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.Oco6eHHOCTH napaMarHHTHOH BOCNIPDHMMYHBOCTH MoOae/H
Xa66apna ANa Heynopsiio4YeHHBIX CIJIABOB

BhiuRC/leHa napaMarHHTHas BOCIPDHHMYHBOCTB HeYNOPRAOYeHHOro cmia-
pa. [1n% ONHCAHHS CH/ILHO CBA3AHHBIX 3JIeKTPOHOB NpH HYJeBOA TemnepaTrype
HCNONBL3YeTCH MHKPOCKONHYECKHA (epMH-KHUAKOCTHLIA noaxon. ddgexTuBHLIE
pepWHHb [/ paccesHHd “yYacTHua-yacrHua® B “HaCTHHA-ALIPKAY BHIYHCIALIOTCSH
B pPAMKaX KOT'@pEeHTHOI'o JIOKallbHOT'O JeCTHHYHOrO NnpuGauxeHud., OxasbiBaeT-
Cfl, YTO NONy4eHHble BHIDAXEHHS AN BOCMPHHMYHBOCTEA XOMMNOHEHT W CHiaBa,
npM y4eTe KOPPeNSUHOHHLIX 3¢$eKTOB B JIECTHHYHOM NpHOARXeHHH, 06/1analoT
napaMarHETHo#t HeycrofluupocThio. [IpeacraBsllensl YHCNEHHbI® pe3y/bTATHI
ang yCpeaHeHHbIX IO KOHQHTypaUHsM MNOJHLIX H NaplUBalbHbLIX CTaTHYECKHX
BOCNIPHHMYHBOCTeH, HAMATHHYEHHOCTel M 3aBHCHUIMX OT CHHHA INIOTHOCTeH
COCTOAHHA#,

Pa6ora sBrinonneHa B JlaGopaTropuu Teoperuyeckoit ¢uauxu OUAU.
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Singularities in the Paramagnetic Susceptibility of Random
Hubbard Alloys

The paramagnetic susceptibility of disordered alloys is deri-
ved from a microscopic Fermi liquid approach to tightly bound
electrons at zero temperature, Particle-particle and particle-hole
effective vertices are calculated within the coherent local ladder
approximation. The correlation-enhanced expressions for component
and alloy susceptibilities refer to paramagnetic instabilities, Numeri-
cal results are presented for partial and total CPA averages of
static susceptibilities, magnetizations, and spin-dependent densities
of states,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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1, INTRODUCTION

A central problem of the theory of itinerant mag-
netism in transition metals and their alloys is surely
which role play electron-electron correlations., One
of the standard answers is that dynamical correla-
tions suppress magnetism, To modify this quantitati-

vely is a matter of more accurate self-consistent

calculations., Specifically, the microscopic derivation
of the boundaries between magnetic phases for the
itinerant electron system in narrow-band alloys A B, .
is usually based/1=” on the "bare" Hubbard
model’? in the random version
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Here c;; (c ) is the creation (annihilation) operator
for a spin o electron in the Wannier state at lat-
tice site 1,and ny, =¢;, c¢;,;. The atomic energy (l;
ard the strength of the intra-atomic Coulomb repul-
sion U'; take the random values ¢’ and UV(u=A, B),
respectively, according to whether an A or B atom
occupies the site i. The hopping integrals tyj are
assumed to be independent of the atomic arrange-
ment. The superscript {v]={v ,...,vi,...,vN}with v; =A,B
refers to the whole configuration,

Spin susceptibility calculations allow one to de-~
rive an explicit criterion for magnetism, Having used
the coherent potential approximation (CPA) to treat
the disorder, Hartree-Fock theories /1.2/ overesti-



mate the magnetic state, whereas the Hubbard-III
decoupling /4/yields no magnetism, The T -matrix
approximation (ladder' summation in the particle-par-
ticle channel) as, e.g., applied to the Anderson mo-
del for dilute alloys o/ and, combined with the CPA,
to the disordered Hubbard model /10.11/ is a good
candidate to describe effective quasiparticle inter-
action of short range and at low density of elect-
rons. Adopting it to calculate the susceptibility
means solving Bethe-Salpeter-type equations for
effective vertex functions, In some cases it is pos-
sible to replace the energy-dependent T -matrix by
an appropriate constant value 9,11/ (see also /124,
This has been done’/1Y in evaluating the paramagne-
tic susceptibility at finite temperatures,

The aim of the present paper is to calculate
the paramagnetic susceptibility for the model (1) at
zero temperature in the static limit, but with retain-
ing the dynamical character of the effective inter-
action involved in a completely self-consistent
scheme, In Sect. 2 the magnefic response is derived
from a microscopic Fermi liquid approach to disor-
dered systems/13/According to the local ladder
approximation particle-particle and particle~-hole ver-
tices averaged partially in CPA are given in Sect. 3,
In Sect. 4 the static paramagnetic susceptibility is
evaluated explicitly, Numerical results for partial
(component) and total (alloy) averages of spin-depen-
dent densities of states, magnetizations, and suscep-
tibilities are presented in Sect, 5.

2. MAGNETIC RESPONSE
OF AN INHOMOGENEOUS FERMI LIQUID

In this Section we give a microscopic justifica-
tion for some relations concerning the linear magne-
tic response. Working within a fixed configuration {u}
the lattice-space description is favoured owing to
lack of transitional symmetry,
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Following the nonuniform Fermi liquid approach/ 18/
the longitudinal (nonlocal and dynamic) spin suscep-
tibility x{,‘f}(w) at T=0 can be written in terms of the
causal ré sponse function L Vias

. vl ,
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where pg is the Bohr magneton. This expression ref-
lects the linear response to a space- and time-
varying magnetic field applied parallel to th?'} z -
axis. The two-particle correlation function L' sa-
tisfies the integral equation
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where the energy transfer o in a}l two-particle quan-
titi?s is abbreviated by, e.g., LY (EE’; E+w,E-w)=

= l"(E,E’;w), hereafter., Note that in (3) only spin-
diagonal one-particle Green functions GV are taken
ir\t(i account, Assuming a site—-diagonal self-energy
Ve the dressed Givthas to fulfil the Dyson equa-
tion
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where G{K} is the aropagator related with the non-
interacting part HIK from (1). Moreover, we suppose
local self-consistent approximation to determine

a
215 via the functional
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To maintain consistent approximations one has to
apply the Baym and Kanadoff technique/14/ by set-
ting (here the source field is omitted)
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to get a local irreducible particle-hole vertex I{ vi

entering into (3). The full vertex [V corresponding
to (3) is reduced in the particle~hole channel, yiel-
ding the Bethe-Salpeter equation (see Fig, 1)
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Note that for small « one can set w=0 in I
in (3) and }7) as in the uniform Fermi liquid theory
of Landau

il{w = <1_(55¢)( 1'.T£ + 1.T._ ‘ﬂ-.‘ ) + 6“- ﬂ; ﬂ':l

1,T‘ = 1.U‘ + IU,. 1.T;
a

Fig, 1. Diagrammatic representation of the coupled
system of vertex equations (7), (15), and (21).

In the following we are interested in the .local
spin susceptibility x{f’} introduced by
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where the effective spin vertex A ? defined St
multaneously, Despite locality, both X V} and A 1”

depend, in principle, on the whole conﬁguratlon vl
On combining (2), (3), and (8) one derives the in-
tegral equation for the spin vertex as

{ } v =
v o (E+w,E)=0 —JEf wl; (E+0,E;-w) x (9)
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On the other hand, in the limit of a uniform arnd

static magnetic field h a Ward identity must hold

of the type (in the ordered case cf.
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which can be found/l?’/from the first order variation
of the self-energy ZV} with respect to h. Note that
this limiting procedure coincides with the case of
physical interest, see also below. Substituting (7)
at 0=0 into (10) we obtain

v}
920 (E;h) g =
=0 =#BZ fzn 100 (E. E)(c Y o Gy (B)y; -
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Comparison of (11) and (9) yields
vl
o2 ... (E:h)
(— 2y o = kplo- A{;}(E,E)). (12)
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By inserting AEZ} from (12) i?to (?) one verifies the
static local susceptibility Q'l“ v"w-0) to be
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where in getting the last term we have used (4)
with h included,

3. CONDITIONALLY AVERAGED VERTICES
IN LADDER APPROXIMATION

Next we determine the irreducible particle-hole
vertex in a consistent way based on the local lad-
der approximation. Moreover, configuration-depen-
dent quantities are partially CPA averaged, provided
a v atom is fixed at some site., In the single-site
version multiple scatterings in the particle~particle
channel vield /1% instead of (5), (in terms of con-
ditionally averaged causal functions)

v ’ v 1 24
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where T;j (see Fig, 1) is the effective two-particle
vertex, Such a form waf,. Pr‘oposed for the ordered
case by Babanov et al/ 17/ The dressed local Green

. v . .
function G jjo written as resolvent (z being the comp-
lex energy) is determined by

v F
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NR 2o e -3,
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Here EU is the coherent potential obeying (19) based
on the CPA/18/ ,90 denotes the totally averaged
Green function, and (k)= t ?24‘,.’ expii('(ﬁj - ﬁi)} provi-
1
ded that only the nearestil(’le%ghbour hopping integral
!t is taken into account, k is the wave-vector, and
Ri is the lattice wvector. Note that the site index i
in ¢, is dropped in (19). The set of self-consis-
tent equations is closed by adding
1 H

n=3n, =—;—§_{odEImFU(E+iO), (20)
which connects the average number of electrons n
per site with the chemical potential y,

From (14) and (15) one derives in the sense of
(6) the irreducible particle-hole vertex at zero energy

transfer as (see Fig, 1)
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As a first step of partial averaging, this expression
can serve as the kernel of (9).

Now we pass to the paramagnetic phase. Hence,
substituting (21) into (9) and using G, =G,/ ,=G;
one gan reduce (9) via the ansatz {V}(E+m E) =
—oA (E+w,BE) to

{V}(E+w,E)=1+ng i, (E+E)G{ (E+w)c{ (E)A{ (E+w,E),
]

(22)

where spin indices are hereafter neglected unless
they are explicitly required

Following arguments of 19/we approximate in (_22)
the energy dependence of TV by replacing TV(E+E)-.

T (E) ZU”(E)/n , where n —f———C (E) is the

average electron number (per spm) at site i occu-
pied by a v atom in an otherwise effective CPA

medium, Such a step is best judged by looking at
(14) in the paramagnetic case, Combining (22) and
(8) at ©=0 with the approximated T, (E) we obtain

S0 B

m;——xl : (23)
2#B i

From (23) and (12) in the paramagnetic state, it fol-

lows after partial averaging that

{v
A (EE) =14+

v v
9% yijo (Eh) 2 yii (B) ,
heo ~T0TTTTITX (24)

This relation describes the h- field dependence of
the correlation part needed in the following.

4, INSTABILITIES OF THE PARAMAGNETIC PHASE

Within a treatment similar to/l/ we now derive
explicit expressions for the local paramagnetic sus-
ceptibilities, Start from the conditionally averaged
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form of (13) (for brevity, we drop the site index i )

y on’, (h)
X = #Bga(_a_h_)h=o ] (V=AvB) (25)

with (16) rewritten as
F,(z;h)

u
;(h)=—-1—1mde Ty ‘ . (26)
T e —(ea (z;h)—Eo(z;h))FU(z;h) z=E+i0

Here the Zeeman energy is added to (17), yielding
~ V v 14

€ g(z;h)=¢ +Zyg(2;h) - ppoh and implying a field-
dependent F_(z;h) instead of (18) via X (zh) from
(19). Thus, hawng introduced the h field in (272)

to (19) the differentiation with respect to h gives
rise to .

Iz (zh) A 3Eh(zh) 5 IS (zh)
(T)h =0=K (Z)[(T)h=0 —#BU]+K (ZX(T)hzo-leU],
where (27)

A(z)=[c - B(2) - S(2)F@)]/K(2), (28)
K2(2)=[1-c-*2-S@)FI/KQ, (29)
K(2) = 1-(c A(2) +¢ B(2)-Z(2)F(2D)+( A2)-S(2))e 2(2)~3(2)) F(),
_ 1 1 2 1 (30)
F2) = 5 £ ( > = guSim. (31)
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Altogether, from (25) and (26) by means of (27) one
gets
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where

. 2up Lk (F® (2-F(2)(K @)+ K (2)-F % (2)
X1 o0 [1-(eY(2)-2(2)F(2)] * |l y=E+i0”
which can be rewritten as 33)
A
% Js,
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with
y i a6Yo
Xo =~ ——Imde-—az Lepan = 2kEVG. (35)

Here p" is the component density of states (per spin)
associated with a v atom. Finally, we insert (24)
into (32) and solve the system of algebraic equa-
tions, vyielding the partial susceptibilities

)
"= Lk 1 gin [ M ()3 ()] ) - (36)
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)
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(38)
MV(z) = [(Fg(z) - F(z))xv(z)-Fz(z)l/ll-(zv(z)—z(z))m)] 9, (39)

= nAnB

M” (@=(F (9-F@K (9/11-E" @-S)F@)I°, v =AB).
(40)

Then, the totally averaged susceptibility becomes
x =<x¥> =ex®+1-co)xB . (a1)

It is pointed out that the correlation-enhanced result
(36) and (37) involves the dynamics in terms of

2y(E),  which must be calculated from the self-con-
sistent cycle (14) to (20). Instabilities of the paramag-
netic phase can arise from the condition D=0 (crite-
rion for magnetism) imposed on the determinant (38).

Let us discuss some limiting cases.

(i) First consider the Hartree-Fock approximation
defined by EUHF—Uynv. Then, one recovers immedia-
tely the result of Hasegawa and Kanamori/V at T=0
by looking at (36) to (40) with x in (34) reduced to

X o=2u%p vV (). .

(iiy At zero Coulomb energy (U Y20) the statlc
Spm susceptlbllltles (36) and (37) simplify to XC
=X o= p” ), implying the total x p, 2yB2p(u)
(ct. (41)53 where p(u) is the alloy density of states
at the Fermi level. This "pure" CPA result can be
confirmed by lookmg at the more general expres -
sion K(&, (u)—p(p)llXp)k 2 /(o +1D(u)k derived in/20/
see also’?Yhere K(k w) is the retarded two-particle
correlation function for small o and k, and D is the
diffusion constant, Hence in the so-called l?--limit/22
the dynamic response (k ) —2F%K(k w) turns
into fim Zlm x(k ®) =2p5p) = Xp, » emphasizing

AE

-0
that t“qe present x corresponds to the retarded res-
ponse,
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(iii) In the dilute alloy limit ¢-0, 2(z) in (19)
can be replaced by ¢B(z)=¢B-2B(z) giving rise to
KA -0 and KB51 in (28) to (30), and MBAL 0 in(40),
With these simplifications, from (33) and (37) to (41)
we get

u Fi 225
1 U
Lo =(1- ——Im [dE —g+i0)
Ym0 = L @t P (@R 0
1 £ BT s B
% (1- ;E_Im"i dEF(2)2 (D] ,_gii0 ) (22)
B_ (4B
X o, X =G/ B vl pio”

- 2 (43)
where F(2)= El/(z-—c(k) B-—EU(Z)) =(G” (@
instead of (31)fand Kz)=G(z) instead of (18). Ana-
logously, the limit ¢»1 is obtained by interchanging
A  and B. The formula (43) coincides with the re-
sult%3 for pure systems, The condition Dg,; =0 put
on the first factor of (42) signals the occurence of
a localized magnetic moment on the impurlty atom A
embedded in an otherwise pure B system (com-
pare /1),

Note that y from (41), restoring translational sym-
metry, can be interpreted as the K -limit result
caused by the Ward relation (10) and the magnetic
field coupling in the context of (26), Thus, singula-
rities of ¥ refer towards ferromagnetic ordering,

5. NUMERICAL ANALYSIS

For the numerical study the unperturbed density
of states (per site per spin) reflecting the hopping
term in (1) is chosen as

L 2B e
SH(E-e(k) = | (44)
k

(E) =
Po 0, E| > w

Zj=

&

-~
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where W is the half-bandwidth. Then, without van
Hove singularities, F, and F defined in (18) and (31)
are calculated analytically, Let us list the input
parameters w,eAeB =0 fixed, UA, UB,c, n; output
quantities are the component and alloy densities of

states pY(E) = ~(1/n) ImG_(E +i0) (v =AB
and PU(E) ——(l/n)ImF (E +10) resp., the averﬁxge elec-
tron number with spin ¢ at v sites n_ f dEp (E),

the component and average magnetlzahons m¥=n¥-n"

and m=n, -n , resp., and the susceptibilities y* and x.

The procedure for getting solutions is as fol-
lows: Choose a set of parameter values and solve
the system of equations (14) to (20) numer'lcally up
to self-consistency (as outlmed in/19} in order to
deduce immediately p}, p, ,m¥ ,m in the ferromag-
netic case or to lay out all quantities needed in the
paramagnetic phase; and substitute these into (33)
and (36) to (41), and carry out the integrals to ob-
tain x¥ and x. Here we have chosen parameters so
that the case nl:,z 1 is not attained for any v.

Now we turn to the discussion of the numerical
results. The densities of states p (E) in Fig, 2
exhibit the transition from paramagnetlc via ferromag-
netic to saturated ferromagnetic behaviour with in-

creasing electron concentration n. Note that the mag-
netization changes its sign from n=0.28ton=0.4. Such
an effect was also found in:the Hartree-Fock treat-
ment/5/ The shapes of the up- and down-spin bands
greatly differ in the saturated case. Here the ab-
sence of the two-particle region (large tailing with
small humps) in the down-spin band is due to the
fact that only electrons with opposite spins are
scattered mutually.

In the split-band case of Fig. 3 the spin-depen-
dent shift of the spectrum appears especially for the
B component, since the self-consistency of n¥
gives rise to nA <iBin the present example, This
is confirmed if looking at the magnetization. More-
over, them (or m¥) curve shows a gradual (hyste-
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Fig, 2. Spin-dependent densities of states p_(E) at
various values of the electron density n for an

alloy with (w, ¢4, ¢B, UA, UB ¢)=(05,04, 0, 1.9, 2, 0.4).
Dotted vertical lines refer to the Fermi energy,

Fig. 3. Spin-dependent densities of states averaged

partially po(E) (»=AB) and totally p,(E), respecti-
vely, at n=0.23, magnetlzatlons m” (., x) and m(+)

versus N for the set (w,e8¢B,UAUB, ¢)=(0.51.2,0,1.5220.4).
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resis-like) transition from the paramagnetic to the
ferromagnetic state, in contrast to the "nearly"
(owing to approximated G% ) self-consistent calcu-
lation’”, The case of saturated ferromagnetism cor-
responding to the alloy parameters of Fig, 3 is
presented in Fig, 4.

o I
I ol
Fig, 4. Spin-dependent densities of states averaged

partially p%(E) (v-A,B) and totally p (E), respectively,
for the set (w,eAcBUAUB, ¢ n) =(0.512,0, 15,22 0.4,0.35).

The influence of electron correlations on the
partial susceptibilities ¥ is %hown in Fig, 5 for
the special casesu’0(a)and U A_0 (b). Correlations
to minority sites (a) cause only small enhanced pa-
ramagnetism. Singularities in x¥ can occur with in-
creasmg UB(b) acting on majority sites, Notice that
xY can be qualitatively approx1mated by 2pY(w
in the case a) and for small UB in b).
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Fig., 5. Partial static paramagnetic susceptibilities

xV (+) (v=A,B) and densities of states 2"(y) (---)

at the Fermi energy p versusn for various strengths
of the intra~atomic repulsion UY, a) UB9 and b) UA-0,
in the case (w,¢%B¢)=(1,02,0,60.%).

Numerical results of the inverse susceptibility
x"! obtained in the ladder and Hartree—-Fock appro-
ximations are in good agr‘eement for small repulsion
strengths, i.e., at UB-0 and UB-1 in Flg. 6a. Howe-
ver, both treatments differ essentially with increa-
sing U7, in particular, Hartree~-Fock results over-
estimate the magnetic state. Note that several zeroes
of x~1 typlfy alloys with strong correlation strengths,

e.g., for UB=3. In Eig, 6b_susceptibility results deter\-
mine the critical curve which is the locus of y~ 1o

There is an apparent relationship between par-
tial susceptibilities ¥ and electron concentrations n¥
as shown by two parameter sets in Fig, 7. For
smaller U"values we have no singularities, whereas
in the case U%1 and UR2 zerces of the inverse
susceptibilities refer to ferromagnetic ordering, Dis-

18
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T
e

Fi[s_z_. 6. a) Inverse static paramagnetic susceptibility
x 1(+) versus n for several values UB at ¢=0.25

in comparison with Hartree-Fock results (~--), and
b) dividing line between paramagnetism (.) and ferro-

magnetism (x) inn versus c¢ plot at U21 for the set
(w, eAeBUA)=(1,0.2, 0, 1.9).

order favours paramagnetic instabilities in compari-
son with. the result for the pure B component

in Fig, 7b ., Note that a crossing of the n¥ values
is found in the transition region,
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(a

RO,

Fig, 7, Inverse static paramagnetic susceptibilities
x~1,()1, and partial electron densities n¥ versus n
for various values U”in the case (w,eleB, c)=
=(1,0.4,0,0.4); a) total ¥'1(+) and partial (x4)~1(.),
b) partial (yB™! (v at the same Ulvalues as in

a) compared with (XB)‘I(---)for' the pureB system, and
o) (), 0B,

6. CONCLUSION

It has been proved that the coherent local ladder
approximation applied to the random Hubbard model
is a practicable method to derive correlation-enhan-
ced paramagnetic susceptibilities of disordered al-
loys, giving rise to a criterion for ferromagnetism,

20

The magnetic response is verified to be consistent
with a Ward relation, Despite of some simplifying
assumptions the present scheme is, with respect to
the dynamics, beyond CPA-RPA treatment, Numerical
calculations have been performed for an elliptical
shape of the unperturbed state density and, in most
cases, alloy parameter values were chosen corres-
ponding to the adequacy of the ladder approxima-
tion. Instabilities of the paramagnetic phase are
found which preclude some artificial overestimation
or suppression of magnetism,
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