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1. INTRODUCTION

The microscopic calculation of correlation functions of narrow
band systems in the presence of random disorder requires a tight-
binding description of an inhomogeneous Fermi liquid.

The maln features of such an approach are just due to lack of
the translational symmetry. Consequently, an approximatlion scheme
can be cutlined as follows:

(i) The bare electron-electron intersction due to the intraatomic
repulsion should bs described within a random version of the
Hubbard model /1/.

(i1)By means of a local ladder approximation the one-particle
Green functions are dressed; for pure systems that was pro=-
posed by Babanov et al. .

(iii)According to the procedure of Baym and Kadanoff 13/ one can
derive selfconsistently the irreducible particle-hole vertex,
being

{iv)the kermel of the Bethe-Salpeter equation for the correlation
function. The corresponding integral equation for the whole
vertex must be formulated in the lattice space, unlike the
Landsu theory of uniform Permi liquids /4/,

{v) The oonfigurational averaging can be performed within a cohe-
rent potential approximation (OPA). For only diagonal disorder
without interactions the CPA was developed by Velicky et al.

/5/, the present approach rests on an extended CEA 76/,
In this paper we are working along the line (1) to (v) within
a perturbative approach in terms of causal Green functions at zero



temperature /7/. In Seot. 2 the functional-derivative technique is
used to deduce the integral equation for the correlation function
involving the irreducible particle-hole vertex. The inclusion of
dynamic interactions by the local ladder approximation effects the
connaction hetween the particle-particle and particle-hole chan-
nels (Sect.3). In Sect. 4 we give the CPA result for the ac con-
ductivity without using the Kubo formula. The gpin susceptibility
expression calculated in Sect. 5 for the ordered case is found to
be beyond the random phase approximation (RPA).

2. CORRELATION PUNCTION AND VERTICES

Within a random lattice we consider a zero~temperature fermion
system described by a tight-binding Hamiltonian H, Specifically,
alectron-electron correlations in disordered narrow band systems
of the substitutional alloy-type AcB‘l-c can be treated by the
Hubbard model

H = Hy*+ Hy, (2.1)
where
H, - %,F‘i"-'-u + ?;—at{ic'idcjfv ) (2.2)
(e
Hy = z izuui“idni-cr . (2.3)

Here c!, {c;,) im the creation (annihilation) operator for an
electron of spin ¢ in the Wannier state at lattice site i, and

Ty = Ci{yCiy+ The spatial inhomogeneity is expressed by random
atomic levele €., hopping integrals tij’ and strengths Ui of the
local initial peir iuteraction. These parameters take the values
€¥, t" concerning nearest-neighbour hopping, and U* (v s =A,B),
resp., according to whether an A or B atom occupies the site i (J).
In thig Section we are still working within a fixed configuration
{p} = {©44000s 2, 4oees Py} with »; aA,B. Then, all quantities
we calculate depend on the whole configuration {1} .




Supposing a Schwinger source field Q which may be non-local in
space and time, the one=particle causal Green function is intro-
duced by (here the formalism is similar to /21819/)

-1iQ@ -1
Gy (ttl;8) = - 1T, ac)e ™ DT, (2.4)
whers !
Q- ;ﬂz)_' [dt,dt,c00Q, , (t)c, ). (2.5)

Here T ie the time-ordering operetor, A = (i,0 ), the brackete
denote the ground-state average corresponding to H, and the ope-
rators ere written in the Helgenberg picture with respect to H.
In particular, for Q,»(ty1t5) = Qux (t,) & (t,-t;) the external
field tc‘!‘."l. Q-_L Hq(t) dt corresponds to the perturbed Hamil-
tonian H = H + .

The Green funotion (2.4) has to fulfil the Dyson equation

67 (4,15Q) =G, 140 - Q1,1 - £, (4,15 Q) (2.6)

whers the arguments 1, 1’ include lattice site, apin, and tims
variables; i.e., 1= A,t, = 1,0,t, etc.. 2, is the self-energy
rolated to Hy, and G, is the free propagator corresponding to
H, from (2.2).

In the limit Q—O0 the two-particle Green function defined by

67(1,24442) = - {Te(1)c(2)c(2)ch(1) (2.7
can be expressed in texma of the total vertex part T as

G U2,2) = G 116(2,2) -6(1,2)6(2,1)
(2.8)

+1 6(1,3)6(2,8)1"(34,5,6)6(5,116(6,2).,

_Here the bar over double repeated numbers means summation or in-
tegration over the corresponding variables; G(1,1’) is the Green
function (2.4) in the limit Q-+0.




The two-particle correlation function (causal response function)
is defined by

Li231,2) = 67(1,2;1,2') - 6(4,116(2,2). (2.9)

According to the Baym and Kadanoff procedure 13/ one gets, by ta-
king the functional derivative in (2.4) directly

LH,2;102') = - (2.10)

5Q2D 4.,

Prom the Dyson equation (2.6) it follows via 5G = -G 867'¢ the
relation

§6M4Q) | _ , . 2y 8Tu(3.5;4) .
“saz2) | - G“’“G&’“+G“’5)——_—5Q(z,z) 6,1} (2.11)
G=0 Q=0

Because EU depends on Q only via G ope derives fxom (2.11) with
(2.10) the integral equation for L as

La251'2) = - 60,21602,11- 61 3I6HNTGE45)LI5,2;,621,  (2.12)

where the irreducible particle~hole vertex I is determined by

520(4,1V‘,a) - . L AF D
86 (2250 | VU202 (2.1
FRote that (2.13) 1e & neceseary condition for approximations, tooc.
Thus, after choosing an approximate J , one hag to derive I from
(2,13) and to insert into (2.12) for calculaticg the correlation
function L.

The Bethe~Salpeter equation for ™ ix the particle-kols chanmel
is found by inserting (2.8) into (2.9) and combining with (2.12) to

Cé2;020 =T (4,251' 2) -1 111,34 1IGES)6(6.37(5,256,2). (2.14)



Using (2.8), (2.9), and (2.11) we get the relation

87—u(411",a] .. 2.4'4 3 o
—m - 1F(1;3,4.4)G(2,3)6(4,2)) (2'15)

which includes Ward identities,
For the Hubbard interactior term (2.3) the eelf-energy 2, can
be found by making use of (2.t), (2.9) to (2.11), and the identity
56 w ~¢ 5¢-¢, yielding (ct. /1)

2 (t t",Q) = “I'.U{G;{’-a(t,t*; Q)Bt?&t -t

Uije'™
e o 8%ue(E158)
+3U. . . —
i mé_[gltﬁu,uftt)m 88 ga(t0)

(2.16)

Here Q and G have been restricted to epin diagonality, and t*s=t+0,
In the case Q = 0 FPourier traneforms with respect to time va-
riables are introduced as

Gyt £ [ 576, x(Elemp{-iE(t 1]}, (2.17)

and for two-particle quantities through

dE,dE, dEdE;
(tn 20 1»t\ f e 22w (Ey iy E,E, o)

nx‘;\' (2wt

(2.18)
I [} t
%6, , aox EnEri ELEexpl-i (B E B -Et))] .

ar
LWy

Note that the spatial Pourier transZormation is not performed
because of lacking the translationsl symmetry.
Row (2.6) can be rewritten es

(ts"(enw= (G:(E)){j— EpijalE). (2.19)

Taking Fourier coefficients of (2.16) for Q—0 and combining



with (2,15) we get

. dE =, ick
ZU‘!‘-&.O(E] = ‘1U1'_’Z;{6{{1_,(E)e 8_‘]-’
U E (ELs 615, )6, SEFELEIT . (E (a-20)
s 2a Y M e 2 EZ -t s EESES E).
o080

For brevity, hereafter convergence factors like eia B (g —+0) are
dropped (as, e.g., in the second term of (2.20)).

The four-point vertex equation (2.14) for particle-hole scat-
tering turns into

(E Ez_)w) =IA17AZ?\;A'L( E,,E,_', w)

x11 A
= (2.21)
. dE
~‘(§lu , Z—I ,“:E"EM w]E}, (E)G (E+m p; JE, Ezjwl,
it
with the abbreviation
m o {E EoiErwErw) = r;hm(z,,ez-,w)_ (2.22)

The variables w denotes the energy transfer. In the case of emall
W which we are interested in ({.e.wW<<AL ) one can get w = 0
in I in (2.21), as has been pointed out by Landau for the uniform
Fermi liquid 74/, The correlstion function L cefined in (2.9) on
the basis of {(2.8) takes the Fourier transfom

L,y xnlEe Epiw) - -ZmB(EFE,r )G 1{EJG, 4 ()
(2.23)
+ %h(‘(’;, {‘SE 1G, F(Ezm;f " P(E,,Ez,m)ﬁp A EF WG, y(Emu)
or L in terms of I from (2.12) reads
'—».u'x' (€, Epyu) = ~ 2 8(E E,+ )G, AfEG(E .20

P‘.ZP:;‘ 3,\ plE )Gy NfE, *m) ];, S (£ E'w;m)Lh,lrM;(E,Ez-,w).




In the linear response theory the effective external field Q
corresponding to a weak extermal field Q is defined by /8

613 FIGHEA = -L¢,2;1 2R, 2). (2.25)

According to (2.10) the r.h.s. of (2.25) deacribes the change of
the one-particle Green funetion SG(1,1';Q) corrsctly to the
first order of Q; hereby “he significance of L is founded. The
Pourier transform of (2.25) under the restriction Q,, " (t1,t1) -
e, X (t, Y&(t 1~%}) becomes

L6, (€0 EraflG, (auz f 3o Ly arnEEr g, o), (2:26)
R\'

By ingerting (2.25) into (2.12) one gets
A =aua -116,2;1° 296(2,316(52)8 (3,1 . (2.27)

Without loss of generality, choosing Q, y (t;,t7) = Q AN, () 8 (¢,-4)
once more, the Fourier transform of (2.27 reads

& (Eswf) = Q,

A7\’
(2.28)
1)_ I

o (BBl o (Evw)G fE)G E+m E).
[T Loy upd ! '

Physical information of interest im contained in the expectation
value of a one-particle operator A'Z,fa}a A.%a, in the presence of
the external field Q introduced in (2.25) and (2.27). Then, the
time-dependent expectation value of A can be expremsed by

CAD)=-4 %,Eﬂzaq(ht*)G-)Aa,;,_{a) (2.29)



where A";\}Q) refers to an explicit field dependence. In general
we have to consider the first order (proportional to the applied
field) changs of G and of the operator A itself, too. Thums, the
variation of (2:29) is written as 5(A(t)) =& (At} 1)+ Sa(e)f2),

According to (2.10) and (2.,25) the correlation part of the
physinal response may be chbaracterized by the change in the expec~
tation value N

SCARNEI T [t , (N8, (EHA, (2.30)

AR
LT T R e

where the correlation function of coinciding time arguments occurs.
Rewriting {2.30) in energy variables we get

o, dEdE . .
SCAWD =1 a,‘%;z; n? Lapg EnEayr Ay, Qe (), (2.31)

Moreover, the second contribution to the linear respcnse arising

from the change 6"4"*1 in (2.29) 1is

(2) . -
SCAW)  =-1 JE\EMK‘(CV)&A 1431((0)' (2.32)

+ +
where G"L"So )= Gz k(t,t ).

201

3. LADDER APPROXIMATION IN TWO CHANNELS

How we are looking for a self-consistent approximstion (cf, the
scheme in 9/) concerning the correlation function L. This can be
realized by choosing at the beginning an approximate Zu » Calcu-
lating then I from thie I via (2.13), and inserting finally the
approximate I into (2,24) to evaluate L.

Start from s local approximation in the particle-particle
channel (s-channel) by assuming a site-diagonal vertex I in
(2.20) which depends only on the sum of energies (B,+E;) of the
interacting electrons, i.e. " ;44 (B, »EoiE,Ey+Ey~E) in (2.20) is

o-00-0

10



o

g

replaced shortly by the mcaitwering amplitude Ti(E1+EZ). Then it
regulte in the local gelf-energy

> . (B = dE (EVT, (E+E), (3.1a)

Jii,e i-ityo
where

= -1
4 1 —
Toe) = [ + [ 55 6ai o E16is glE-E)] (3.28)

Here the renormalized G obeys the Dyson equation (2.19), where
___u‘ LE) = ‘_U“U(E)ts « The convolution integral (3.2a) reflectsm
contact interaction only between electrone having different epin
directions, i.e. T - Ti 006 ,according to the bare interaction U .

The dlagrammatic representatian of (3.1a) and (3.2a) 1is known
as the horizontal ladder approximation (arromed lines denots

the dressed G):

1Te6) (3.1b)

I

e | = 1U; il iTiE (3.2b)

E-E-a
This approximation was proposed by Babanov et al. 12/ for pure
systems. A partially averaged version was given in » whereas
at present we congider the completely random case of the whole
configuration {P} .
According to (2.13) the Pourier traneform of the irreducible
particle-hole vertex I at zero energy tranafer hae to satisfy

1



the relation

§Tyu,oEY

6G;; o (€1 ) II““ (EESEE)= -4, (EzEl’r (3.3)

od'c u:ra‘
where I can be found explicitly from (3.1) and (3.2) ae

L goEEY= - .,m G“_U(E)Gu EE-EN[ Ty (E+ ) S,

(3.4a)
(T BB 556, _o(E,, (EE-ENT, ()] )41-6,,).
Thie resds diagrammaticslly E
Sizd
-0 E-a -q o - -g
AL | = e 4+ [TED iT ()
E\0 Eo d g, 9 EE-Ela L}
s (3.4p)
Ela E'o / Eeb-EY0
in, | = fimEd iTeoF)
Eor Eo [=4 ‘c' 4 o

Prom (2.21), on the bamis of the locality of (3.4) one gets the
equation for the tetal vertex in the particle-hole channel
(t~channel) in the furm

ik (B,E50) = I goi(E ESw) 8,

1
oo'oa* }

61.k
E (3.5a)
_ig% u:rE(E ErwswlG, t,;(E]G -(Em)[;' Wl E,E‘-,m),

8a'dg’

which cam be reprecented graphically by

12
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Erwo ,(E"UI Eno0 £’ E+w,0 Etw,o £ o
T 3 €
el o= (AL (86, + il ir
i k ¢ 2 1S (3.5h8)
Ep Ewd g E-wo' 3 fe B’

It is pointed out that the « =dependence of I can be neglected
for energies near the Permi energy (cf. (2.21)), so that I from
(3.4) fits to (3.5).

4. ELECTRICAL CONDUCTIVITY

In order to evaluate the ac conductivity temsor o , (.>) defi-
ned by the relation I (w)) = g (w)Es{w) between the
configurational-averaged, induced average current \\ J(m )» and
the spatially homogeneous external electric field E(w }, we have
to insert into (2.31), inotead of AA.M s, the matrix elements of
the -compnnont of the currant operator Joc , and to set
A, a,™ - - J - & for coupling via the_vector potentisl A. Thus,
from (2.,1) and (2 22) by using E = - g- g’f one gets the real part
of the conductivity tensor ae ((...>c denotes configurational
averaging)

e R [IERL, bbb e ) (D)

ML 2n)*

where the current operator given by
— +
1e Zt Raui —’Ra‘i)cwcjﬂ (4.2)
1.30
takes random matrix elements in the Wannier space if off-diagonal
digorder is included. Calculating the change of the current operator

13




via Sjx = Z R l-"lc '36] A end inserting into (2.32)
yields an s,ddit:.ve conductwity term qf"(m) which does not con-
tribute to the real part given in (4.1).

Comparison with (2.26) shows that it is coavenient to introduce
the external field vertex A, into {4.1) by

q e = —RGQ_ AQUI‘{"'G“(E VN RINONVIN) SR G

According to Q A, () = = % l‘hm o (w ) we separate the current
vertex A from the effective external field § by Q ﬂl(mm,s,\.
-1 ZAN xn, Ao (). Thus, the integral equation (2.28) can

be rewntten as

Ay EwBl=p -2 {dfl (EmE,.Lx)GFE'le (slA S ), (4eda)

paity " Apdifts

On the other hand, (4.4a) can be verified by combining (4.1) and
(4.3) with (2.24). To express A, directly in terms of the total
vertex |~ from (2.23), (4.1), and (4.3), we write

v, w R £): (4.5)
\ (E £)= J A 1”["”}[“ " (E ,E5 w)G (E m)G (E)&“’/"’fl"'

The connection betwsen {4.3a) and (4.5) can be illustrated by
electron-hole bubblea:

"AfrEl(4.30)

14



Further, the diagrams of (4.4a) with the local kernel I of (3.4) are

.%Aa(’:j)w + 5‘-5{ il - A - - (4.4b)

Note that (4.4) involvirg three I terms has an analogous form to
the vertex equation for the ordered case in /11/. Writing out A
in detail with (4.4) we have two terms

o) = & Re | T Ctr (G EI BN, + &y (), (4.6)
where

G =5 Rej“‘E‘(Z»\MW(E By AE pwE ) | (4.7

RasiclEnEs) = E(’lac(“du” fiolEa). (4.8)

The trace in the firat term of (4.6) is to be taken over one-
electron A states with spin included.

The problem of configurational averaging in (4.7) ie beyond the
CFA. To proceed, we employ a chain factorization by petting
<KC.A,5) o <EL) ¢ ALY~ Thus , -?:;-lzc}ng in k-space one gets with
(4.2) the off-diagonal CPA result

KE (2,2 = <6,(2) juGolz,)
' ’ (4.9)

5 %‘Q:c(,z)gtw(zl i { €310 (e Ra) 2 R,

15



The superescript "R" refers to the regolvent obtained by analytical

continuation to retarded and (or) advanced Green functions (cf.

also (4.11) to (4.13)); the subscript "c,ii" means taking the

site~diagonal element aftexr averaging. The coherent gquantities

on the r.h.s. of {4.3) are defined below (see (4.16) to (4.18)).
Using the time reversal symmeiry relation (f being an arbitra-

ry function)

s 388 _ (4.10)
T Ay ’
one can prove that Kia given by (4.9) vanishes identically, i.e.
Ous () = 0. This conclusion seems to be more gensral because
products (4.8) with inner factors j. should vanish., A similar
proof for the ordered cases yields immediately ii’/a (w) =0 within

the local approximation,
Next we go over from caussl Green functions in (4.6) to advanced

("®) and retarded {"") ones. Using the abbreviations

Dl = j"_i—ETF'IT(Efm,E) (4.11)

TE+w,EY =6, x(E+w)G,  (E) (4.12)

one can perform analytical continuatton by spectiral theorems
to write

D(m\s}"z‘—fr[f(zawmr“tEm,s)-jm'r, {0, BV FEV-FERN T ™ Evwo 1], 070,40 13)

Here T 28 means replacing both Green functione in (4.12) by ad-
vanced ones, stc.; at zero temperature we have the Fermi function
£il) = O(E-,.:.) with a Dbeing the chemical potential. An analo-~
gous expresesion to {4.13) can be derived for @ < 0.

Using (4.11) to (4.13) and combining with the relations
05, (%, )% Sanm (B )" end o= 0y (fulfilled in

16



cubic lattices), from (4.6) we obtain

r,uu) pre f HE M}(ﬁ{j«e‘w’m&gﬂ(a% e+l 61D
B (4.14)
" juc OTERQILGTE) - BN Es [,67CE1} )

This is the Kubo-Greenwood formula, but with Gresen functions re-
normalized by electron correlations within the ladder approxi-
mation (3.1) and (3.2). Note that o7, (w) reflects the retarded
response valid for all w ; in getting (4.14) we have used the
Bope~-type relation G;p(m) = pign w Cf;(; (w).

To average c'onnguraticmally in the presence of off-diagonal
randomness, we restrict ourselves to nearest-neighbour hopping
integrals in the additive limit tAP « 1 (tA444%B). me cPA result
including current vertex corrections due to the off-diagonal
digorder is

BB~

Grf36)j,66)0) = Z 4,24 el B {0 F15, )5 e} ]

kg
S ][Bsm) (4.15)
£ Ou(z)gz}zz) + Ol 2.)G 2
where
-1
Geol2) = <O (a)) o = (2 e®-t™5(R) -2 (R,2, (4.16)
I irzl= g, @ + 2o, (2)s(R) + g, 1=)s 4K, (4.17)
st =5 e ik’ - R (4.18)

H*D
Here (gxo(s) ig the coherent Creen function, 3 (k,s) is the

cohersnt potential, and s(k) denotes the nesarest-neighbour struc-
ture factor (cf. (4.3)). The sslf-energy parts o,,r T, » G

17



tncluding X ;o from (3.1) and (3.2) can be determined within
the coherent ladder approximation echeme given in « It should
be mentioned that (4.15) is conpistent with the Ward identity re~
flecting the gauge invariance of the configurationally averaged
system.

In the case of only diagonal digorder we have no vertex cor~
rectiona. Then, the dissipative part of the scalar dc conducti-
vity becomes

o'(w-0)= #ﬁ\;(;i [ g7 Y, (4.19)

oK
.

Note that (4.19) involvee the undamped conductivity result for
the ordered caspe, too.

5. MAGRETIC SUSCEPTIBILITY (ORDERED CASE)

Ap 8 first etep for treating the magnetic amalog to the situ-
ation described in Section 4, we calculate in the following the
magnetic susceptibility for pure systems. The longitudinal epin
susceptibility at T=Q is given by

x5 (dEdEs . .
Xl'j(h)’ [lBUZu' (Zsz_iL\l}l&(E E,E - uJL +u.))0'd (5.1)

(R 27 1
OGUG

where (i, ie the Bohr magneton. Thie expression reflecta the

lineay _response to a weak external megnetic field hi(t) -

hoei MR- wt applied parallel to the z-axiam. By inserting A = w =

= uZ 0B, 1.8 Aya m AL @ u 08,0 80 Smi , and

Q5 (t) Q) = = L 1 (2).T S, Somn sone gete (5.1) via

the relstion & my(e)) = it (ca )hj(co )e Hore 8<m (w))

ie the chenge of the magnetic nomnt on site R ariping from the

expectation value of the operator LI 1t ise pointed out that the

contribution to X coming from (2.32) tends to zero (in the

paramagnetic phase).



According to (2.26) ome can introduce the spin vertex A by

(R W = lea,(u.ﬁe,_d‘( =Ry
ey (5.2a)

_#aza[“,, B o(E e ViAol E 10 )G o (E) 0,

whers /\ has been sepn:atod from the external field a' through
g w
Q 2, (B+w,B) = = uohe A o, (B+w,B) sz. Fote that the
spin-flip situation is excluded.

From (2.28) we get

AgglErwfl=oe o 5 [—dwdmmws AEndByg EIA
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joEaf), (543)

and, more explicitly, by using I at w = O from (3.4) it follows

A lEv0f)= g R zf‘*E{r(ae)G o EIGps (E1A 4o (Evuo )
J

= = =12 — - ~ =
[ dfzdfz 110 E)Big gl BB -B)TL(E BN Gy BN, (v ) (5-40)
Ed = - = - — . =
+3 [ dEof 1,016y o (EE-ENT, BNy o (Fry o (DA E

To generalize later the calculations to the dimordered case, we
retain the dummy index i for the quantities Ii’ T:L and G:I.i' Rote
that the off-diagonal elements of /A in apin and lattice spaces
vanish identically, provided a local vertex I is omly takemn into
account. The equation (5.3) can be verified on the bagis of
(2.24), too.

Diagrams representing (5.2a) and (5.4a) take the form

Eqyer

CrAc,(E;m:,E,) (5.2v)

E1vw,0
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Erug Eo

1
!
[}
LT LS4 ! . . H 1
W[ BT T R HT ] (g
a; {
)
1
t

PFurther, the unpsrturbed system ip amsumed to be paramagnetic,
1eee Fiyiiom T ii 0™ Zuii » implying Gy 0= G50 = Gy Then,
by making the ansatz A (B+w,E) = o A- (Bﬂo,B) eq. (5.4)
simplifies to

il’:ﬁ; - [dE - = = = =
A Bwf) = ¢ +%IZF1T{_(E$E)G{5(E+m)(-}3.i(E)Aj(é*m?E,), (5.5)

which can be performed by putting A (B+w,B) = A-E(B+ m,x)cim‘
to

.

= g—E—' s E -1— £ £ —+ £ -6
Ag(Erug) =1 +f2w1T1(E+E) N L6, AU A (Eruf). (5.6
Now from (5.,2) one obteins the dynamic parsmagnetic susceptibility

X(Ryw) = —#—“):[dE 6y, (B0l (EiA L (v E). (5.7

kfk

For practical calculations the system of sgs. (5.6} and (5.7}
is not convenient. Following 13/ » by approximating the energy
dependence of the scattering amplitude in (5.6) (compare (3.1)) as

Ti(e+E)— T(€) =

Zui (8}
Ea— (5.8)

1

we get the result
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Im.

X (%) = 1 2[5 GeunlE06e (E) (5.9)

1- :,—Zf G, ;(E+0IB, (EZ s (E)
Y

z-LE'

I
2

LS
=!|°'1

Here X ;; must bo determined by solving strictly (3.1) and (3.2)
together with (2.19), ny being the average electron number per
gite per spin, where the index i in Zu‘i and n; is again
fictitious.

The transition to the static paramagnetic susceptibility is
psrformed in the so-called k-liimit 4 (see algo the k-limit die=-
cussion in N4/ ) yielding the cc.relation-enhanced expression

(dE ., _
’HZJT(GZrE))-- (5.10)
de (G, (3 y5q (B)

'X(k—’ﬂw 0) =

Ttn form of (5.10) refers to instabilities of the paramagnetic
phuse towards furromegnetic ordering, arising from the cc.dition

’X'1(E——O.m-0) = 0, In the Hartree-Fock approximation 2 ;= Un,,
from (5.10) one gets immediately the well-known RFA result (accor-
ding to the vertex " = - U/(1-Ug(u)), cf. (3.5))

Y. 2pealw (5.11)
1 = Uq(’ﬂ

which gives for noninteracting electrons the Pauli susceptibility
Ao =2 /u% qo(p). (=4 (‘u.) is the eirngle-particle density of
states (per site per spin) at the Permi level.

Next, we discuss the Ward identity related tc the susceptibility
calculation (of., ®.g8., /15/). Starting with the Pourier transform
of (2.15) we cun express the firat order variation of the self-
snergy Y, with respect to the external field 5Q by

8 (m,e,a)--z [21, g Ev E5-w)6, (E)GA‘,§€~65Q,.‘§‘;”,<5.12)

Uaay
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By inserting inte (5.12) the inkomogeneous magnetic field
b, = ne! (R @t) w13 §q (compare the context of (5.1)) we get
by performing lim lim the Ward identity

R0 w0

2 FustelEih) ) 5 e (€,E)(G,|E10°G,,(E)). (5.13)
() o fon Ty BB
where the vertex l"i 1k (BE) = Fijik(E’E‘E'i) denotea zaro
energy transfer. Substituting {3.5) at w =0 into (5.73) one finde

. - 3 = - - —
(BZU“ °‘€*"))h = o (24 L (16, €106, €,

ok -0 o
£ . BFu;5.0(E5h
- g—a, %TET il gel€ (EE)G; a'(E)G w'(El( Ak )h-b

Comparison of (5.14) with the k-limit of (5.3) leads to

O iz olEih)
( i Lj/“s(“ “A B8, (5.15)

where the index 1 is retundant.
By ingerting A, from (5,15) into the E-limit of (5.2) one
verifies the static susceptibility X & X (k—0,w=0) to be

BZU“ [E,h),

h‘o) Eu ff(m.\v(Eh)) (5 16)

9

%=Iu,a1'.§0 %%(G;(E) (/.L (

dnelnl
which is squivalent to X = %C”( %:1. ) -0

Moreover, within the approximation (5.8), from (5.5), (5.2),
and (5.15) in the paramagnetic phase one can deduce the relation

D psto(E5h) ) 54 (E) (5.17)
= - Audit =l . .
( U c Zpam X



6. CONCLUSION

In order to calculate correlation functioms in substitutionally
disordered epystems with narrow energy bands, we have proposed a
microscopic Fermi liquid approach in terme of Wennier functions.
When the kernel, appearing in the vertex and (or) correlastion
function equatione, is of short range (eay local), we have derived
erylicit expressions for the electrical conductivity and magnetic
susceptibility. The latter was found in the ordered case.

The equations (5.16) and (5.17) can be used am a starting point
to calculate the static spin susceptibility with disorder included.
Then, we have to replace, for instance, X .., G4, and n; by the
corresponding configuration-dependent quantities, yielding a site-
depondent susceptibility X i*

Approximations were constructed as to make them useful for a
numerical analysis. Numerical results based on the present appro-
ximation will be reported in a subsequent paper.
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