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Lattice Dynamics of Ferroelectrics with
Impurities

Lattice dynamics of displacive type ferroelectrics
with impurities is considered. Using the self-consistent
phonon theory and the coherent potential approximation
the phonon spectrum of a disordered lattice is obtained
and the dependence of Curie~Weiss constant and Curie
temperature on the concentration x are calculated for
O<xg 1. Nonferroelectric impurities that can suppress
the phase transition at some critical concentration,
are also considered. Qualitative agreements with expe-
riments for the solid solutions (Ba-30Ti0,, (Pb-S5nTi0,
and K(H - D)2PO‘ are obtained.
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Introduction

At the present time large experimental .
material is accumulated on the influence of
defects on the properties of ferroelectrics
(FE) (see, for example, refs./1-3/). Under
their influence the temperature of the phase
transition (PT) changes essentially, and
also the order of the PT. Defects, apparently,
are the main reason for the appearance of the
central peak’*. For the understanding of the
effects a detailed investigation of the
dynamics of the disordered lattice of FE,
having in accordance with the concept of
Ginsburg-Anderson-Cochran unstable soft mo-
des, is necessary. Although at present the
lattice dynamics with defects is worked
out well, there are only few works consider-
ing this/groblem for FE. In particular, in
the work /% there was considered the influ-
ence of defects on the parameters of the
vibronic model of FE, and in the work /% a
Hamiltonian was proposed in the mean-field
approximation for the description of the
lattice dynamics of FE with defects. In these
works it was shown, that in certain appro-
ximation the change of the temperature of
the PT in ferroelectric solid solutions is
connected with the change of the constant




of anharmonic interaction and the 1limit fre-
quency of the soft mode (see also the analy-
sis of experimental data in ref.’/?”). In this
case for the description of displacive PT
one can make use of a simple model of ferro-
electrics /8/, generalized by us for the case
of disordered lattice /%/.In this model only
the dynamics of the sublattice of active
atoms with harmonic coupling is considered,
where each active atom is in an effective
single-particle double minimum potential,
caused by the other nonactive atoms. Assum-
ing, that the random constants for the fer-
roelectric solid solution are the mass of
the active atoms and the parameters of the
single-particle potential, we use the cohe-
rent-potential approximation (CPA) together
with the self-consistent phonon field appro-
ximation (SPFA}, employed earlier by us for
disordered FE/1%The SPFA was used also in/1V/
for the interpretation of the instability
of the anharmonic lattice with vacancies.
In the next section the Hamiltonian of
the model is considered, in Sec. 3 the pho-
non Green's functions of FE with defects are
calculated. The determination of the Curie-
temperature and the Curie-heiss-constant is
considered in Sec. 4, and in Sec. 5 the
comparison of theoretical values with the
experiments fgg/the solid solutions
(Ba,Pb),_, Sr TiO, and K(H,_ D ),PO, is made.

2. The Effective Model Hamiltonian

For the description of the PT in FE it
is possible to pick out the group of atoms,
which character of motion depends suffici-
ently on the temperature, so that they can
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be considered as responsible for the PT in
FE. The simplest model in this approximation
is the dynamic model of harmonically coupl-
ed atoms, every of which is in a, 6 single-par-
ticle double minimum potential /8. Assuming,
that the active atoms can be of two sorts,

a =1,2, we introduce the projection opera-

tors t,, , oOr

b=ty tip=1-t;, (1)

where t ; =1 (or 0), if at the lattice sitei
is an atom of the sort 1 (or 2). We write

the disordered model Familtonian of FE in the
form:

2
A B
H=3t, (—% . %52, _Zgt)
ai 1a zma 2 Sla+ sxa +
1 1 2 (2)
+ > DIED tlatj‘quﬁij—z(sia—sja ),

where the parameters A, and B, define, respec-
tively, the height of the potential barrier,

U, =A2/4Ba, and the distance between

the two minima, 2s,, =2VA,/B, , in the po-
tential, caused by the surrounding of the
atom of the sort «. As usual, in the given
model for simplicity only one mode is con-
sidered, which describes the displacement
of the atoms s;, along one of the crystal
axes.

Defining the equilibrium atomic displace-
ments below the phase transition point
b,=<s,,”> and the dynamic displacements U, =
=s;,-b,, we introduce the effective harmonic
Familtonian /10/
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P; Aa o 1 2
H =St f——s v Ajm—uig t — 33t ti0¢ i (s —5:0) (3
0 e 2maJr 17 e 4ija'3‘atlﬁ¢‘l Sia =sjg) - (3)
In the SPFA/'¥ the parameters of the Hamil-

tonian are defined from the variational
principle by Bogolubov for the free energy

5F, 5F
F =F +<H -H> , —~ -0, —L -0, (4)
1 0 0 0 8ba SA .

where Fy and <...>; are the free energy and the
statistical average for the system with the

Hamiltonian (3). As a consequence we get the
equations for the parameters A, :

/\l>=3(7)12+y1)—1, Ay = 3K(r]§+y2)—y (5)

and the equations for the parameters N, =

= b,V By/A} which are the equilibrium
conditions for the atom of the sort « at the
cell i(tia = 1)

7,§-q1(1-3y1>+ tofgny =1y =0,

(6)

f
3 y 0
gy =3y 4ty =y -ny) = 0,

where ya=<u£:WBl/AlLfm=?(ﬁ”/A . y =Ay/ A,

and « =By/B,. The average number of atoms of
the sort a t,=<t, >, is defined by the
average <..>. over all defect configurations.
The system of equations (5), (6) describes
the temperature-behaviour of the order-para-
meter 7, in the model in dependence on the
values of the average quadratic displacements

<ui>, which are calculated self-consistently

6

on the basis of the Green function (GF)
method /1%,

3. The Phonon Spectrum of FE
with Impurities

Let us consider the GF for displacement
operators

do —io(t=t )

+oo
Djj A=t7) = <<y W50, (4> = f o © D;;tw), (7)

where the usual notations are used/]%faking
into account (3) we get for the Fourier com-
ponents of the GF (7) the equation:

9 _ .
[mum —Al /\u]tiaD ij(w) = 8ij + i.gbikaj(m). (8)

This equation is obtained for a given configu-
ration of particles {t;,} in (3), where it is
taken into consideration that the random
quantities are the potential A, and the mass
m, only. In this case we can use for the -
calculation of the configuration averaged
Green function the single site CPA, which
describes quite well the main features of the
vibrational spectrum of the disordered
lattice.

Following the CPA/M<we shall introduce a
basic lattice of atoms of one sort (for de-
finitness « =1}, every one of which is in a
single-particle potential A,(w), complex
in general. Introducing the effective GF for
the basic lattice in accordance with the
equation:

2 o o )
(myo” A 8, @IDY (@) =8, + 26, D] (o), (9)




we can write (8) in the form of the Dyson
equation:

Dij (@) = D?j () + ]i D¢, (@) tkavk(a)ij (®). (10)

The diagonal perturbation potential Vy, has
the form:

Vi = Alhxl—A &wﬂ, (11)

V :Al‘[AZ—/\O(m)]+(m]—m2)(u2

k(2)
To obtain the coherent potential A, (w) we
shall employ the theory of multiple scatter-
ing. In accordance with this theory the equa-
tion (10) can be written, after the configu-
ration averaging, in the form:

Dij (0) = <Dij (w)>C :D‘i’j (w) +

S D0@<T, (@) DO ( (12
+ & D) <yl Dy L)

The scattering matrix Tg,, satisfies the
equation:

Ty = Voo *%‘%mf%ﬁ”)“mufw” (13)
Using now the single site approximation in
the multiple scattering theory we get from
the condition <Tggy (@)>, =0 the equation
for the coherent potential:

\Y
St k (a)
a

1- Vk(a)Dc])(k ((L))

_0. (14)

Thus, the configuration averaged GF in (12)
coincides with the effective one, which is
translational invariant and can be written
in the form:
_ 1 lq(xi—xj)

Dij h&=[ﬁ¥u): TN 3
1Nq v ——(/,\0(1/)+f0—f&.)

e

) (15)

where the dimensionless quantities sznHmz/A]
and f*:(VA1)2¢iﬂ“N““xrxj)} are introduc-
] -

ed, X, are the lattice sites of the three-
dimensional lattice.

Besides configuration averaged GF (15) it
is necessary to find the conditional averaged
GF Dij(, - which is determined by equation
(8) under the condition, that there is an
atom of sort « at the lattice site i and the
average involve all possible configurations
of the remaining (N-D sites. In the same
single site approximation of the CPA we
obtain:

D¢ ()
) (16)

D. . ()=
ila)j 1 - Vi(a) Dic; (w)

This GF allowed to close the self-consistent
system of equations (5), (6), so far as we
have now the equation for the function
ya:<ui2a>Bl/Al: , '

A l>0dl/2 Av Ay - . ~
ya:?é cmEJFTmeRdJV+“»“

vV

v




where the approximate equality is written for
classical case of high temperatures, 6 > &,
and the dispersion relation for the retarded
GF 1s used. Here the dimensionless temperature
0 =kT/(A% /B ) and the quantum parameter

A=t VA /m )/(AYB)are alsointroduced. The pho-
non spectrum of the disordered lattice of

FE is determined by the function pw?) =
= = (Ay/m)ImD; (v + ie).

4. The Determination of the
Curie-Temperature and
Curie-Weiss-Constant

The Curie-temperature of FE with defects
or FE solid solutions is determined usually
from the maximum of the dielectric constant
in the static (w-=0),homogeneous @-0 field.
The general expression for the latter can be
written in the presence of defects in the
form:

elg,w) = LT
4n 1 LG as)
—— =Xt t. 2. Z,
vo N liatipZiaip Dy e T

a

where ¢; is the ﬁonsingular at the PT part of
dielectric constant of the lattice, z;, is
the effective charge of the ion of the sort
a, v,=V/N is the volume of the unit cell.
Assuming for simplicity, that z,,= z ,we get
for the static dielectric constant according
to (15):

A 1 C

e(T)—¢, = —-Re = | ) (19)
L 2 - -
wo AO(V 0) T TO TZTO
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where A =47z2/v_m, w$ =A;/m;. Therefore,
the Curie-temperature is determined from the
condition Ay(T,) =0, which is equivalent to

the vanishing of the gap in the phonon spect-
rum p(r?. For the Curie-Weiss-constant we

get the equation:

dAg (T) -1
0y : (20)
dT T> Ty

C = 2 Rel
2
)

To obtain the coherent potential from eqs.
(14), (15) it is necessary to define the

form of the function f> or the model density
of phonon states for the ideal lattice. It

is convenient to choose the latter in the
form:

p ) = lﬁzs(rO—L w2 - 2 2,—\/ff)-(ufl-fo)? . (21)
T 9 af .
where vzngm The integration over a with
this spectrum in eq. (15) gives at A (v =0

ReD® (v = 0) ~— —2- (22)
11 fOA]
and the equation (14) for the determination
of the Curie-temperature A, (T)) takes the
form:

1-08, Ay o (23)
1+(2A /) 1+ (2A,/fy)
Substituting here A, (D from (5) for n,=7,=0
and using the expression for the correlation
function (17) which, with eqs. (16), (22),
has the form

11



20 24

Ya T 0+ oA, /5 (24)
we find the dependence of the Curie-tempera-
ture on the concentration of defects x-1t, .
For the calculation of the Curie-Weiss-con-
stant C(x) according to (19), it 1s necessary
to investigate the solution of the system of
equations (5), (14) - (17) for T>1, and to
determine Ay(r=0,1). For the qualitative in-
vestigation we consider firstly the appro-
ximation A ,/fy<<1 which is equivalent to
the mean field approximation. In this case
we can neglect the corrections in the deno-
minator (23) and (24) and obtain for the co-
herent potential the expression:

A =0,T) =(1= A+ xA, , (25)

which is well-known in the literature as the
virtual crystal approximation (VCA). For the
Curie-temperature and the Curie-hkeiss-con-
stant we get the simple dependence

Tyx) 1+ -Dx Cx) 1

T, 1+k-Dx  CO  1+l=-Dx’ (26)

where T (0 =(¢ /6)A, /B ) , CO) =(4rz®/v )(b,/6B))
are the parameters of the pure FE without
defects.

Near the temperature 1,(x) the single gaps
in the spectrum '

Y AT =—(l-x)—— (2
L+(k-Dx 2 0 e ZDx @7

AI (To): X
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differ in sign which is determined by the
relation of the width of the single particle
potential in the defect site and in the mat-
rix site: y-~=(By/A)sE —sd). The increase
(or decrease) of the Curie-temperature T,
in (26) is connected only with the increase,
Sgg > Sg] o (or decrease, sgy < sg; ) of the
width of the single particle well, and the
change of the Curie-heiss-constant (and the
deviation Ty(x/Ty(0 from the straight line)
is determined by the change of the anharmo-
nic constant «-1=(By/B) -1. If we take into
consideration in the Hamiltonian (2) the de-
pendence of the force constant ¢j on the
kind of atoms ¢?ﬁ=&¢£h¢£%&¥}then in the mean
field approximation the factor s(x = (1-x)2+
rx 2022/ ) v 2x-xNg B/ b o) appears on
the right-hand side (26), however, the relati-
on

Ty To )
Co OO

keeps the same form. The comparison of (26),
(28) with the experiment shows, that the

mean field approximation, A, /fy<< 1, does not
work for the solid solutions of perovski-

tes 27/, - the function (28) is nonlinear,
but describes sufficiently well FE of the
KDP-type. The investigation of nonferroelect-
ric-active defects, A,<0 , y=(Ay/A)<0 (see for
example, Ca for BaTiO3 ), represents some
interest, too. In such systems a critical
concentration x _ exists, when 1,(x)=0.Accord-
ing to (26) we get X = 1/(L+1y]D).

R(x) =

[1+( ~Dx] (28)
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5. The Comparison with Experiment

Besides qualitative estimations in the mean
field approximation (26)-(28), we have also
numerically solved the system of equations
(5), (6) in the classical limit of high
temperatures, taking into account (14)-(17)
and (21). For the choice of the model para-
meters and the comparison with experiments
the most investigated solid solutions of
perovskites (Ba,Pb); _, Sr TiO 4 /2 and
KH,_Db),pPo,/3/ were considered. In the
first case we can assume, that the introduc-
tion of the defects S changes the effective
single particle potential for the active
complex Ti0; , and in the second, according
to the model/"/the deuterization leads to
the change of the parameters of the effective
potential for the complexes K-PO,, which
undergo a transition of displacive type. The
three parameters of the model, y=A,/A, ,

k< =B,/B, and fo= &y /A, can be estimated
through the characteristic energies:
A e - 6B
2 2 0
Do = —a, w = =, Ba: 2(1—, (29)
ma m(l ma

which can be determined by the low frequency
phonon spectra of pure FE, (by the soft
mode Q2(M=~wh(T/To- 1), by the average
frequency of the spectrum wp)and by the
thermodynamic data: Tozwgw%/ﬁ, C=Ag/wd. In
particular, making use of the data from/16/
for the system Ba,_ S 1i0, we obtain the
estimations y =(Tpg /Ty )(C1/Cy)=0.2; k= Cy /Cy =2
f,= 5,, which correspond to w, =2.3-1012 Kz
and op = 5. 1024z for the pure BaTiO,.
The numerical solutions of the system of
equations for T< T x with these parameters
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are presented in Fig. 1 (x=0.1) and Fig. 2
(x=0.8). So far as in this case the coupling
between the ions is sufficiently strong
(for1=¢y/ A =5, fgo=po/Ay=25), the equation
(6) permits only solutions for the equilib-
rium positions 7, and n o which differ
slightly from each other. They vanish simul-
taneously with the coherent gap A, =0,T)
for T - T,(x . The single particle energies
A and AyT differ according to the es-
timation (27) considerably from each other:
for small concentration of defects their
equilibrium positions are determined in the
main by the ions of the matrix, that leads
to an anomalous large gap, Ay,>> A, , in the
case of smaller single particle well in the
defect site (x=0.) and to large negative
values, A ;< 0,, for broader defect wells
(x=0.8. Some difference in the behaviour

of 7 (T and 1,  for T-T,(x in the cases
x=01 and x=08 is connected with the diffe-
rent values of the fluctuation effects in
the calculation of the correlation function
(17) within the SPFA. According to/17/ they
appear in the temperature region IT-T,1/T,-1/f,
and are large for x-0.1, where the complexes
with the weaker coupling constant, f;, =5,
take the leading part, and they are small
for x=08, where the complexes with the
coupling constant f,,=25 give the main cont-
ribution. The solution of the equations for
T>T,x allows one to determine T_(x and
C(x). The numerical results and the com-
parison with the experimental data /% for
the solid solution Ba,_, Sr TiO; are shown

in Fig. 3. Here the parameters y and « were
taken from the condition, that the curves
coincide with the experiment for the pure
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Fig. 1. The temperature To(x)/ T (0) Fig.4.The concen-
4, dependence of the phonon tration dependence
30 gap and of the order pa- A of the Curie-tem-
rameter at x=0.1. 2‘0: perature for
- Pb,_Sr,Ti04 %,
- KH,_ D), PO, /3/
20k Ag - ar_ldhfor Ehe moiel _
By I K(HD),PO :ct: dZEZCinf’: <e(;:)t
10 5 (PbSr)Ti03 (lines-theory ’ |
i crosses-experiment). |
10k 05: A2< 0
" i FE (x=0, x=1),
n, , 01t ., 1 o and the coupling
o—— — . v 01 05 10 constant was cho-
0.1 05 sen from the con-
i ditiop, that the
1.0 numerical results
are close to the
experimental data
10 A, for the intermediate values of concentration.
Ag A reasonable agreement with the experiment
was got for f,=2, that corresponds to the
0S5 E 05 relation wp/w, = 1.4 for the pure BaTiO 4.
The numerical results and experimental data
M of Ty for (PESDTIO;(k =2.3; y = 0.08T; fo=2)
0 %2 N and KHD),PO , (« =0.71; y = 1.31; f0=10) are pre-
0.1 0.2 v sented in Fig.4. There is also shown the
04l concentration dependence of T, (x) for the
A - model with nonferroelectric defects
-0S} o 'alsl T k =1;y ==1; f,= 5). For K(HD,PO, the para-

. 10 meter f, was chosen from the estimations for
Fig.2.The tempera- Fig.3.The concentration the soft mode frequency which were obtained
ture dependence of dependence of the Curie- in /18 . f, =w2/0?. So far as in this case
the phonon gap and Weiss—-constant C and f, >1 the formulas (26) can be used which
of the order para- Curie temperature for are obtained in the mean field approximation.
meter at x=0.8. Ba,_, Sr Ti0, (lines-

16 theory,po.ints and cros-
ses experiment). 17




In (26) the parameter f, does not appear and
therefore its value does not influence the
results in numerical calculations too. In

the case of perovskites the mean field appro-
ximation is rather bad, Ay /fo -~ 1, , and it

is necessary to employ more complicated me-
thods as the CPA in the given work.

Rather a good agreement of the theoreti-
cal curves with the experimental results,
where there are only three fitting parameters
for the pure FE, shows that the proposed
model describes the main features of ferro-
electric solid solutions. We would note some
uncertainty in our calculation of Curie- Weiss-
constant the reason for which is as follows.
The model (2) has the one soft mode only
therefore the comparison of the calculated
(x)  with experimental one has sense in the
vicinity of PT point, where the fluctuation
effects becoming rather large (different
in Bali0, and STio, /17/ }. We can get
a further refinement of the model for the
solid FE solutions considering the anisotropy
of the phonon spectrum for soft mode and its
coupling with the other low frequency phonon
modes. In the case of KDP type FE it is
necessary to consider in an explicit way the
vibrational modes of the proton and their
interaction with the active optical mode.
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