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Electron Correlations and Ferromagnetism
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The magnetic properties of disordered alloys are
investigated using a disordered Hubbard model. The cal-
culation is based on a combination of a local ladder
approximation and the CPA. The electronic density of
states and the magnetization are calculated numerically
for several alloy parameters. A comparison with the
Hartree-Fock results is given.
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1. INTRODUCTION

In recent years the problem of itinerant magnetism
of disordered substitutional alloys has been discussed
within the framework of the Coherent Potential Appro-
ximation (CPA) 1-3/In order to describe the magnetic
properties of such alloys the electron correlation must
be taken into account in an appropriate way. Previous
calculations are based on a local Hartree-Fock approxi-
mation /1/ of the Hubbard Hamiltonian, which is correct
in first order of the interaction but which is not justifi-
ed generally if the Coulomb repulsion is strong. Never-
theless, this scheme provides magnetic solutions in the
regime of strong correlations. Other approximations
as the so-called Hubbard-I decoupling, the Hubbard-III
decoupling, and the alloy analogy permit at finite cor-
relation strength only nonmagnetic solutions /2.3.8/ ,
Therefore they are not suitable for the description of
magnetic properties.

In this paper we apply the so-called ladder approxi-
mation, which is justified for arbitrary correlation
energy in the limit of small electron concentrations.
This approximation was applied in a local form to the
Hubbard model /4/ and it has been recently extended
to the treatment of disordered alloys/5.6/ In the pre-
ceding paper /6/ only paramagnetic solutions are in-
vestigated, in this paper we present magnetic solutions
of this theory.



2. THEORY *

The disordered A B, _ alloy is described by the
Hamiltonian

{V} v -+
H.=2¢n. + 2 t..c.m&

io ! ijo NV
(1 £))

Wb o v
W :/2'2 U;n, n,_,
i,0 s

(1)

H vt is the Hamiltonian of a fixed configuration }{,/{ ,
H, bl is the usual one-band-tight-binding Hamiltonian
of a disordered binary alloy, W vl is the correlation
term as in the Hubbard model. The atomic energies

¢'" and the Coulomb energies U depend on the
occupation of the lattice site i, they may take the
values « A7 B and UA, Uy, respectively. The transfer
integrals t;; are assumed to be independent of the
occupation of the lattice sites (diagonal disorder). An
extension to off-diagonal disorder is possible without
difficulties (see refs. /% 6/ ). In the present investi-
gation we combine the local ladder approximation (LLA)"
for the treatment of correlations with the CPA’?/ for the
treatment of disorder. In the LLA the effects of the
electron correlation are described by a local self-

energy (the index ¢ denotes the correlation part)
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where the correlation strength U’; and the electron
density n¥ as parameters enter into the calculation.
Both quantities and accordingly ¢, i, depend on the

*The theory is described in detail in the paper /8/,
Therefore we will give here only a short summary.
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occupation of the site i. Therefore the problem is re-
9uced to a disordered alloy problem without electron
Interaction and with the random external potential
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The electron correlation leads only to an energy-depen-
dent renormalization of the diagonal elements of the

scattering potential. So we can apply the CPA as usual.
We obtain the CPA-equation

<T) > =<(V) -3 _(2)1-<G (2)> x (4)

v -1
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from which we can determine the self-energy
EU(Z) = EiEw(z) = Zoa (z)nia

ar{nd}the averaged Grelen function ( K: periodic part of
HWS )

<G (z> = (z-K-3 ()" . (5)

The LLA and the CPA are connected by the equations
determining the component electron densities nV
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where n is the averaged number of electrons per lattice
site, and pZ(E) is the component density of states cal-
culated from the partial averaged Green function

v -~ v
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The n" and the G , respectively, enter into the set of
the corresponding LLA equations for A- and B-sites.
Therefore we have to solve simultaneously the LLA
equations
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and the CPA equations (4)-(7).

3. NUMERICAL EXAMPLES AND DISCUSSION

The numerical calculations have been carried out
by the technique described in/6/,

In this paper we restrict ourselves to the split band
regime. In this case we replace in the calculation of
the correlation part of the self energy (8) G% by a sim-
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plified CZ which describes a correlated electron in

a v-lattice (i.e., the influence of disorder on the elect-
ron correlation at a given site via the occupation of the
neighbouring sites is neglected). Since the LLA is a local
theory this additional approximation should cause no
important effects, at least in the split band regime. Then
the equations determining the correlation part and the
coherent self-energy are still coupled by the equation

(6), from which the chemical potential is fixed.

For the unperturbed density of states (i.e., perfect
B -crystal without interaction) we use an elliptical shape

Ty
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whose bandwidth is equal to unity. Input parameters

are the Coulomb energies U,.Ug .the atomic energies
s, ¢ p-the number of electrons per A-atom and

per B-atom N,N_ and the concentration x The den-
sity of states ;(E) and the magnetization m-n ;~n, are
calculated. A characteristic feature of the ‘alloy problem
is the possibility to change the electron concentrations
n"”.and n, in consequence of the alloying. In the pre-
sence of diagonal disorder a change of x has diffe-
rent consequences on the electron concentrations at the
A- and B-sites. In the investigated split band example
(Fig. 1) with increasing x the filling of the lower band
increases. At a critical electron concentration the alloy
becomes ferromagnetic (Fig. 2). We can see that the
magnetization rises steeply to the saturation value.

For comparison we have shown in all figures the
Hartree-Fock results, too. For such a great correlation
strength one obtains already saturated ferromagnetic
solutions in the whole concentration range, whereas a
transition to the paramagnetic state appears at smaller
U -values. Therefore the Hartree-Fock approximation
shows in these cases an overestimation of the correla-
tion effects, too.
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‘Fzg 1. Electronic density of states p(E) for both
spin directions. Parameter: ¢p=0 , ¢ 5= 3

Npa= 1, UA U ‘16 a)x=0. b)x=0.166, c) X= 0333 The
dashed line shows the Hartree-Fock results.
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Fig. 2. Magnetization as a function of x and n,

pectively. The dashed line shows the Hartree- Fock

result.
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