, and Scryabin,

v

( ——)

2
&=
@
K Wdt=1

The graphic representation of IKS is not ade-
quate for the summation of the diagrams with the
help of Dyson’s equation, One does not see which
diagrams may be included into the self-energy part
and which diagrams cannot be treated by means of
Dyson’s equation, In particular, this statement applies
to the second and to the fourth diagram in the
third line of Fig. 4; the second one contributes to

13



the self-energy, the fourth one to <8%>.IKS do not
use Dyson’s equation for the summation of more
complicated diagrams, but Larkin’s equation /87
Nevertheless, a clear distinction of the diagrams
contributing to the expansion of <8%>and to the
self-energy part, respectively, would be useful,

4, SUMMATION OF DIAGRAMS BY IZYUMOV,
KASSAN-OGLY, AND SCRYABIN

IKS sum their diagrams step by step up to the
consideration of the damping of the spin waves, We
shall follow their summation procedure and indicate
some incorrectness in their second step, and we
find out a contradiction in the calculation of <8%>.

First, IKS notice that one may sum diagrams such
that <SZ>0 becomes a complete <§%> at the ends of
single tails, what is graphically represented by the
substitution of the white circle by a black one in
all single tails (Fig. 5a). Then, in fact, IKS use
Dyson's equation to sum all diagrams contributing
a single tail to the self-energy part, Further, they
sum all single~tail diagrams appearing as disjoint
parts in a diagram (Fig. 5; Fig.5b is eq. (3.1)
in IKS, but the misprints corrected)., The resulting
GF is (in our notations,;—JIKS=J)

2b(y)
G E ]
MFA“n) i - e ' (14)
n MFA
where
¥4
SMFA=y=p}(+2<S > J(0) . (15)

This approximation is the molecular field approxima-
tion (MFA); in MEFA, we have <SZ>MFAsb(y).

The next approximation consists again in the
use of Dyson’s equation including the wavy line
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Fig. 5. Diagrams summed by IKO in molecular
field approximation,

for the transverse interaction into the self-energy
part (in the notation of Section 2: including the
point).

The resulting GF is

iwn—(l(l:) , (16)

¢ ()= s 2b) [ TO-T1(K) . (17)

It should be noted that the expression for the spin
wave energy is not quite correct, As is stated
above J(0) has to be multiplied by <$” >in the corres-
ponding approximation, However, J(l?) has to be mul-
tiplied by the numerator of the GF, i.e., by b(y). So

one really does not get the spin wave energy (1?)
but

F(K)=pH42-8% > J(0)=2by)I(K). (18)
The expression (18) is no reasonable spin wave
energy, because €(0)#0 if T£0, since<S82> 4 b(y)
in the approximation (16), (17). Deriving expression
{16) for the GF, the diagram Fig, 6a was neglected
as compared to the diagram Fig. 6b without any
foundation, We remember that the neglected diagram

is just the diagram in which one free end has been
lost,

15



Fig, 6, Diagram a is neglect-
ed with respect to diagram b,
a b

A consistent approximation would vyield the GF

B - 2<Sz >
Gyl ) = —==—me (19)
lo ~€ap k)
where
eBT(T()x #H+ 2<Sz>[J(0)—J(E)]. (20)

The GF (19) with the spin wave energy (20) is the
result obtained by Bogolubov and Tyablikov ' 1.
The diagrammatic representation of IKS seems
to be inadequate for the application of Dyson’s
equation and led IKS to the unreasonable spin
wave energy (18). Unfortunately, IKS do not dis-
tinguish correctly between b(y) and <S?> in the
approximation (16), (17), They claim, that their re-
sult (16), (17) becomes Bloch's linear spin wave
theory as well as it agrees practically with the
result of Bogolubov and Twyablikov 'l As we have
pointed out the spin wave energy (18) results from
very rules of IKS, so neither of these statements
is true, The expressions for the low temperature
magnetization obtained by Bloch and by Bogolubov
and Tyablikov differ from each other by the term
T3 and by higher terms,
The spin wave energy (18) will be used by IKS
in higher approximations in the form (20),
The next approximation of IKS results in
G (0 By-_238"> _ (21)
C

n io - E(K)

where at low temperatures (in our notations)

16

E®)=p H+2<8 >[I0 -T®)1+ 2 3 [1@)-T@-bxa @)
N (22)

The shape (21) for the GF was obtained only neg-
lecting some terms in the numerator, but as it stands
it is identical with our GF (11) with the spin wave
energy (12) neglecting the longitudinal correlation
function K(9).

However, in the same approximation <S$ % is
given as

zZ
<S“>=S—-¢. (23)

In the case 8=1/2 , expression (23) is in contra-
diction to the relation (13):

<S%>a ;_(1—2<1>+4q>2 o).

The additional term 4®2yie1d5 a term T3in the
low temperature magnetization, and Dyson’s result
cannot be obtained from (13), but it comes out
starting with (23). In the expression (23) the term
(@S+1)p2S+1 does not appear,

We do not follow IKS to higher approximations,
but the inconsistent treatment of the lowest appro-
ximation must reflect on the higher ones, too.

5, CONCLUSIONS

We have shown that the diagrammatic representa-
tion proposed by Izyumov, Kassan-Ogly, and Scryabin
for the Heisenberg ferromagnet is not adequate for
the summation of diagrams at low temperatures, On
the contrary, those authors were led to inconsistent
and even to contradictory results at low temperatu-
res summing their diagrams, Therefore, the diagram-
matic method in the book of Izyumov, Kassan-Ogly,
and Scryabin should be used very cautiously.

17



As far as it is concerned the Heisenberg model
for spin 1/2 at low temperatures, the summation of
diagrams performed by IKS is wrong, in the appro-
ximation (21-23), For a long time it has been un-
clear whether one could reach agreement with
Dyson's low temperature maghnetization in a spin
operator approach using an approximation as (2]),
(22). There were some attempts to obtain  this agree-~
ment {e.g., Lewis and Stinchcombe 718/ ), but we
could show’/19/ that this agreement was achieved at
the cost of unjustified neglections.,

From the coinciding results obtained by several
authors by using either the equation of motion me-
thod and a decoupling procedure /1:17:14.15.207 o 5
formal solution of the equations of motion 12/ or per-
turbation theory "813/ it is now well established that
a spin operator approach via GF yiclds a term T3
in the low temperature magnetization, and agreement
with Dyson’s low temperature maghnetization may be
found only in higher approximations/lz/. The results
(21-23) of IKS are in contradiction to all other spin
operator approaches to the Heisenberg model,

ACKNOWLEDGEMENTS

The author is very indebted to the director
of JINR for the kind hospitality. Useful discussion
with Drs. V,K,Fedyanin, N.M,Plakida, and S.Trimper
are gratefully acknowledged,

REFERENCES

1. N.N,Bogolubov, S,V,Tyablikov, DAN SSSR,
1959, 126, p. 56,
2, Jager E., Kiihnel A, Phys.Lett,, 1967, 24A p.747.
3. Izyumov Yuw.A., Kassan-Ogly F.A. FMM, 1970,
30, p. 225,

18

10,

11,

12,

13,
14,

15,
16,
17.
18,
19.

20,

Haberlandt H,, Kiihnel A. phys.stat.sol, (b),
1973, 60, p. 625.

Izyumov Yu.A. Kassan-Ogly F.A.,, Scryabin YuN,
Field Methods in the Theory of Ferromagnetism,
Moscow, 1974 (in Russian).

Kthnel A, J.Phys., 1969,C2, p. 704, 710; Kiihnel A,
Schneider J.,, Trimper S. Wiss, Z, Karl-Marx-
Universitdt Leipzig, 20, 303 (1971).

Trimper S. Thesis, Karl-Marx-Universitat Leipzig,
1972 (unpublish.).

Kiihnel A, phys.stat.sol., (o), 1973, 55, p. 559.
Kiihnel A., Trimper S. Acta Phys.Polon.,, 1973,
Ad4, p. 493, .
Spencer H,J. Phys.Rev,, 1967, 167, pp.430,434.
Kiihnel A. In: Proceedings of the International
Symposium on Statistical Physics, Dubna, 1977
(in press).

Rudoy Y.G., Tserkovnikov Yu A, TMF, 1973,

14, p. 102; 1973, 15, p. 388; 1976, 27, p.297.
Plakida N.M., Phys.Lett.,, 1973, 43A, p. 481,
Mubayi V., Lange R.V. Phys.Rev,, 1969, 178,

p. 882,

Kenan R,P, Phys.Rev., 1970, B1l, p. 3205.
Dyson F.J. Phys.Rev,, 1956, 102, pp. 1217, 1230.
Callen H.B. Phys.Rev., 1963, 130, p. 890.

Lewis W.W,, Stinchcombe R,B, Proc.Phys.Soc,,
1967, 92, pp. 1002, 1010.

Kihnel A,, Trimper S. phys.stat.sol., (b), 1973,
60, p. K15,

Tahir-Khelo R.A.,, ter Haar D, Phys.Rev,, 1962,
127, p. 95.

Received by Publishing Department
on November 11, 1977,

19



