СООБแЕНИЯ
 ОБЬЕАИНЕННОГО
 ИНСТИТУТА
 ЯАЕРНЫХ
 ИССАЕАОВАНИЙ

АУБНА

$21 / 4-77$
E17-10921
$4517 / 2-77$
E.Kolley, W.Kolley

MICROSCOPIC FERMI LIQUID APPROACH
TO DISORDERED NARROW BAND SYSTEMS

E17 - 1092I

E.Kolley. N.Kolley

HICROSCOPIC: FERMI LIQIII APDROACII
T(DIGORJERED NARROW BAND GVSTEVS

Колиюі Е., Коллеі В.

Микроскопическая теория фермн-жнакости дая нсуиоряиочеяних узкозоиних систем

фоимулирустся теория ферминжндости снльно связанных электропов
 иих фуикий 1 . ии $T=0^{\prime \prime} \mathrm{K}$. Нв основе пеупорядоченной модели Хаббараа и нстользования локального лестничного приблнжения в канале чястнцачастиии нолучена шопииолинан электронно-дырочная вершннняя часть,
 ние ноправки к тлектропроводности в рамках СРА, а также паиамагіитная восприимчивогть в упорялоченном случее.

I'ибота вынолиена " Лаборатории тпоретической физики ОНя月.

Сообщение Объеднненного внствтута вдерннх ясследованви. Дубна 1977

Kolle: E., Kolley W.
E17-10921
Microscopic Fermi Liquid Approach
to Disordered Nartow Band Systems
A Fermi liquid approach to tightly bound electrons in disordered systeme is proposed to evaluate two-particle curtelation functionsl.at l-uk. Starting with a raudom Hubbard model and using a local ladder approrimation in the particleparticle channel the irreducible partis: af hule vertex is derived, being the kernel of the betheSalpeter equation for 1 . . CPA vartex corrections to the electrical conductivity and, for the ordered case, the corcelation - enhanced paramagnelic subceptibility are calculated.

The investigation tas been performed at the Laboratory of Theoretical Physico, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

1. INTRODUCTIOR

The microscopic calculation of correlation functions of narrow band aystem in the presence of random digorder requires a tightbinding description of an inhomogeneous Fermi liquid.

The main reatures of auch an approach are Just due to lack of the translational bymetry. Gonsequently, an approximation scheme can be outlined as followe:
(i) The bare electron-olectron interaction due to the intraatomic repulaion should be described within a radion version of the Hubbard model/1/.
(ii)By means of a local ladder approximation the one-particle Greon functions are dreased; for pure systems that was proposed by Babanov et al. $/ 2 /$.
(iii)According to the procedure of Baym and Kadanoff/3/ one can derive selfconsiatently the irraducible particle-hole vertex, being
(iv)the kernel of the Bethe-Salpeter equation for the correlation function. The correoponding integral equation for the whole vertex must be formiated in the lattice apace, unlike the Lendau theory of uniform Ferni liquide $/ 4 /$.
(v) The oonfigurational averaging can be perforned within a coherent potential approximation (OPA). For only diagonal disorder without interactions the GPA was developed by Velioky ot al. $/ 5 /$; the presont approach reata on an extended GPA $/ 6 /$. In this paper we axe morking along the line (1) to (v) within a perturbative approach in terme of causal Green functions at zexo
temperature /7/. In Seot. 2 the functional-derivative technique is ueed to deduce the integral equation for the correlation function involving the irreducible particle-hole vertex. The incluaion of dynamic interactions by the local ladder approxiaation effecte the connection between the particle-particle and particle-hole channels (Sect.3). In Sect. 4 we give the GPA result for the ac conductivity without using the fubo formula. The apin ausceptibility expreasion calculated in Sect. 5 for the ordered cage is found to. be beyond the random phase approximation (RPA).

2. CORRELATION FUWCTIOR AND VERTICES

Within a random lattice we conaider a zero-temperature forinion eystem described by a tight-binding Femiltonian H. Specifically, electron-electron correlations in disordered narrow band syetems of the subatitutional alloy-type $A_{c} B_{1-c}$ can be treated by the Hubbard model $/ 1 /$

$$
\begin{equation*}
H=H_{\Delta}+H_{u} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{\Delta}=\sum_{i \sigma} \varepsilon_{i} n_{i \sigma}+\sum_{\substack{i j \sigma \\
(i * j)}} t_{i j} c_{i \sigma}^{+} c_{j \sigma}, \tag{2.2}\\
& H_{u}=\frac{1}{2} \sum_{i \sigma} U_{i} n_{i \sigma} n_{i-\sigma} . \tag{2.3}
\end{align*}
$$

Here $C_{i \sigma}^{\dagger}\left(C_{i s}\right)$ is the creation (annihilation) operator for an electron of spin σ in the Wannier state at lattice site i, and $n_{i \sigma}=c_{i \sigma}^{+} c_{i \sigma}$. The spatial inhomogeneity is expreased by random atomic lovels E_{i} : hopping integrals $t_{i j}$, and atrengthe U_{1} of the local initial pair interaction. Theae parameters take the values $\varepsilon^{\nu}, t^{\mu \mu}$ concerping noarest-neighbour hopping, and $U^{2 \nu}(\nu, \mu=A, B)$, resp., according; to whother an A or B atom occupies the site i (j). In this Section we are still working within a fixed oonfiguration $\{\nu\}=\left\{\nu_{1}, \ldots, \nu_{i}, \ldots, \nu_{N}\right\}$ with ν_{i}, A, B. Then, ell quantities we calculete depend on the whole configuration $\{\nu\}$.

Supposing a Schminger gource field Q which nay be non-local in space and tine, the one-particle causal Green function is introduced by (here the fomelien is similar to $/ 3,8,9 /$)
whers

$$
\begin{equation*}
G_{\lambda_{1} \lambda_{1}}\left(t_{1}, t_{1}^{\prime} ; Q\right)=-i\left\langle T\left\langle c_{\lambda_{1}}\left(t_{1}\right) c_{\lambda_{1}^{*}}^{*}\left(t_{1}^{\prime}\right) e^{-i Q}\right\}\right\rangle /\left\langle T e^{-i Q}\right\rangle, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
Q=\sum_{\lambda_{1} \lambda_{2}} \iint_{-\infty}^{+\infty} d t_{1} d t_{2} c_{\lambda_{1}}^{+}\left(t_{1}\right) Q_{\lambda_{1} \lambda_{2}}\left(t_{1}, t_{2}\right) c_{\lambda_{2}}\left(t_{2}\right) \tag{2.5}
\end{equation*}
$$

Here T ie the tian-ordering operator, $\lambda=(i, \sigma)$, the brackets denote the ground-state average oorresponding to H_{1} and the operatorg ere written in the Heisenberg picture with reapect to H_{i} In particular, for $Q_{\lambda_{1} \lambda_{2}}\left(t_{1}, t_{2}\right)=Q_{\lambda_{1} \lambda_{2}}\left(t_{1}\right) \delta\left(t_{1}-t_{2}\right)$ the oxternal field teri Qa_ $\int_{0} H_{Q}(t) d t$ corresponds to the perturbed Hamiltonian $\tilde{H}=H+H_{Q}$.

The Green function (2.4) has to fulfil the Dyson equation

$$
\begin{equation*}
G^{-1}\left(1,1^{\prime} ; Q\right)=G_{\Delta}^{-1}\left(1,1^{\prime}\right)-Q\left(1,1^{\prime}\right)-\Sigma_{u}\left(1,1^{\prime} ; Q\right) \tag{2.6}
\end{equation*}
$$

where the argumenta $1,1^{\prime}$ include lattice aite, apin, and time variables; i.e., 1a $\lambda_{1} t_{1}=i_{1} \sigma_{1} t_{1}$ etc.. Σ_{u} is the self-energy related to H_{U}, and O_{A} in the frea propagator esrreaponding to H_{Δ} from (2.2).

In tho limit $Q \rightarrow 0$ the tro-particle Green function defined by

$$
\begin{equation*}
G^{\text {II }}\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=-\left\langle\operatorname{Tc}(1) c(2) c^{+}\left(2^{\prime}\right) c^{+}\left(1^{\prime}\right)\right\rangle \tag{2.7}
\end{equation*}
$$

can be expreased in texna of the total rertex part Γ as

$$
\begin{align*}
G^{\text {II }}\left(1,2 ; 1^{\prime}, 2^{\prime}\right) & =G\left(1,1^{\prime}\right) G\left(2,2^{\prime}\right)-G\left(1,2^{\prime}\right) G\left(2,1^{\prime}\right) \tag{2.8}\\
& +i G(1, \overline{3}) G(2, \overline{4}) \Gamma(\overline{3}, \overline{4} ; \overline{5}, \overline{6}) G\left(\overline{5}, 1^{\prime}\right) G\left(\overline{6}, 2^{\prime}\right)
\end{align*}
$$

Here the bar over double repeated mubers moans munation or integration over the corremponding variables; $\boldsymbol{\theta}\left(1, i^{\prime}\right)$ is the Green function (2.4) in the linit $9 \rightarrow 0$.

The two-particle correlation function (causal responee function) 1s defined by

$$
\begin{equation*}
L\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=G^{I}\left(1,2 ; 1^{\prime}, 2^{\prime}\right)-G\left(1,1^{\prime}\right) G\left(2,2^{\prime}\right) . \tag{2.9}
\end{equation*}
$$

According to the Baym and Kadanoff procedure $/ 3 /$ one gete, by taking the functional derivative in (2.4) directly

$$
\begin{equation*}
L\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=-\left.\frac{\delta G\left(1,1^{\prime} ; Q\right)}{\delta Q\left(2^{\prime}, 2\right)}\right|_{Q=0} . \tag{2.10}
\end{equation*}
$$

From the Dyson equation (2.6) It followg Fia $\delta G=-G \delta G^{-1} G$ the relation

$$
\begin{equation*}
\left.\frac{\delta G\left(1,1^{\prime} ; Q\right)}{\delta Q\left(2,2^{\prime}\right)}\right|_{Q=0}=G\left(1,2^{\prime}\right) G\left(2,1^{\prime}\right)+\left.G(1, \overline{3}) \frac{\delta \Sigma_{u}(\overline{3}, \overline{4} ; Q)}{\delta Q\left(2^{\prime}, 2\right)}\right|_{Q=0} G\left(\overline{4}, 1^{\prime}\right) . \tag{2,11}
\end{equation*}
$$

Becsuse Σ_{y} depends on Q only via G one derives from (2.11) with (2.10) the integral equation for I as

$$
\begin{equation*}
L\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=-G\left(1,2^{\prime}\right) G\left(2,1^{\prime}\right)-i G(1, \overline{3}) G\left(\overline{4}, 1^{\prime}\right) I(\overline{3}, \overline{6} ; \overline{4}, \overline{5}) L\left(\overline{5}, 2 ; \bar{\sigma}^{6}, 2^{\prime}\right), \tag{2,12}
\end{equation*}
$$

where the irreducible particie-hole vertex I is detergined by

$$
\begin{equation*}
\left.\frac{\delta \Sigma_{u}\left(1,1^{\prime} ; Q\right)}{\delta G\left(2^{\prime}, 2 ; Q\right)}\right|_{Q=0}=-i I\left(1,2 ; 1^{\prime} ; 2^{\prime}\right) \tag{2.13}
\end{equation*}
$$

Wote that (2.13) 1s a necesary condition for approximations, too. Thus, after choosing an approximate Σ_{u} one has to derive I from (2.13) and to ingert into (2.12) for caiculatiag the correlation function L .

The Bethe-Salpeter equation for Γ in the particle-tole channel is found by inserting (2.8) into (2.9) and combining with (2.12) to

$$
\begin{equation*}
\Gamma\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=I\left(1,2 ; 1^{\prime}, 2^{\prime}\right)-i I\left(1, \overline{3} ; 1^{\prime}, \overline{4}\right) G(\overline{4} ; \overline{5}) G(\overline{6}, \overline{3}) \Gamma\left(\overline{5}, 2 ; \overline{6}, 2^{\prime}\right) \tag{2.14}
\end{equation*}
$$

Uaing (2.8), (2.9), and (2.11) we get the relation

$$
\begin{equation*}
\left.\frac{\delta \sum_{U}\left(1,1^{\prime} ; Q\right)}{\delta Q\left(2^{\prime}, 2\right)}\right|_{Q=0}=-i \Gamma\left(1, \overline{3} ; 1^{\prime}, \overline{4}\right) G(2, \overline{3}) G\left(\overline{4}, 2^{\prime}\right) \tag{2,15}
\end{equation*}
$$

Which includes Ward identities,
Por the Hubbard interaction term (2.3) the self-energy Σ_{u} can be found by making use of (2.6), (2.9) to (2.11), and the identity
$\delta G=-G \delta G^{-1} \mathbf{G}$, yielding (cf. /10/)

$$
\begin{align*}
\sum_{U i j, \sigma}\left(t, t^{\prime} ; Q\right)= & -i U_{i} G_{i i-\sigma}\left(t, t^{+} ; Q\right) \delta_{i j} \delta\left(t-t^{\prime}\right) \tag{2.16}\\
& +i U_{i} \sum_{i} \int_{-\infty}^{\infty} d \bar{t} G_{i \bar{i}, \sigma}(t, \bar{t} ; Q) \frac{\delta \sum_{U i j, \sigma}\left(\bar{t}, t^{\prime} ; Q\right)}{\delta Q_{i i,-\sigma}\left(t^{*}, t\right)}
\end{align*}
$$

Here Q and G have been restricted to apin diagonality, and $t^{+} r t+0$.
In the case $Q=0$ Pourier $t_{\text {ranaforms with respect to time }}^{\mathrm{Va}}$ risbles are introduced as

$$
\begin{equation*}
G_{\lambda_{1} \lambda_{1}^{\prime}}\left(t_{1}, t_{1}^{\prime}\right)=\int \frac{d E}{2 \pi} G_{\lambda_{1} \lambda_{1}^{\prime}}(E) \exp \left\{-i E\left(t_{1}-t_{1}^{\prime}\right)\right\}, \tag{2.17}
\end{equation*}
$$

and for two-particle quantities through

$$
\begin{align*}
& G_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}^{\text {II }}\left(t_{1}, t_{2} ; t_{1}^{\prime}, t_{2}^{\prime}\right)=\left\{\frac{d E_{1} d E_{2} d E_{1}^{\prime} d E_{2}^{\prime}}{(2 \pi)^{4}} 2 \pi \delta\left(E_{1}+E_{2}-E_{1}^{\prime}-E_{2}^{\prime}\right) \times\right. \\
& \times G_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}^{I}\left(E_{1}, E_{2} ; E_{1}^{\prime}, E_{2}^{\prime}\right) \exp \left\{-i\left(E_{1} t_{1}+E_{2} t_{2}-E_{1}^{\prime} t_{1}^{\prime}-E_{2}^{\prime} t_{2}^{\prime}\right)\right\} \tag{2.18}
\end{align*}
$$

Note that the apatial Pourier tranazormation is not performed because of lacking the translational symetry.

Now (2.6) can be rewritten es

$$
\begin{equation*}
\left(G^{-1}(E)\right)_{i j, \sigma}=\left(G_{\Delta}^{-1}(E)\right)_{i j}-\Sigma_{U i j, \sigma}(E) \tag{2.19}
\end{equation*}
$$

Taking Fourior coofficients of (2.16) for $Q \rightarrow 0$ and combining

With (2.15) we get

$$
\begin{align*}
& \sum_{U_{i j, O}}(E)=-i U_{i} \int \frac{d \bar{E}}{2 \pi} G_{i i,-\sigma}(\bar{E}) e^{i \varepsilon \bar{E}} \delta_{i j} \tag{2.20}
\end{align*}
$$

For brevity, hereafter convergence factore $21 \mathrm{ke} e^{i \varepsilon \mathrm{E}}(\varepsilon \rightarrow+0)$ are dropped (as, e.g., in the mecond term of (2.20)).

The four-point vertex equation (2.14) for particle-hole scat tering turks into

$$
\begin{align*}
& \Gamma_{\lambda_{1} \lambda_{1} \lambda_{1}^{\prime} \lambda_{2}}\left(E_{1} ; E_{2} ; \omega\right)=I_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1} E_{2} ; \omega\right) \\
& -i \sum_{\mu_{1} \lambda_{2} \mu_{3} \mu_{4}} \int \frac{d \vec{E}}{2 \pi} I_{\lambda_{1} \mu_{1} \lambda_{1}^{\prime} \mu_{2}}\left(E_{1,} \bar{E}+\omega ; \omega\right) G_{\mu_{2} \mu_{3}}(\bar{E}) G_{\mu_{4} \mu}(\bar{E}+\omega) \Gamma_{\mu_{3} \lambda_{2} \mu_{+} \lambda_{2}^{d}}\left(\bar{E}, E_{2} ; \omega\right), \tag{2.21}
\end{align*}
$$

with the abbreviation

$$
\begin{equation*}
\Gamma_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1}, E_{2} ; E_{1}+\omega, E_{2}-\omega\right)=\Gamma_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1}, E_{2} ; \omega\right) \tag{2.22}
\end{equation*}
$$

The variable ω denotes the energy trenafor. In the case of mall ω Which we are interested in (i.0. $\omega \ll \mu$) one can set $\omega=0$ In I in (2.21), an has boen pointed out by Landau for the unfforn Fermi Ilquid /4/. The correlation function L diefined in (2.9) on the basis of (2.8) takes the Fourier transform

$$
\begin{align*}
& L_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1}, E_{2} ; \omega\right)=-2 \pi \delta\left(E_{1}-E_{2}+\omega\right) G_{\lambda_{1} \lambda_{2}^{\prime}}\left(E_{4}\right) G_{\lambda_{2} \lambda_{1}^{\prime}}\left(E_{2}\right) \\
& \quad+\sum_{\mu_{4} \mu_{2} \mu_{3} \beta_{4}} G_{\lambda_{\mu_{1}} \mu_{4}}\left(E_{1}\right) G_{\lambda_{2} \mu_{2}}\left(E_{2}\right) i \Gamma_{\mu_{\mu_{2} \mu_{3}} \mu_{4}}\left(E_{1} E_{2} ; \omega\right) G_{\mu_{3}{\lambda_{1}^{\prime}}_{4}^{\prime}}\left(E_{1}+w\right) G_{\mu_{4} \lambda_{2}^{\prime}}\left(E_{2}-\omega_{1}\right) \tag{2.23}
\end{align*}
$$

or I in termb of I from (2.12) reade

$$
\begin{align*}
& L_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1}, E_{2} ; \omega\right)=-2 \pi \delta\left(E_{1}-E_{2}+\omega\right) G_{\lambda_{1} \lambda_{2}^{\prime}}\left(E_{1}\right) G_{\lambda_{2} \lambda_{1}^{\prime}}\left(E_{2}\right) \tag{2.24}\\
&-\sum_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} G_{\lambda_{1} \mu_{1}}\left(E_{1} \left\lvert\, G_{\mu_{2} x_{1}}\left(E_{1}+\omega\right) \frac{d \bar{E}}{2 \pi} i I_{\mu_{1} \mu_{4} \mu_{2} \mu_{3}}\left(E_{1}, \bar{E}^{2}+\omega_{j} \omega\right) L_{\mu_{3} \lambda_{2} \mu_{4} \lambda_{2}^{(}}\left(\bar{E}, E_{2} ; \omega\right)\right.\right.
\end{align*}
$$

In the linear reponse theory the effective Gxternal field Q corresponding to a weak external field Q is defined by $/ B /$

$$
\begin{equation*}
G(1, \overline{3}) \tilde{Q}(\overline{3}, \overline{4}) G\left(\overline{4}, 1^{\prime}\right)=-L\left(1, \overline{2} ; 1^{\prime}, \overline{2}^{\prime}\right) Q\left(\overline{L^{\prime}}, 2\right) . \tag{2.25}
\end{equation*}
$$

According to (2.10) the r.h.t. of (2.25) deacribea the change of the one-particle Green function $\delta G\left(1,1^{\prime} ; Q\right)$ correctly to the first order of Q; hereby the aignificance of L is founded. The Fourler tranaform of (2,25) under the reatriction $Q_{\lambda_{1}, \lambda_{1}^{\prime}}\left(t_{1}, t_{1}^{\prime}\right)=$ $Q_{\lambda_{1} \lambda_{1}^{\prime}}\left(t_{1}\right) \delta\left(t_{1}-t_{1}^{\prime}\right)$ becones

$$
\begin{equation*}
\left.\sum_{\lambda_{2}^{\lambda_{2}^{\prime}}} G_{\lambda_{1} \lambda_{2}^{\prime}}(E+\omega) \tilde{Q}_{\lambda_{2}^{\prime} \lambda_{2}^{\prime}}(E+\omega, E) G_{\lambda_{2} \lambda_{1}^{\prime}}(E)=-\sum_{\lambda_{2} \lambda_{2}^{\prime}} \int \frac{d \bar{E}}{2 \pi} L_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}(E+\omega) \bar{E}_{;} ; \omega\right) Q_{\lambda_{2}^{\prime} \lambda_{2}}(\omega) \tag{2.26}
\end{equation*}
$$

By ingerting (2.25) into (2.12) one gets

$$
\begin{equation*}
\tilde{Q}\left(1,1^{\prime}\right)=Q\left(1,1^{\prime}\right)-i I\left(1, \overline{2} ; 1^{\prime}, \overline{2^{\prime}}\right) G(\overline{2}, \overline{3}) G(\overline{4}, \overline{2}) \tilde{Q}(\overline{3}, \overline{4}) . \tag{2.27}
\end{equation*}
$$

Without loas of generality, chooaing $Q_{\lambda_{1}, \lambda_{1}^{\prime}}\left(t_{1}, t_{1}^{\prime}\right)=Q_{\lambda_{1} \lambda_{1}^{\prime}}\left(t_{1}\right) \delta\left(t_{1}-t_{1}^{\prime}\right)$ once more, the Fourier transiorm of (2.27) raads

$$
\begin{align*}
& \tilde{Q}_{\lambda_{1} \lambda_{1}^{\prime}}(E+\omega, E)=Q_{\lambda_{1} \lambda_{1}^{\prime}}(\omega) \\
& \quad-i \sum_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}} \int \frac{d \overline{\bar{E}}}{2 \pi} I_{\lambda_{1} \mu_{1} \lambda_{1}^{\prime} \mu_{2}}\left(E+\omega, \bar{E}_{;}-\omega_{1}\right) G_{\mu_{2} \mu_{3}}(\bar{E}+\omega) G_{\mu_{4} \mu_{4}}(\bar{E}) \tilde{Q}_{\mu_{3} \mu_{4}}(\bar{E}+\omega, \bar{E}) . \tag{2.28}
\end{align*}
$$

Phyaical information of interest is contained in the expectation value of a one-particle operator $A=\sum_{\lambda_{1} \lambda_{2}} C_{1}^{+} A_{\lambda_{1}} \lambda_{2} c_{\lambda_{2}}$ in the presence of the oxternal field Q introduced in $\left.\hat{2}_{2}^{\lambda_{2}} 2.25\right)_{1}$ and (2.27). Then, the time-depondent expectation value of A can be oxpressed by

$$
\begin{equation*}
\langle A(t)\rangle=-i \sum_{\lambda_{1} \lambda_{2}} G_{\lambda_{2} \lambda_{1}}\left(t, t^{+} ; Q\right) A_{\lambda_{1} \lambda_{2}}(Q), \tag{2.29}
\end{equation*}
$$

where $A_{\lambda_{1} \lambda_{2}}(Q)$ refers to an explicit field dependence. In genersl We bave to conaider the firet order (proportional to the applied Pield) change of G and of the operator A itself, too. Thase, the variation of (2.29) is wintten as $\delta(A(t)\rangle=\delta\langle A(t)\rangle^{(1)}+\delta\langle A(t)\rangle^{(2)}$. According to (2.10) and (2.25) the comelation part of the phyaical response may be oharacterized by the change in the expectation value

$$
\begin{equation*}
\delta\langle A(t)\rangle^{(1)}=i \sum_{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \int d t^{\prime} L_{\lambda_{2} \lambda_{3}, 1_{4}}\left(t, t^{\prime}, t^{\prime}, t^{\prime \prime} \mid Q_{\lambda_{4} \lambda_{3}}\left(t^{\prime}, t^{\prime} \mid A_{\lambda_{1} \lambda_{2}},\right.\right. \tag{2.30}
\end{equation*}
$$

Whare tiae correlation function of coinciding time arguments occurs. Rewriting (2.30) in enargy variables we get

$$
\begin{equation*}
\delta\langle A| \omega\left\rangle^{(1)}=i \sum_{\lambda_{1} \lambda_{2}^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime}} \int \frac{d E_{1} d E_{2}}{(2 \pi)^{2}} L_{\lambda_{1} \lambda_{2} \lambda_{1}^{\prime} \lambda_{2}^{\prime}}\left(E_{1}, E_{2} ;-\omega\right) A_{\lambda_{1}^{\prime} \lambda_{1}} Q_{\lambda_{2}^{\prime} \lambda_{2}^{\prime}}(\omega) .\right. \tag{2.31}
\end{equation*}
$$

Moreoves, the second contribution to the linear respcase arising from the change $\delta_{\lambda_{\lambda_{1} \lambda_{2}}}$ in (2.29) is

$$
\begin{equation*}
\delta\langle A(\omega)\rangle^{(2)}=-i \sum_{\lambda_{1} \lambda_{2}} G_{\lambda_{2} \lambda_{1}}\left(0^{+}\right) \delta A_{\lambda_{1} \lambda_{2}}(\omega), \tag{2.32}
\end{equation*}
$$

where $G_{\lambda_{2} \lambda_{1}}\left(0^{+}\right)=G_{\lambda_{2} \lambda_{1}}\left(t, t^{+}\right)$.

3. LADDER APPROXTMATION TN THO CHANNELS

Now we are looking for a sulf-conaiatent approximition (cf. the achom in $/ 9 /$) concerning the correlation function L. This can be realized by chooning at the beginning an approximate Σ_{U}, calculating thon I from this Σ_{u} via (2.13), and ingerting finally the approximate I into (2,24) to evaluate L.

Start from local approximation in the particle-particle channel (s-channel) by assuming a site-diagonal vertex Γ in (2.20) which depends only on the our of onergies $\left(\mathrm{E}_{1}+\mathrm{K}_{2}\right)$ of the interacting olectrons, 1.0. $\Gamma_{\substack{i \neq j i f}}\left(B_{1}, E_{2} ; E_{1} E_{1}+E_{2}-E\right)$ in (2.20) is
replaced shortly by the acattosing amplitude $T_{i}\left(E_{1}+E_{2}\right)$. Then $i t$ reaulte in the local melf-anergy

$$
\begin{equation*}
\sum_{j i i, \sigma}(E)=\int \frac{d}{2 \pi} \bar{E}_{i i} G_{i i,-\sigma}(\bar{E}) T_{i}(E+\bar{E}), \tag{3.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{i}(E)=\left[\frac{1}{U_{i}}+\int \frac{d \bar{E}}{2 \pi i} G_{i i, \sigma}(\bar{E}) G_{i i,-\sigma}(E-\bar{E})\right]^{-1} . \tag{3.2a}
\end{equation*}
$$

Here the renormalized G obeys the Dyson equation (2.19), where $\sum_{U_{i j}, \sigma}(E) m \Sigma_{U i, \sigma}(E) \delta_{i j}$ o The convolution integral (3.2a) reflecte contact interaction only between electrons having different epin directions, i.e. $T_{i}=T_{i, \sigma-\theta \delta-\sigma}$ according to the bare interaction U_{i}.

The diagrammatic representation of (3.1a) and (3.2a) is known as the horizontal ladder approximation (arromed lines denots the dreabed G):

This approximation wes proposed by Babanov et al. /2/for pure aystems. A partially averaged version was given in $/ 6 /$, whereas at present we consider the completely random case of the whole configuration $\{\nu\}$.

According to (2.13) the Pourier traneform of the irreducible particle-hole vertex I at zero energy tranafor has to eatisfy
the relation

$$
\begin{equation*}
\frac{\delta \sum_{u i i, \sigma}(E)}{\delta G_{i i, \sigma^{\prime}}\left(E^{\prime}\right)}=-i I_{i i i i}\left(E, E^{\prime} ; E, E^{\prime}\right) \equiv-i I_{i, \sigma \sigma^{\prime}}\left(E, E^{\prime}\right) \tag{3.3}
\end{equation*}
$$

Where I can be found explicitly from (3.1) and (3.2) as

$$
\begin{align*}
& I_{i, \sigma \sigma^{\prime}}\left(E, E^{\prime}\right)=-\int \frac{d \bar{E}}{2 \pi i} G_{i i,-\sigma}(\bar{E}) G_{i i,-\sigma}\left(E+\bar{E}-E^{\prime}\right)\left[T_{i}(E+\bar{E})\right]^{2} \delta_{\sigma \sigma^{\prime}} \\
& \quad+\left(T_{i}\left(E+E^{\prime}\right)-\int \frac{d \bar{E}}{2 \pi i} G_{i i,-\sigma}(\bar{E}) G_{i i, \sigma}\left(E+\bar{E}-E^{\prime}\right)\left[T_{i}(E+\bar{E})\right]^{2}\right)\left(1-\delta_{\sigma \sigma^{\prime}}\right) \tag{3.4a}
\end{align*}
$$

Prom (2.21), on the besis of the locality of (3.4) one gets the equation for the total verter in the particle-bole channel (t-channel) in the furm

$$
\begin{align*}
& \Gamma_{i j i k}\left(E, E^{\prime} ; \omega\right)=I_{i, \sigma \sigma^{\prime}}\left(E, E^{\prime} ; \omega\right) \delta_{i j} \delta_{i k} \tag{3.5a}\\
& \sigma \sigma^{\prime} \sigma \sigma^{\prime} \\
& \left.\quad-i \sum_{\ell \bar{\sigma}} \int \frac{d \bar{E}}{2 \pi} I_{i, \sigma \bar{\sigma}}(E, \bar{E}+\omega ; \omega) G_{i \ell, \bar{\sigma}}(\bar{E}) G_{\ell i_{i} \bar{\sigma}}(\bar{E}+\omega) \right\rvert\, \Gamma_{\substack{\ell j \varepsilon k \\
\bar{\sigma} \sigma^{\prime} \bar{\sigma} \sigma^{\prime}}}\left(\bar{E}, E^{\prime} ; \omega\right)
\end{align*}
$$

which can be repreeented graphically by

It is pointed out that the ω-dependence of I can be neglected for energiee near the Fermi energy (cl. (2.21)), so that I from (3.4) fits to (3.5).

4. ELEGTRICAL GONDUGTIVITY

In order to evaluate the ac conductivity tensor $\sigma_{\alpha \beta}(\omega)$ defined by the relation $\left.\left\langle J_{\alpha}(\omega)\right\rangle\right\rangle_{e}=\sigma_{\alpha \beta}(\omega) E_{\beta}(\omega)$ between the configurational-averaged, induced average current $\langle\vec{j}(\omega)\rangle\rangle_{c}$ and the spatialiy homogeneous external electric field $\vec{E}(w)$, we have to insert into (2.31), inatead of $A_{\lambda_{1}^{\prime} \lambda_{1}}$, the matrix elemente of the x-component of the current operstor $j x$, and to eet $Q x_{2}^{\prime} x_{2}=-\frac{1}{c} \vec{J}_{\lambda_{2}^{\prime} \lambda_{2}}-\vec{A}$ for coupling via the vector potential \vec{A}. Thus, from (2.,1) and (2.22) by using $\vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}$ one gets the real part of the conduciivity tensor as (〈...) \rangle_{c} denotes configurational averaging)
where the current operator given by

$$
\begin{equation*}
j_{\alpha}=-i e \sum_{i j \sigma} t_{i j}\left(R_{\alpha i}-R_{\alpha j}\right) c_{i \sigma}^{+} c_{j \sigma} \tag{4.2}
\end{equation*}
$$

takes randon matrix elements in the Wannier space if off-diagonal disorder is included. Calculating the change of the current operator
via $\delta_{j_{\alpha}}=\frac{i e}{c} \sum_{j, \sigma \beta} R_{i j}\left[n_{i \sigma}, j_{G}\right] A_{\beta}$ end ingerting into (2.32) yielde an additivé conductivity term $\sigma_{\alpha \beta}^{(21)}(\omega)$ which does not contribute to the real part given in (4.1).

Comparison nith (2.26) shows that it is coavenient to introduce the extemal field vertex Λ_{a} into (4.1) by

According to $Q_{\lambda_{2}^{\prime} \lambda_{2}}(\omega)=-\frac{1}{c} \vec{j}_{\alpha_{1} \lambda_{2} \lambda_{2}^{\prime}} \cdot \vec{\Lambda}_{\alpha}(\omega)$ we separate the current vertex Λ_{α} from the effective extemal field \widetilde{Q} by $\widetilde{Q}_{\lambda_{2}^{\prime} \lambda_{2}}(\mathbb{E}+\omega$, E) $=$ $-\frac{1}{c} \sum_{N} A_{N} \lambda_{2}^{\prime} \lambda_{2} A_{n}(\omega)$. Thus, the integral equation (2.28) can be rewritten as

On the other hand, (4.4a) can be verified by combining (4.1) and (4.3) with (2.24). To exprese Λ_{x} directly in tertas of the total vertex Γ from (2.23), (4.1), and (4.3), we write

The connection between (4.3日) and (4.5) can be illuatrated by electron-hole bubble日:

Further, the diagrams of (4.4a) with the locel kernel I of (3.4) are

Note that (4.4) involving three I terms has an analogous form to the vertex equation for the ordered case in $/ 11 /$. Writing out Λ_{α} in detail with (4.4) we have two terms

$$
\begin{equation*}
\sigma_{\alpha \beta}^{\prime}(\omega)=\frac{1}{\omega} \operatorname{Re}\left\{\frac{d E}{2 \pi}\left\langle\operatorname{tr}\left\{j_{\alpha} G(E+\omega) j_{\beta} G(E)\right\}\right\rangle_{c}+\tilde{\sigma}_{\alpha \beta}^{\prime}(\omega),\right. \tag{4.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \left.\tilde{\sigma}_{\alpha \beta}^{\prime}(\omega)=\frac{1}{\omega} \operatorname{Re} \int \frac{d E_{1}}{2 \pi}\left\langle\sum_{i \sigma} K_{\alpha, i i, \sigma}\left(E_{1}, E_{i}+\omega\right) \Lambda_{\beta, i, \sigma}\right| E_{i}+\omega, E_{1}| \rangle\right\rangle, \tag{4.7}\\
& K_{n, i i, \sigma}\left(E_{1,} E_{i}\right)=\frac{\sum_{j \bar{j}}}{} G_{i j, \sigma}\left(E_{1}\right)_{j_{\alpha, j \bar{j}}} G_{\bar{j} i, \sigma}\left(E_{2}\right) . \tag{4.8}
\end{align*}
$$

The trace in the firat tem of (4.6) is to be taken over oneelectron λ states with epin included.

The problen of configurational averaging in (4.7) is beyond the CPA. To proceed, we omploy a chain factorization by betting $\left\langle\pi_{a} \Lambda_{\beta}\right\rangle_{c}=\left\langle\mathbb{H}_{a}\right\rangle_{c}\left\langle\Lambda_{\beta}\right\rangle_{c}$. Thus, working in k-space one gete with (4.2) the off-diagonal CPA result $/ 12 /$

$$
\begin{align*}
K_{\alpha, \sigma}^{R}\left(z_{1}, z_{2}\right) & =\left\langle G_{\sigma}\left(z_{1}\right) j_{\alpha} G_{\sigma}\left(z_{2}\right)\right\rangle_{c, i i} \tag{4.9}\\
& =\frac{e}{N} \sum_{\vec{k}} G_{\vec{k} \sigma}\left(z_{1}\right) G_{\overrightarrow{\sigma_{\sigma}}}\left(z_{2}\right) \frac{\partial}{\partial k_{\alpha}}\left\{t^{B B}(\vec{k})+\frac{1}{2}\left(\sum_{\sigma}\left(\vec{k}, z_{1}\right)+\sum_{\sigma}\left(\vec{k}, z_{2}\right)\right)\right\} .
\end{align*}
$$

The eupergeript " R " refers to the resolvent obtained by analytical continuation to retarded and (or) advanced Green funetions (cf. also (4.11) to (4.13)); the subscript "c,ii" means taking the site-diagonal element after averaging. The coherent quantitien on the r. $\mathrm{h} . \mathrm{B}$. of (4.9) are defined below (see (4.16) to (4.18)).

Using the time reveral symatry relation (f boing an arbitrary function)

$$
\begin{equation*}
\sum_{\vec{k}} f(s(\vec{k})) \frac{\partial s(\vec{k})}{\partial k_{a}}=0, \tag{4.10}
\end{equation*}
$$

one can prove that $K_{\alpha, \sigma}^{R}$ given by (4.9) vanishes identically, i.e. $\tilde{\sigma}_{\alpha \beta}^{\prime}(\omega)=0$. Thia conclusion seang to be more'general because producte (4.8) with inner factors J_{α} should vaniah. A ainilar proof for the ordered case jielda immediately $\tilde{\sigma}_{\alpha \beta}^{\prime \prime}(\omega)=0$ within the local approximation.

Hext we go over from camal Green functions in (4.6) to advanced (n^{a} ") and retarded (n^{F}) ones. Using the abbreviations

$$
\begin{equation*}
D(\omega)=\int \frac{d E}{2 \pi} \pi(E+\omega, E) \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
T(E+\omega, E)=G_{\lambda_{1} \lambda_{2}^{\prime}}(E+\omega) G_{\lambda_{2} x_{i}}(E) \tag{4,12}
\end{equation*}
$$

one can perform analytical continuation by spectral theoreme to write
$D(\omega)=\int_{-\infty}^{\infty} \frac{d E}{2 \pi}\left[f(\varepsilon+\omega) \pi^{\alpha \alpha}(E+\omega, E)-f(E) T_{1}^{r v}(E+\omega, E)+(f(E)-f(E+\omega)) \pi^{r a}(E+\omega, E)\right], \omega>0$ (4.13)

Here $\pi^{\text {as }}$ means replacing both Graen functions in (4.12) by advanced ones, etc.; at zero temperature we have the Feref function $f, i)=\theta(\mathrm{E}-\mu)$ with μ being the chomical potential. An analogous expresaion to (4.13) can be derived for $\omega<0$.

Uaing (4.11) to (4.13) and combining with the relations $\alpha_{\lambda \lambda^{\prime}}^{\boldsymbol{T}}=\left(G_{\lambda^{\prime} \lambda}^{\mathrm{a}}\right)^{*}, j_{\alpha, \lambda \lambda^{\prime}}=\left(j_{\alpha, \lambda^{\prime} \lambda}\right)^{*}$, and $\sigma_{r, \beta}=\sigma_{\beta \alpha}$ (fulfilied in
cubic lattioes), from (4,6) we obtain

$$
\begin{gather*}
\sigma_{\alpha \beta}^{r \prime}(\omega)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} d E\left(\frac{f(E)-f(E+\omega)}{\omega}\right)\left\langle\operatorname { t r } \left\{ j_{\alpha} G^{\prime}(E+\omega) j_{\beta} G^{a}(E)+j_{\alpha} G^{a}(E+\omega) j_{\beta} G^{r}(E)\right.\right. \tag{4,14}\\
\left.\left.-j_{\alpha} G^{r}(E+\omega) j_{\beta} G^{r}(E)-j_{\alpha} G^{a}(E+\omega) j_{\beta} G^{\alpha}(E)\right\}\right\rangle_{c}
\end{gather*}
$$

This is the Kubo-Greenwood formula, but with Green functions renormalized by electron correlations mithin the ladder approximation (3.1) and (3.2). Note that $\sigma_{\alpha \beta}^{r^{\prime}}(\omega)$ reflects the retarded reoponse velid for all ω; in getting (4.14) we have used the Bose-type relation $\sigma_{\alpha \beta}^{\prime}(\omega)=\operatorname{aign}$ c $\sigma_{\alpha \beta}^{r^{\prime}}(\omega)$.

To arerage configurationally in the prebence of off-diagonal randomess, we restrict ourselves to nearest-neighbour hopping integrals in the additive limit $t^{A B}=\frac{1}{2}\left(t^{M A}+t^{B B}\right)$. The CPA result including current vertex corrections due to the off-diagonal disorder is $/ 12 /$

$$
\begin{align*}
\left\langle\operatorname{tr}\left\{j_{\alpha} G\left(z_{1}\right) j_{\alpha} G\left(z_{2}\right)\right\}\right\rangle_{c} & =e^{2} \sum_{\dot{\sim} \sigma} \varphi_{\vec{k} \sigma}\left(z_{j}\right) \varphi_{\vec{k} \sigma}\left(z_{2}\right)\left[\frac{\partial}{\partial k_{\alpha}}\left\{t^{B A} S(\vec{k})+\frac{1}{2}\left(\sum_{a}\left(\vec{k}, z_{1}\right)+\sum_{\sigma}\left(\vec{k}, z_{2}\right)\right)\right\}\right]^{2} \\
+ & e^{2} \sum_{\vec{k} \sigma}\left[\sigma_{2 \sigma}\left(z_{1}\right) \varphi_{\vec{k} \sigma}\left(z_{2}\right)+\sigma_{z \sigma}\left(z_{2}\right) \varphi_{\vec{k} \sigma}\left(z_{1}\right)\right]\left[\frac{\partial s(\vec{k})}{\partial k_{a}}\right]^{2}, \tag{4.15}
\end{align*}
$$

where

$$
\begin{align*}
& \varphi_{\vec{k} \sigma}(z)=\left\langle G_{\sigma}(z)\right\rangle_{c, \vec{k}}=\left(z \cdot E^{B}-t^{B B} s(\vec{k})-\sum_{\sigma}(\vec{k}, z)\right)^{-1} \tag{4,16}\\
& \sum_{\sigma}(\vec{k}, z)=\sigma_{\sigma \sigma}(z)+2 \sigma_{t \sigma}(z) s(\vec{k})+\sigma_{z \sigma}(z) s^{2}(\vec{k}), \tag{4.17}\\
& s(\vec{k})=\sum_{j(\neq i)}^{\prime} e^{i \vec{k}\left(\vec{k}_{j}-\vec{R}_{i}\right)} \tag{4.18}
\end{align*}
$$

Here $\varphi_{\dot{*} \sigma}(z)$ is the coherant areen function, $\Sigma_{\sigma}(x, s)$ is the cohorent potential, and $m(k)$ denotes the noareat-neichbour ntructure factor (cf. (4.9)). The enif-anergy parto $\sigma_{0 \sigma}$. $\sigma_{1 \sigma}$, $\sigma_{2 \sigma}$
including $\sum_{u i i, \sigma}$ from (3.1) and (3.2) can be determined within the coherent ladder approximetion acheme given in $16 /$. It should be mentioned that (4.15) is consistent with the Ward identity reflecting the gauge invariance of the configurationaily averaged syetem.

In the caee of only diagonal disorder we have no vertex correctiona. Then, the disaipative part of the scalar de conductivity becomes

$$
\begin{equation*}
\sigma^{\prime}(\omega-0)=\frac{1}{\pi} \sum_{k, \sigma} \dot{\sigma}_{\alpha, k}^{2}\left[I_{m} \varphi_{k=0}^{\tau}(\mu)\right]^{2} . \tag{4.19}
\end{equation*}
$$

Note that (4.19) Involves the undamped conductivity reault for the ordered case, too.

5. MAGNETTC SUSCEPTIBILITY (ORDERED CASE)

Ag a first atep for treating the magnetic analog to the aituation described in Section 4, we calculate in the following the magnetic ausceptibility for pure ayatems. The longitudinal spin susceptibility at $\mathrm{T}=0$ is given by

$$
\begin{equation*}
\chi_{i j}(\omega)=-\mu_{B}^{2} \sum_{\sigma \sigma^{\prime}}\left(\frac{d E_{1} d E_{2}}{(2 \pi)^{2}} i L_{\substack{i j \\ \sigma a^{\prime} j \sigma^{\prime}}}\left(E_{1}, E_{2} ; E_{1}-\omega, E_{2}+\omega\right) \sigma \sigma^{\prime},\right. \tag{5.1}
\end{equation*}
$$

where μ_{B} is the Bohr magneton. Thia expression reflecta the linear responge to a weak exterasl magnetic field $h_{i}(t)=$ $h_{o} e^{i\left(1 / R_{i}-\omega t\right)}$ applied parallel to the z-axia. By inserting $A=m_{1}=$

$$
=\mu_{B O} \sum_{0} \sigma n_{i \sigma}: 1.0 . A_{\lambda_{1} \lambda_{2}}=A_{\operatorname{mg}}=\mu_{B} \sigma \delta_{\sigma \sigma} \delta_{n i} S_{m i} \text {, and }
$$ $Q_{\lambda_{1} \lambda_{2}}(t)=Q_{m p}(t)=-\mu_{B} h_{m 0}(t) \cdot \sigma_{\sigma}^{\prime} \delta_{\sigma \sigma}, \delta_{m n}$, one geta (5.1) via the relation $\delta\left\langle m_{i}(\omega)\right\rangle=\sum_{7} \quad x_{i j}(\omega) h_{j}(\omega)$. Hers $\delta\left\langle m_{i}(\omega)\right\rangle$ is the change of the magnetic moment on site \vec{R}_{i} arising fron the expectation value of the operator m_{i}. It is pointed out that the contribution to χ coming from (2.32) tends to zero (in the paramagnetic phase).

According to (2.26) one can introduce the apin vertex Λ by

$$
\begin{align*}
\chi(\vec{k}, \omega) & =\frac{1}{N} \sum_{i j} \chi_{i j}(\omega) e^{-i \vec{k}\left(\vec{R}_{i}-\vec{R}_{j}\right)} \tag{5.2a}\\
& =\frac{\mu_{B}^{2}}{N} \sum_{i j \sigma} \sigma \int \frac{d E_{1}}{2 \pi} G_{i j, \sigma}\left(E_{i}+\omega\right) i \Lambda_{j \sigma}\left(E_{i}+\omega, E_{1}\right) G_{j i_{i \sigma} \sigma}(E) e^{-i \vec{k} \vec{R}_{i}}
\end{align*}
$$

Where Λ has been separated from the external field \tilde{Q} through $\tilde{Q}_{\lambda_{1} \lambda_{2}}(B+\omega, E)=-\mu_{B} h_{0} e^{i \omega t} \Lambda_{\lambda_{1}}(E+\omega, E) \delta_{\lambda_{1} \lambda_{2}}$. Note that the spin-flip aituation is oxcluded.

From (2.28) we get
$\Lambda_{i \sigma}(E+\omega, E)=\sigma e^{i \vec{k} \vec{R}_{i}}-\sum_{j^{\sigma^{\prime}}}\left(\frac{d \bar{E}}{2 \pi} i I_{i, \sigma \sigma^{\prime}}\left(E_{+\omega}, \bar{E}_{j}-\omega\right) G_{i j, \sigma^{\prime}}\left(\bar{E}_{+\omega}\right) G_{j i, \sigma^{\prime}}(\bar{E}) \Lambda_{j \sigma^{\prime}}(\bar{E}+\omega, \bar{E})\right.$,
and, more explicitly, by uaing I at $\omega=0$ from (3.4) it follows

$$
\begin{aligned}
& \Lambda_{i \sigma}(E+\omega, E)=\sigma e^{i{ }^{k} \vec{R}_{i}}-\sum_{j}\left(\frac{d \bar{E}}{2 \pi} i T_{i}(E+\bar{E}) G_{i j,-\sigma}(\bar{E}+\omega) G_{j i, \sigma}(\bar{E}) \Lambda_{j-\sigma}(\bar{E}+\omega, \bar{E})\right. \\
& \quad+\sum_{j} \int \frac{d \bar{E} d \bar{E}}{(2 \pi)^{2}} G_{i i, \sigma}(\bar{E}) G_{i i, \sigma}(E+\bar{E}-\bar{E})\left[T_{i}(E+\bar{E})\right]^{2} G_{i j-\sigma}(\bar{E}+\omega) G_{j, i, \sigma}(\bar{E}) \Lambda_{j-\sigma}(\bar{E}+\omega, \bar{E})(5.4 a) \\
& \\
& \quad+\sum_{j} \int \frac{d \bar{E} d \bar{E}}{(2 \pi)^{2}} G_{i i, \sigma}(\bar{E}) G_{i i, \sigma}(E+\bar{E}-\bar{E})\left[T_{i}(E+\bar{E})\right]^{2} G_{i j, \sigma}(\bar{E}+\omega) G_{j i, \sigma}(\bar{E}) \Lambda_{j \sigma}(\bar{E}+\omega, \bar{E}) .
\end{aligned}
$$

To generalize later the calculations to the disordered case, we retain the dumy index 1 for the quentities I_{i}, T_{i} and $G_{i i}$. Fote that the off-diagonsl elemente of Λ in apin and lattice spaces vanish idontically, profided a local vertex I is only teicen into account. The equation (5.3) can be verified on the bagis of (2.24), too.

Diagrams representing (5.2a) and (5.4a) take the fort

Further, the unperturbed ayfom is asounad to be peramagnetic, i.e. $\Sigma_{U i i, \sigma}=\sum_{u i i,-\sigma}=\sum_{u i i}$, implying $G_{i i, \sigma}=G_{1 i,-\sigma}=a_{i i}$. then by making the ancatz $\Lambda_{i \sigma}(B+\omega, E)=\quad \sigma \Lambda_{i}(B+\omega, B)$ eq. (5.4) simplifies to

$$
\begin{equation*}
\Lambda_{i}(E+\omega, E)=e^{i \vec{k} \vec{R} \vec{R}_{i}}+\sum_{\bar{j}} \int \frac{d \bar{E}}{2 \pi} i T_{i}(E+\bar{E}) G_{i j}(\bar{E}+\omega) G_{j i}(\bar{E}) \Lambda_{j}(E+\omega, \bar{E} .\} \tag{5.5}
\end{equation*}
$$

which can bo perforzed by putting $\Lambda_{i}(B+\omega, B)=\Lambda_{\vec{E}}(B+\omega, E) e^{i \vec{k} \vec{R}_{i}}$ to

$$
\begin{equation*}
\Lambda_{\vec{k}}(E+w, E)=1+\left\langle\frac{d \bar{E}}{2 \pi} i \Gamma_{i}(E+\bar{E}) \frac{1}{N} \sum_{\vec{k}^{\prime}} G_{\vec{k}^{\prime}+k_{k}}(\bar{E}+\omega) G_{\vec{k}^{\prime}}(\bar{E}) \Lambda_{\vec{k}}(\bar{E}+w, \bar{E})\right. \tag{5.6}
\end{equation*}
$$

How from (5.2) one obtains the dymanc paramagnetic ausceptibility

$$
\begin{equation*}
\chi(\vec{k}, \omega)=\frac{2 \mu_{\mathrm{B}}^{2}}{N} \sum_{\vec{k}^{\prime}} \int \frac{d \bar{E}}{2 \pi} G_{\vec{k}^{\prime}+\vec{k}}(\bar{E}+\omega) G_{\vec{k}^{\prime}}(\bar{E}) i \Lambda_{\vec{k}}(\bar{E}+\omega, \bar{E}) . \tag{5.7}
\end{equation*}
$$

For practical celculations the bysten of eqs. (5.6) and (5.7) is not convenient. Following /i3/, by approcimating the energy dependence of the acattoring amplitutd in (5.6) (compare (3.1)) as

$$
\begin{equation*}
T_{i}(E+\bar{E}) \longrightarrow \bar{T}_{i}(E)=\frac{\Sigma_{u i i}(E)}{n_{i}} \tag{5.0}
\end{equation*}
$$

$$
\begin{equation*}
\chi(\vec{k}, \omega)=\frac{\frac{2 \mu_{N}^{2}}{N_{B}} i \sum_{\vec{k}^{-1}} \int \frac{d \bar{E}}{2 \pi} G_{\vec{k}^{\prime}+\vec{k}^{\prime}}(\bar{E}+\omega) G_{\overrightarrow{k^{\prime}}}(\bar{E})}{1-\frac{i}{n_{i}} \frac{1}{N} \sum_{\vec{k} \vec{k}^{\prime}} \int \frac{d \vec{E}}{2 \pi} G_{\vec{k}^{\prime}+\vec{k}^{\prime}}(\bar{E}+\omega) G_{\vec{k}^{\prime}}(\bar{E}) \sum_{U i i}(\bar{E})} \tag{5.9}
\end{equation*}
$$

Here $\Sigma_{\text {Uii }}$ mast bo determined by solving strictly (3.1) and (3.2) together with (2.19), n_{i} being the average electron number per aite per gpin, where the index i in $\sum_{U_{L i}}$ and n_{i} is again fictitious.

The transition to the static paramagnetic ausceptibility is parformed in the so-called k-iimit $/ 4 /$ (see also the k-limit digcussion in /14/) jielding the ccirelation-enhanced expresaion

$$
\begin{equation*}
\chi(\vec{k} \rightarrow 0, \omega=0)=-\frac{? \mu_{B}^{2} i \int \frac{d \bar{E}}{2 \pi}\left(G^{2}(\bar{E})\right)_{i i}}{1-\frac{i}{\pi_{i}} \int \frac{d \bar{E}}{2 \pi}\left(G^{2}(\vec{E})\right)_{i i} \sum_{u i i}(\bar{E})} \tag{5.10}
\end{equation*}
$$

T1: form of (5.10) refers to instabilitiea of the paramagnetic phase towarde furromagnotic ordering, arising from the cr idition
$X^{-1}(\vec{k}-0, \omega=0)=0$. In the Hartree-Fock approximation $\Sigma_{U i i}=U n_{i}$, from (5.10) one gete immediately the well-known RPA reault (according to the vertex $\Gamma=-\mathrm{U} /(1-\mathrm{U} Q(\mu))$, cf. (3.5))

$$
\begin{equation*}
\chi^{H F}=\frac{2 \mu_{B}^{2} Q(\mu)}{1-U_{Q(\mu)}}, \tag{5.11}
\end{equation*}
$$

which gives for noninteracting electrons the Pauli susceptibility
$X_{0}=2 \mu_{B}^{2} Q_{0}(\mu) \cdot Q(\mu)$ is the aingle-particle density of tates (per site per apin) at the Fermi level.

Hext, we discuss the Ward identity related tc the susceptibility calculation (cf., e.g., /15/). Starting with the Pourier traneforp of (2.15) ae cm exprean the firat order variation of the selfenergy Σ_{u} with reapect to the external field δQ by

$$
\delta \Sigma_{U \lambda_{1} \lambda_{1}^{\prime}}\left(E+\omega_{1} E ; G\right)=-\sum_{\lambda_{2} \lambda_{2}^{\prime} \lambda_{3}^{\lambda_{4}}} \int \frac{d \bar{E}}{2 \pi} i \Gamma_{\lambda_{1} \lambda_{3}^{\prime} \lambda_{2}^{\prime} \lambda_{4}}\left(E+\omega_{1} \bar{E}_{j}-\omega\right) G_{\lambda_{2} \lambda_{3}}(\bar{E}) G_{\lambda_{4} \lambda_{2}^{\prime}}\left(\bar{E}+\omega_{j} \delta Q_{\lambda_{2}^{\prime} \lambda_{2}}(\omega)(5.12)\right.
$$

B. inearting into (5.12) the inhonogeneous magnetic ifeld $h_{i}=h e^{i\left(k \sum_{-} \omega t\right)}$ via δQ (compare the context of (5.1)) we get by performing $\lim _{\vec{k} \rightarrow 0} \lim _{\omega \rightarrow 0}$ the Ward identity

$$
\begin{equation*}
\left(\frac{\partial \sum_{\mu_{i} i, \sigma}\left(E_{i} h\right)}{\partial h}\right)_{h=0}=\mu_{B} \sum_{j k \sigma^{\prime}}\left(\frac{d E}{2 \pi} i \Gamma_{\substack{i j i k \\ \sigma^{\prime} \sigma \sigma^{\prime}}}(E, E)\left(G_{\sigma^{\prime}}\left(\bar{E} \mid \sigma^{\prime} G_{\sigma^{\prime}}(\bar{E})\right)_{j k}\right)\right. \tag{5.13}
\end{equation*}
$$

where the vertox $\Gamma_{i j i k}(E, \bar{E})=\Gamma_{i j 1 k}(E, \overline{\mathrm{E}} ; \mathrm{E}, \overline{\mathrm{E}})$ denotea zaro enargy trangfor. Subatituting (3.5) at $\omega=0$ into (5.33) one finde

$$
\begin{align*}
&\left(\frac{\partial \sum_{u i, j}(E ; h)}{\partial h}\right)_{h=0}=\mu_{B} \sum_{\sigma^{\prime}}\left(\frac{d \bar{E}}{2 \pi} i I_{i i, \sigma \sigma^{\prime}}(E, \bar{E})\left(G_{\sigma^{\prime}}(\vec{E}) / \sigma^{\prime} G_{\sigma^{\prime}}(\vec{E})\right)_{i i}\right. \tag{5.14}\\
&-\sum_{j \sigma^{\prime}}\left(\frac{d \bar{E}}{2 \pi} i I_{i i, \sigma \sigma^{\prime}}(E, \bar{E}) G_{i j, \sigma^{\prime}}(\bar{E}) G_{j i, \sigma^{\prime}}(\bar{E})\left(\frac{\left.\partial \sum_{u_{j j, \sigma^{\prime}}(\bar{E} ; h}\right)}{\partial h}\right)_{h=0}\right.
\end{align*}
$$

Comparison of (5.14) with the k-limit of (5.3) leade to

$$
\begin{equation*}
\left(\frac{\partial \sum_{u(i, 0}\left(E_{;} h\right)}{\partial h}\right)_{h=0}=\mu_{B}\left(\sigma-\Lambda_{i \sigma}(E, E)\right) \tag{5.15}
\end{equation*}
$$

where the index 1 is retumdent.
By inserting $\Lambda_{i \sigma}$ from (5.15) into the $\vec{k}-1$ imit of (5.2) one varifies the static susceptibility $X \equiv X(\vec{k} \rightarrow 0, \omega=0)$ to be

$$
X=\mu_{B} i \sum_{\sigma} \sigma\left(\frac{d E}{2 \pi}\left(G_{\sigma}^{2}(E)\right)_{i i}\left(\mu_{\theta} \sigma-\left(\frac{\partial \sum_{u_{i i},}(E ; h)}{\partial h}\right)_{h=0}\right)=-\mu_{B} i \sum_{\sigma} \sigma\left(\frac{d E}{2 \pi}\left(\frac{\sigma_{i i, \sigma}\left(E_{; h}\right)}{\partial h}\right)_{h=0,}(5.16)\right.\right.
$$

Which is equivalent to $X=\sum_{\sigma} \sigma\left(\frac{\partial n_{i \sigma}(h)}{\partial h}\right)_{h=0}$.
Moreovor, within the approximation (5.8), Irom (5.5). (5.2), and (5.15) in the paramagnetic phase one can deduce the relation

$$
\begin{equation*}
\left(\frac{\partial \Sigma_{\mu_{i i, \sigma}}(E ; h)}{\partial h}\right)_{h=0}=-\sigma \frac{\sum_{\mu_{i i}}(E)}{2 \mu_{B} \pi_{i}} X \tag{5,17}
\end{equation*}
$$

6. COITCLUSIOR

In order to caloulate correlation functions in aubatitutionally disordered eyatems with narrow enargy bande, we have proposed a microscopic Fernil liquid approach in terms of Wannier functions. When the kernel, appearing in the vartex and (or) correlation function equations, is of short range (say local), we have derived erylicit expressions for the electrical conductivity and magnetic susceptibility. The latter was found in the ordered case.

The equations (5.16) and (5.17) can be used as a starting point to calculate the atatic epin ausceptibility with disorder included. Then, we have to replace, for instance, $\Sigma_{U i i}, G_{i i}$, and n_{i} by the corresponding configuration-dependent quantities, yielding a sitedependent sugceptibility X_{i}.

Approximations were constructed as to make them uesful for a numerical analyeis. Numerical reaults based on the present approrimation will be reported in a gubsequent paper.

Acknowledgemente. The authore are indebted to Prof.J. Czerwonko, Dr. A.I. Kuzemsky, and Dr. N.M. Plakida Por useful discussions.

REFEREHCES

1. J. Hubbard. Proc.Roy.Soc., A276, 238 (1963); A281, 401 (1964).
 472 (I971); 35, II23 (1973).
2. G. Baya and L.P. Kadanoff. Phys.Rev., 124, 287 (1961); G. Baym, Phys.Rev., 127, 1391 (1962); I.P. Kadanoff and G. Baym. Quantum Statistical Mochanice, M.A. Benjamin, Inc., Now York, 1962.
3. Л.Д. Ландау. 品Т甲, 35, 97 (I958).
4. B. Velicky, S. Kirkpatrick and H. सhrenreich. Phye.Rev., 175, 747 (1968).
5. E. Kolley and W. Kolley. Preprint JIFR, B17-10403, Dubna, 1977; phya.stat.sol. (b), 81, 735(1977).

 \therefore acesa, I $\ddot{3}$.
is. M. Weigel und G. Wegmann. Fortgchritte der Physik, 19; 451 (1971).
\therefore U. Brandt, W. Pesch and L. Tero.dt. Z. Phyaik, 238, 121 (1970);
U. Brandt, H. Lugtfeld, W. Peach and L. Tewordt. Journal of Low Temperature Physice, 4, 79(1971);L. Tewordt.2. Fhysik,268,207(1974)
N. H. Fuff and W. Weller, phys.gtat.gol.(b), 66, 175 (1974).
ll. S.K. Lyo. Phys.Rev. B, 14, 2335 (1976).
l.'. E. Kolley and W. Kolley. Preprint JINR, E17-9988, Dubna, 1976; phye.stat. aol. (b), 79, 325 (1977).
lis. W. Young. Phye.Rev. B, 2, 167 (1970).
1.1. P. Noziérea and J.M. Luttinger. Fhys.Rev., 127, 1423 (1962).
[!. I. \because, ! !
 315 (1977).
