
p-I"+ 
t3tl !~ J n 

T.D.Palev 

LIE ALGEBRAICAL ASPECTS 

OF QUANTUM STATISTICS. 

UNITARI QUANTIZATION (A-QUANTIZATION) 



T.D.Palev• 

LIE ALGEBRAICAL ASPECTS 
OF QUANTUM STATISTICS. 

El7 · 10550 

UNITARI QUANTIZATION (A-QUANTIZATION) 

Submitted to " Communications 
in Mathematical Physics" 

061ti..~.i.: ~- ... ~-· 1::I•:mt)'l 
U~ilidZ B( ~,:..JOOOFI 

6~1GJI~k;TEKA 

•Permanent address: Institute for 
Nuclear Research and Nuclear Energy, 
Boul. Lenin 72, Sofia 13, Bulgarla. 



naneB Lf.n. E17 · 10550 

na-anre6p8H'IeCKHe 8CDeKTbl KB8HTOBOJI CT8THCTRKR. 
Yaarapaoe KBaarosaaae ( A -Ksaarosaaae) 

noK838H00 'ITO 8KCROMbl BTOpH'IHOrO KB8HTOB8HHJI MOryr B DpHHIIRIIe 
YllOBnersopliTbCll oneparopaMH pO>KlleHHH H YHH'ITO>Kenas, nopO>Kll810WHMR 
( B cnyqae n llBOeK raKax oneparopos) anre6py na A 

0 
rpynDLI SUn+ U. 

Bselleno nOHliTRe npocrpaHcTBa <l>oKa. HaAlleRbl Marp&'IRLie aneMeRTbl 
arax oneparopos. 

Pa6ora BbiDOnHeaa B na6oparopaa reopeT&'IeCKOA fR3RJ[H OJ.HU!. 

fipeup••T 061.eADe-oro ••c:T•TYT& ... ePJIWx •c:c:.11e .. o ...... Jly6 .. 1977 

Palev T.D. El7 · 10550 
Lie Algebraical Aspects of Quantum Statistics. 
Unitary Quantization ( A -Quantization) 

It is shown that the second quantization axioms can, 
in principle, be satisfied with creation and annihilation 
operators generating (in the case of n pairs of such 
operators) the Lie algebra An of the group SUn+ ll. A con­
cept of the Fock space is introduced. The matrix elements 
of these operators are found. 

The investigation has been performed at the 
Laboratory of ~heoretical Physics, JINR. 

Preprint of the Joint Institute for .Nuclear Researcla. Dubaa li77 

© 1977 OCSa.eourcercrcwllurcc•.,.Y• AOeprcwxuccJteOoeaNIIii~ 

1. INTRODUCTION 

In the present paper we study some of 
the possible generalizations of the quan­
tum statistics and more precisely of the 
second quantization procedure from a Lie 
algebraical point of view. The considera­
tion is made in the framework of the 
Lagrangian field theory, however the re­
sults can easily be extended to other 
cases, e.g., to nuclear or solid state 
physics. 

As is known/ 1/,the ordinary quantum 
statistics can be considerably generalized 
if one quantuzes the fields according to 
a weaker system of axioms, abandoning the 
usually accepted c-number postulate, i.e., 
the requirement for the commutator or 
the anticommutator of two fields to be 
a C-number. In this case the anticommu­
tation relations between the fermi crea­
tion and annihilation opera tors f ~ and f * 

~ 1] 1 2 
lf. , f. I = -

4 
<~ -7J) o .. 

I J IJ 
(1) 

can be replaced by a weaker system of 
double commutation relations for the so-

*Throughout the paper the indices 
~, 1J , ( , o take v a 1 u e s ± or ± 1 ; l x, y I "' xy + yx 
and [x, y] "' xy- yx . 
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f . + called para erm1 operators hi, namely 

gTJ ( 1 2 gl 2 TJ 
Ubi,bj Lb~r1= 2 <11 -d ojkbi- 2 <g-d oik bj. (2) 

The commutation relations (2) exhibit 
some remarkable Lie algebraical proper­
ties. It turns out that the parafermi ope­
rators generate the algebra of the ortho­
gonal group 121. To make the statement more 
precise, consider a finite number of ope­
rators b [-, ... , b ~·Then the linear 

1 
envelope 

over C of the operators 

b~ ,[b~ ,bfk], i,j,k =l, ... ,n (3) 

is isomorphic to the classical Lie al~ebra 
B n of the orthogonal group 80(2n+l) I I. 

There exists one-to-one correspondence 
between the representations of Bn and the 
repr·esenta tions of n pairs of para fermi 
operators /~.Therefore the parafermi quanti­
zation is actually a quantization according 
to representations of the algebra of the 
orthogonal group in odd dimension and 
therefore may be called an odd-~rthogonal 
quantization. This is an important point, 
a first hint that the group theory can in 
principle be relevant for the quantum sta­
tistic's. 

The algebras Bn, n = 1,2, ••• , constitute one 
of the four infinite series of the so-called 
classical Lie algebra. In the Cartan no­
tation (which we follow) they are denoted 
as An, Bn,Cn and Dn for algebras of rank 
n, n= 1,2, ... .The corresponding groups SL<n) , 
S0<2n+ U, Sp(2n) and S0<2n) are well known 

and therefore we do not define them here. 
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Once the Lie algebraical structure of 
the parafermi statistics is established, 
it is natural to ask whether one can quan­
tize according to representations of the 
other classical Lie algebras. In the pre­
sent paper we consider this question in 
connection with the algebra of the unimo­
dular group. 

In Sect. 3 we determine the concept of 
A statistics, i.e., statistics with crea­
tion and annihilation operators ( a -ope­
rators) that generate the algebra of the 
unimodular group. Next (Sec. 4) we define 
the Fock spaces Wp,P=l,2, •.. , and the selec­
tion rules for the A-statistics. The in­
teger p, called the order of the statistics, 
has well defined physical meaning: this is 
the maximal number of particles that can 
exist simultaneously (lemma 4). In Sec. 5 
we calculate the matrix elements of the 
a -opera tors. In the 1 imi t p .... "" the 
a -operators reduce (up to a constant) 
to Bose operators. 

The mathematics used in the paper is 
mainly of Lie algebraical nature. In order 
to introduce the notation and to make 
the exposition reasonably self-consistent, 
we collect in the next section some defi­
nitions and properties from the Lie algebra 
theory. 

2. PRELIMINARIES AND NOTATIONS 

Let A be a semi-simple complex Lie 
algebra of rank n, H - its Cartan subalgeb­
ra. By w i , e w i , i= 1,2, ... ,p we denote the roots 
and the root vectors of A. The roots w i 
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* are vectors from the conjugate space H 
of H. Sometimes it is convenient to consider 
them also as vectors from H using*the* 
fact that every 1 inea r functional A ~ R can 
be uniquely represented in the form 

* A(h) = (h,A) Vhf:H. ( 4) 

Here(,) is the Cartan-Killing form on A 
and A ~ H. The mapping 

* * 
0: A -+A= fJA (5) 
* 

of H on H is one-to-one. From now on we 
consider the roots or any other linear * 
functionals either as elements from H 
or from H, denoting them in path cases by 
the same s ym b o 1 ( i . e . , for ·A we w r i t e 
also A). 

With this agreement we can write 

[h, e ] = w. (h) e = (h, w . )e 
W • 1 W· I W · 1 1 1 

Vht;.H. (6) 

The Cartan-Killing form defines a scalar 
product in the space Hr which is the real 
linear envelope of all roots; H = H r + iH r. 

Let rhl' ... ,hn be an arbitrary covariant basis 
in H (and hence a basis in R). The root 
wi is said to be positive (negative) if 
its first non-zero coordinate is positive 
(negative). The simple roots, i.e., those 
positive roots which cannot be represented 
as a sum of other positive roots, con­
stitute a basis in H. Any positive (negative) 
root is a linear combination of simple 
roots with positive (negative) integer 
coefficients. ' 
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Consider an arbitrary finite-dimensional 
irreducible A-module W (iye., a space 
where a finite-dimensional irreducible 
representation of A is realized). The basis 
Xl , ... , XN in W can always be chosen such 
that 

hx. =A. (h)x. = (h,A. )x. Vhc=- H , i = l, ... ,N. (7) 
1 1 1 1 1 

Thus, to every basic vec~or xif:W there 
corresponds an image X~ R (or H ) . The 
vectors xi are the weight vectors and their 
images the weights of the A-module W. The 
mapping r:xi -+Ai is surjective and the 
number of the vee tors r -l (A) is called multi­
plicitly of the weight Ai. Let ew be a root 
vector and Ai be the weight of xi. Then 
ewx i is either zero or a weight vector 
with weight w +Ai .The A-module W contains 
a unique (up to multiplicative constant) 
weight vee tor x A with properties e w· x A= 0 
for all positive roots wi >O.The weight A 
of xA is the highest weight of w. The 
multiplicity of A is unity and W is 
spanned over all vectors 

ew. ew .... ew· xA 
11 1 2 1m 

m = 1,2, ... , (8) 

where (r)i , ... ,wi are negative roots. 
Therefor~ an. a'Tbi trary weight A is of the 
form 

A=A- ~ k.w. (9) 
1 1 

W· >O 
1 

with ki positive integers and sum over po-
sitive (or only simple) roots. 

Let rr
1 

, ... , rr be the simple roots of A . 
Then for an arbitrary weight A the 
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n -tuple [A 1 ,A 2 , ... ,An] 
dinates defined as 

has integer co-or-

2(A,17.) 
,\. = ---~- i = 1,2, ... , n. (10) 

1 (17.,17.) 
I I 

The n-tuple [A 1 , ... ,An} corresponding to 
the highest weight A has non-negative co­
ordinates, and it defines the irreducible 
representation of A in W up to equivalence. 
On the contrary, to every vector A ~ H, 
such that A1 , ... ,An defined from (10) are 
non-negative integers, there corresponds 
an irreducible A-module. Thus, there 
exists a one-to-one correspondence between 
the irreducible (finite-dimensional) 
A -modules and the set [A 1 , ... ,An] of non­
negative integers. We call A1 , ... ,An canoni­
cal co-ordinates of A. 

Define an F-basis f 1 ,f2 , ... ,fn in H 
(or in ~) as follows 

f . = --
2
-- 11 . i = 1 , ... , n 

I (17.,17.) I 
I I 

and let K =lf 1,f 2 , ... , fn! 
ponding dual basis, i.e., 

* For an arbitrary,\~}{ we 

(11) 

be the corres­
f i (f j) = (f i ,f j) = 0 l· 
have 

. 2 (,\ '17 . ) 
A = I, A (f.) f I = ~ __ .:_f 1 (12) 

i 
1 

(17.,17.) 
I I 

and therefore in the K-basis the co-
ordinates of every weight ,\ coincide with 
its canonical co-ordinates. 

By means of the F-basis one can easily 
calculate the canonical co-ordinates of an 
arbitrary weight A. Indeed 
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2 (A ,17 i ) 
f.x,=A(f.)xA= -( ~xA 

I 1\ I 17i•17 j J 
(12 ') 

and therefore the i -th canonical co­
ordinate Ai of A is an eigenvalue of fi on 
xA.More generally, if h 1 , ... ,hn is an arbit­
rary covariant basis in H,then the cova­
riant coordinates (A 1 , ... , ,\ n) of the weight 
A, i.e., the co-ordinates of A in the dual 
(or contravariant) basis h 1 , ... ,hn are de­
termined from the relation 

hi X A= A (hi )x A =\X A. (13) 

An important property of the set I' of 
all weights is its invariance under the 
Weyl group S which is a group of transfer-
rna t ions of J( . s = I s ("'i t (d i - root s of 1\ t 
is a finite group, its elements labelled 
by the roots "'i of A are defined as fol­
lows: 

s w. 
2(h ,&J .) 

. h ~ h - ---1
- (,) . v h \,. }{ . 

(w.,w.) 1 
(14) 

I 
I I 

The set I' of all weights is characterized 
by the following statement: if A'"' r·, then 

S ,\ = ,\ + j &J • ~ I' , j - integer 
(!). 1 (15) 

I 

and I' contains also the weights 

,\ A I (V • ' ,\ + 2 (,) . ' ••• ' ,\ + j (d .• 
' 1 1 1 

(16) 

All weights that can be connected by 
transformations of the Weyl group are 
called equivalent. They have the same 
multiplicity. Among the equivalent weights 
there exists only one weight, the dominant 
one, the canonical co-ordinates of which 
are nonnegative integers. 
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3. UNITARY QUANTIZATION (A -QUANTIZATION) 

In the case of ordinary statistics the 
second quantization in the Lagrangian field 
theory can be performed in different equi­
valent ways. One can start, for instance, 
from the equal-time commutation relations. 
For generalizations we wish to consider, 
it is more convenient to follow the quan­
tization procedure accepted by Bogolubov 
and Shirkov 161. 

Apart from the fact that the fields 
become operators and the requirement for 
relativistic invariance, their approach is 
essentially based on what we call a main 
quantization postulate: the energy-momen­
tum vector Pm and the angular-momentum 

mn d · tensor M , m,n=0,1,2,3, are expresse 1n 
terms of the operator-fields by the same 
expressions as in the classical case. 

It follows from this postulate, together 
with the requirement that the field trans­
forms according to unitary representations 
of the Poincare group and the compatibility 
of the transformation properties of the 
field and the state vectors, that the 
field W(~ satisfies the commutation rela­
tion 

[Pm, 'l'(x)] = -iam'l'(x). (17) 

This relation expresses (in infinitesimal 
form) the translation invariance of the 
theory. 

To proceed further, it is convenient 
to pass to the discrete notation in momen­
tum space. Consider a field 'I'(~ with 
mass m locked in a cube with edge L. For 
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the eigenvalues k~ of the 4-momentum 
Pm, m=0,1,2,3,one obtains 

ka = 2rr_ 0 a ko= y'm2+(2rr_)2[(nl)2+(n2)2+(n3)2],(18) 
n L , n L 

where n = (n 1,n 2 ,n 3), a= 1,2,3 and na runs over 
all non-negative integers. In momentum 
space the relation (17) reads as follows 

m ± _ + m ± [P ,a. ] - _ k . a . , 
I I I 

(19) 

where a~ <a i) are the corresponding to 'I' (x) 

creation and annihilation operators and 
the index i replaces all discrete indices 
(n spin, charge, etc.). 

The commutation relations between the 
creation and annihilation operators are 
usually derived from the translation inva­
riance law in momentum space (19). We 
call it the initial quantization equation 
(IQE). To determine the commutation rela­
tions one has to specify one more point. 
Up to now nothing was said about the order 
of the creation and annihilation operators 
that enter into P m. In the ordinary theory 
it is usually accepted that the dynamical 
variables are written in a normal-product 
form and therefore for a fermi field this 
give 

m m + 
P = I k . f . f . (20) 

1 1 1 ' 
i 
+ 

where f i (f i > are the Fermi creation (annihi-
lation) operators (1). One can easily 
check t~at the initial quantization equation 
(with a i = f ±i ) is compatible with the 
anticommutation relations (1). This is, 
however, not the case for the parafermi 
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operators (2), apart from the case of 
their Fermi representation. The parafermi 
statistics cannot be derived from the 
normal-product form of the dynamical va­
riables. In order to fulfil (19) Green 
chose anoth~r ordering of the operators in 
pm and in particular for spinor fields we 
wrote 11/. 

m 1 m + -
p =- ~ k . [b . ,b. J • 2 j I I I (21) 

We see that the ordering of the opera­
tors in the 4-momentum is closely related 
to the corresponding statistics. It is 
natural to expect therefore that any other 
generalization of the statistics may require 
new expressions for P m. In order to get 
a feeling as to how one can modify pm, we 
now proceed to derive the parafermi statis­
tics in such a way that later on it will 
be possible to generalize the idea to other 
cases. 

We start with the expression (20). In 
order to use a proper Lie algebraical langu­
age (finite-dimensional Lie algebras), 
suppose that the sum in (10) is finite, 

n 

Pm= ~ k~r:-r.-
i=I I I I 

(2 2) 

This is only an intermediate step. In the 
final results we let n ... ""· 

As we have already mentioned, the set 
f i, ... , f~ of Fermi creation and annihila­
tion operators (1) generates one particular 
representation (we call it the Fermi repre­
sentation) of the algebra Bn.We put now 
the question: can the expression (22) be 
written in such a form that the initial 
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quantization equation (19) will hold for 
the Fermi operators considered as generators 
of Bn,i.e., independently of the fact we 
are staying in one particular representa­
tion of Bn - the Fermi one. The Lie al­
gebraical reason why (19) does not hold for 
the parafermi operators is clear. It is 
due to the fact that the 4-momentum (22) 
does not belong to Bn since it contains 
product of b; and b:. which is not a Lie­
algebraical operation. Therefore the IQR, 
considered as a commutation relation, is 
not preserved for other representation of 
Bn , If however, the 4-momentum together 
with the creation and annihilation opera­
tors can be embedded in a Lie algebra, so 
that in the Fermi case pm reduces to 
(22), then the IQR (19) will hold for 
any other representation of this algebra. 

For this purpose we rewrite the 4-mo­
mentum (22) in the following identical 
form 

m m1 +- 1 +-
P = ~ k <2 If ,f J + "2 l r , r I ) . (2 3) 

C~nsidfr the Lie+al~ebr~ gener~te~ from 
f 1 , ... ,r- and lf .. f .1. S1nce lf.,f .I= 1, 

n I I I I 

we obtain the algebra Bn ei, where I is the 
one-dimensional commutative center. Now 
P m ~ B0 EB I and therefore the commutation 
relation (19) holds for any other represen­
tation. In other words, if we substitute in 
( 23) f~ ... b~ and tr:,r-:-I ... J, i.e., put 

I I I I 

m m 1 + - 1 
p = ~ k . (-2 [ b . 'b .] + -2 J) ' 

j I I I 
(24) 

where l is the generator of the center 
of Bnel, then the initial quantization 
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condition (19) will be fulfilled for any 
representation of B nei. 

The operator 

Qm=_!_Ik~l 
2 i 1 (25) 

commutes with all creation and annihila­
tion operators and hence with all elements 
of Bnei. Therefore it is a constant 
within every irreducible representation 
and in the particular case of parafermi 
statistics the second term in (24) can be 
omitted. Thus, we obtain the expression 
(21) for P ~postulated by Green from the 
very beginning. 

We shall now apply a similar approach 
for the algebra Anof the unimodular group 
SL<n+l>. The nontrivial part is to find an 
analogue of the Fermi operators, i.e., 

+ operators ai that generate some represen-
tation of An and fulfil the initial quan­
tization equation (19) with 4-momentum 
written (in this particular representation) 
in a normal-product form. Then we shall 
apply the above procedure to enlarge the 
class of admissible representation. 

First we recall some properties of An. 
We consider An as a subalgebra of the al­
gebra gl<n+U of the general linear group 
GL<n + 1). The algebra gl (n+ 1) may be determined 
as a linear envelope of the generators 
e;i, i,j =0,1, ... ,n, that satisfy the commuta­
tion relations 

[eii ,e~o:el=oik:eif -ofi ek:i, i,j,k,f =0,1, ... ,n. (26) 
-

Let H and H be the Cartan subalgebras of 
A and gl<n+ 1), resp. Denote by env X the 
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linear envelope of an arbitrary set X. 
In terms of the gl<n + 1) genera tors we have: 

gl<n + 1) = envle ij ji,j = 0,1, ... , nl, 

A =envle .. -e .. ,e .. ! if. j =0,1, ... ,n}, 
n 11 JJ 1J (2 7) 

H = envlh. lh. =e .. , i = 0,1, ... , nl, 
1 1 11 

H = env I h . - h . I h . = e .. , i = 0,1, ... , n I . · 
1 J 1 u 

-
For a covariant basis in }{ we choose the 
vectors (h."' e .. ) 

1 11 

h O'h l , ... , h n (28) 

The algebra gHn+l) is not semi-simple. Its 
Cartan-Killing form is degenerate and_4oes 
not determine a scalar product on H • 
It is convenient to introduce a metric in 
R with the relation 

(h . ,h . ) = 2(n + 1)8 .. ; ( 2 9) 
1 J 1) 

Restricted on }{this metric coincides with 
the Cartan-Killing form of An. 

Fr9m (26) and (29) one obtains 

i j 
[h, e .. ] = (h ,h - h ) e .. 

1] 1] 
Vh~H, if:.i=0,1, ... ,n,(30) 

h 0 l n' h . c· w ere h ,h , ... ,h 1s t e contravar1ant 1.e., 
dual to h 0 ,h 1 , ... , h n ) basis in j{. Hence the 
genera tors e ij , if. j = 0,1, .. ,n are the root vee­
tors of An.The correspondence with their 
roots is 
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i . 
e ..... h - h J 

1] 
i I= j == 0,1, ••• , n. 

In the basis (28) the generators 

e . . , i < J. (i > J. ) 
I] ' 

i,j == 0,1, ... , n 

(31) 

(32) 

are the positive (negative) root vectors 
of An. The simple roots are 

rr . ~ h i- 1 - h i , i ~ 1, ... , n . 
1 

(3 3) 

'Therefore the F-basis (11) in this case 
reads as 

2 
f = ---- TT = h - h 

(TT.,TT .) i i-J 
,i=l, ... ,n. (34) 

I 1 

We are now ready to define the analogue of 
the Fermi opera tors. Let E i" , i,j = 0,1, ... , n 
be (n+l)-square matrix with i on the inter­
section of i-th row and j-th column and 
zero elsewhere. Clearly the mapping 

rr : e ij ... E ij , i,j = 0,1, ... , n 

determines a representation of gl (n + 1) 

and hence its restriction on An gives 
a representation of An. 

The operators 

+ -
A. = E .0 , A.= E 

0
. 

1 I 1 1 
I= 1,2, ... ,n 

(35) 

(36) 

generate the algebra An (in the above repre­
sentation) since 

+ -
[A . ,A . ] == E . . , 

1 J 1] 

+ - . . . . (37) 
[A ,A ]== E -E ,Ii=J,I,J,k==l, ••• ,n. 

k. k. k.k. 00 
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Moreover for the commutation relations 
between A±, ... , A± and the operator 

l n 

m m + -
P ==lk.A.A. (38) 

j J 1 I 

we obtain the right expression: 

+ + 
[P m ,A~] = ± k ~A~. ( 3 9) 

I I I 

The operators A~, ..• ,A.;n satisfy the initial 
quantization equation and can be consi­
dered as creation (( =+) and annihilation 
((=-) opera tors. 

The commutation relation (39) does 
not hold for other representations of An· 
In order to extend the class of admissible 
representation, we represent the 4-momcn­
tum (38) like in the Fermi case, in the 
form 

m rn + -
p = l k . ( [A . ,A . I + E oo ) · 

. I I I 
I 

( 40) 

Consider now the Lie algebra generated 
from the opera tors A~ , ... ,A~ and E 00 . One 
c an e a s i 1 y show , i t i s the a 1 g e bra gJ< n + ]) = 

=An$ I. Since P m~ gl(n-+ D,the initial quan­
tization equation (39) holds for any other 
representation of g!(n + 1). Hence we may define 
representation independent creation and 
annihilation operators as follows 

+ a £' iO a ~ ~ c 
0 

i , i = 1 , ... , n . ( 41) 

In this case we have to postulate for Pm 
the expression 

m + -
P m- l k · ([a · , a· J + e oo ) · - r I I 

i 
( 42) 
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+ 
The operators aj are root vectors of An. 

The correspondence with their roots is 

+ 
a i <---> + (h 0 

- h ) , i 1, ••• , n, ( 4 3) 

and therefore the creation (annihilation) 
operators are negative (positive) root 
vee tors. Since any other root h i_h i, i-f. j = 1, ... ,n 

h j - h j = (h 0
- h j) - (h 0 - h j) 

- + 
is a sum of the roots of a i and a i ,the 
creation and annihilation operators generate 
the algebra An. 

The commutation relations of An can be 
written in terms of a~ only. From (26) 
we obtain 1 

[[ + - ] +] + + a . , a . , a k = ok. a . + 0 .. a k 
I j J 1 1] 

+ - - - -
[[a i , a j ], a k I = -oki a j - o ij a k 

+ + - -
[a . , a . ] = [a . , a . ] = 0 . 

1 J I J 

( 44) 

Definition 1. The operators a~,i=1,2, ... satis­
fying the commutation relation (44) are 
called a-operators and the corresponding 
quantization (statistics) unitary or A­
quantization (statistics). 

We observe that the equal-frequency 
operators commute with each other. This 
property helps a lot in all calculations 
with the a -opera tors. 
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4. POCK SPACES FOR THE a-OPERATORS 

We now proceed to study those represen­
tations of the a-creation and annihila­
tion operators that possess the main 
features of the Pock space representations 
in the ordinary quantum mechanics. We con­
tinue to consider a finite set of opera­
tors. The extension of the results to 
infinite (including continuum) number of 
a -operators will be evident. 

f . . . 2 L ~ ~ b . De 1n1t1on . et a 1 , ... ,an e a-creatlon 
(~ = +) and annihilation (~ =-) opera tors. 
The An -module W is said to be a Pock 
space of the algebra An if it fulfils the 
conditions: 

1. ~e~miticit~ ~O£dition 

+ -
(ai)*=ai, i=1, ... ,n. ( 4 5) 

Here * denotes hermitian conjugation ope­
ration. 

2. Existence of vacuum. There exists 
a vacuum-vector ~>~w-such that 

a I 0> = 0 , · i = 1, ... , n. 
i 

( 4 6) 

3. Irreducibility. The representation 
space w Is-spanned-over all possible vec­
tors 

+ + + a. a .... a. IO>, m~N . 
1 1 1 2 1m 0 

( 4 7) 

By N0 we denote the set of all non-negative 
integers. The Pock space of An is called 
also An-module of Pock, Pock module of 
the a -operators or simply Pock module. 
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Lemma 1. The hermiticity condition (45) 
can be satisfied if and only if the An-mo­
dule W is a direct sum of irreducible fi­
nite-dimensional modules. 

Proof 

The generators of the compact form s~n+l) 
of An read in terms of the a-operators as 
follows 

+ -
E <J. = i (a . ~ a . ) 

J J J 
- + 

F Oj =a j -a j 

, ., + -] ., + -] F~ jk = 1 a j , a k. + 1 a k , a j . , 

( 4 8) 

F jk = [a; , a ~]-I a~ ,a j I . 

Evidently the generators are antiher­
mitian if and only if (45) holds. 

As is known, the antihermitian represen­
tations of the compact forms of the classi­
cal algebras are completely reducible. The 
irreducible components are fjnite-dimensio­
nal. This proves the sufficient part. The 
necessity follows from the observation that 
the metric in any irreducible s~n) -module 
can be introduced so that the generators 
are antihermitian. 

From the complete reducibility and the 
irreducibility condition (definition 1) 
we conclude. 

Corollary 1. The Fock spaces are finite­
dimensional irreducible An-modules. 

In the remaining part of the paper by 
creation and annihilation operators we 
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' 

'7 

1 

always mean a-operators. Mor~over we fix 
the ordering of the basis of H to be (28). 
Then the creation and annihilation opera­
tors a1,ai are negative and positive root 
vectors. In this case the operators a~, ... ,a·~ 
annihilate the highest weight vector XA 
of the Fock space and hence XA is one of 
the candidates for a vacuum state. 

Lemma 2. Let W be a Fock space of An 
Up to a multiplicative constant the vacuum 
state is unique and coincides with the 
highest weight vector XA of W. 

Proof 

First suppose the vacuum is a weight 
vector x,\ -!xA.Then the corresponding weights 
are also different ..\-!A. Moreover A>,\ 
(i.e., the vector A-,\ is positive). The 
irreducibility condition says there exists 
a polynomial P<a~, ... ,a:) of the creation ope­
rators such that 

+ + xA =P(a 1 , ... ,an)x,\ 

Denote by uJ i the root of 
we have 

n 
A = ,\ - ~ k .<d. k. >:: N 

0 
. 

i= I 1 1 1 

+ 
ai From 

( 4 9) 

( 4 9 ). 

This is, however, impossible, since A- A>O 
and ~kiwi<O. We conclude that the vacuum 
canndt be a weight vector different from 
X A • 

More generally, suppose 10 > >:: \\' is a vacuum 
state different from xA.An arbitrary vector 
x ~ W and in particular IO> can be represen­
ted uniquely as a sum of weight vectors x,\i 
with different weights ,\i: 
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m 

I 0 > = ~ X \ , A . f. A . if 
j=O 1\ j I J 

i f. j . (SO) 

The vectors X,\ , ... ,X,\ are linearly indepen-
o m 

dent. The non-zero of the vectors 
ajxA , ... ,a-ixA are also linearly independent, 
sine~ they ~orrespond to different weights. 
Hence 

a-:- I 0> = 0 
l a-:-x, = 0, j = 0,1, ... , m. 

I 1\ ' 
J 

implies 

Let for definiteness A
0

>A
1

> ... >Am 
The vector cannot be a vacuum state if 

(51) 

A 0 f. A since clearly there exists no poly­
nomial P<a ~, ... ,a:> such that 

P + + x A = (a 1 , ••• ,a ) I 0> • 
•• n ..,:. 

(52) 

Suppose IO> = xA +x,\
1
+ .. -+xA . Then (52) 

can be satisfief. only whenmthere exists 
a monomial <a t> I ... <a ;/n with the property 

+ei +en 
x A = (a I) ... (an) x A . 

1 
This is, however, impossible since for 
ei;t.O aixA 1f.O and this contradicts (51). 

In the following theorem we prove one 
convenient criterion for the An-module 
to be a Fock space. 

Theorem 1. The An-module W is a Fock 
space if and only if it is an irreducible 
finite-dimensional module such that 

- + 
a.a. xA= 0 

I J if. j = 1, ... , n . (53) 

The highest weight vector xA is a vacuum 
of W. 
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Proof 

Let W be a Fock space. Then it is fi­
nite-dimensional irreducible An-module 
(corollary 1) and the vacuum IO > = XA 
( 1 emma 2 ) . The operator [a i , a ~ ], i I_ j . 
is a root vector of An. Its root hl - h 1 

cannot be represented a~ a linear combina­
tion of the roots -h 0 +h 1 of the creation 

+ + H h . opera tors a 1''"' an . ence t ere ex1sts 
no polynomial P<a i, ... , a~) of a i , ... , a~ 
such that 

- + . + + 
[a i ,ajlxA= P<a 1 , ... ,an)xA f.O. 

Since a-:-a:+-xA~ W it has to be zero, 
- + loJ . 1 . aia.XA=, lFJ· 

the proof of the sufficient part of the 
theorem is based on the Poincare-Birkhoff­
Wi tt theorem 171:Gi ven a Lie algebra A with 
b~si.s e.r, .... ,eN.All ordered momentals 
e\Ie ;2 ... e ~N constitute a basis of the 
universal enveloping algebra U of A. 

Let in the irreducible finite-dimensio­
nal A n -module W the equality (53) holds. 
Divide the basis elements of An into 
three groups 

I= Ia~ ,[a~,a:]jj<k;i,j,k=l, ... ,nloode_l,e-2,•"•e-pl, 

- - - - + 
II =lai ,[a i ,a kJ,[ar,as]jj<k;rf.s~i,j,k,r,s=1, ... ,nl"' 

=le 1 , ... ,eql' 

III=Iwklk = 1, ... , n I, 

where w1 , ... , wn is a basis in the Cartan 
subalgebra H.Order the elements within 
each group in an arbitrary way. From the 
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irreducibility and the Poincare-Birkhoff­
Witt theorem it follows that W is linearly 
spanned on all vectors 

i I i p j I j q k.I k. n 
e .. • e e • • • e &J • • • &J x J\ 
-I -p I q I n (54) 

Since xAiS an eigenvector of the Cartan 
subalgebra and the operators from II 
annihilate xi\, the vector (54) is non-zero 
only if j I= j 2 = ... = j'l =0. Hence W is spanned 
on all vectors 

+ + 
P(ai , ... ,an)xi\, 

where P is an arbitrary polynomial of the 
creation operators. This proves that W 
is a Fock space with vacuum IO>=xi\. 

Now it remains to determine the irredu­
cible An -modules satisfying the condition 
(53). In order to solve this problem, we 
consider first some questions from the 
representation theory of An. As we mentio­
ned, it is convenient to consider An as 
a subalgebra of ~<n+l). This possibility is 
based on the circumstance that the irredu­
cible gi<n + 1) -modules are also An -irredu­
cible. On the other hand, every irreducible 
representation of An in " can be continued 
in infinitely many ways to an irreducible 
representation of gl(n + 1) in the same space. 
For this purpose it is enough to define 
the opera tor f 0 = h o +hI + ... +h n in W where _ 
h 0 , ••• ,h n is the covariant basis (28) in J(. 
Since f 0 commutes with gHn+U, f 

0 
has to 

be a constant in W, i.e., 

f
0

x =A
0 

x V X,; W (55) 

with J\ 0 being an arbitrary number. Let 
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fi , ... , fn be the .F-basis (34) inJ{.Then 

F = I f 0 ,f I , ••• , f n I (56) 

qefines a basis in the Cartan subalgebra 
, ( C gl< n + 1) • -· 

The eigenvalues J\ 0 ,!\ 1 , ••• ,An of F on the 
highest weight vector xi\ G. W characterize 
W as an irreducible gHn + 1) -module. Let 
x.\, ... ,x,\N be a basis of weight vectors in 
W.I In view of (55) the An-weights .\

1
, ... ,.\N 

are naturally extended to linear func­
tionals on J{ from the requirement .\. (f 0>~ A

0
• 

Then for any weight vector x.\ we hav1e 

hx ,\ = ,\ ( h)x ,\ = ( h , ,\ )x ,\ h<;.J(. (57) 

The numbers J\ 0 ,!\ 1, ... ,!\n · are co-ordinates 
of the highest weight A in the basis 

K ~lf'',f 1 , ... ,rnl (58) 

- -
dual to F. l\'e call K a canonical basis of 
gl<n+ 1) and the co-ordinates lA 0 , ... ,An J 
canonical co-ordinates of the gl<n + 1 > -module 
W. The properties of the Weyl group we 
shall often use read more simply in the 
orthogonal contravariant basis ho,h 1, ... , hn. 
From the equality 

n . n . 

J\ = 2A.f 1
= L L.h 1 

j = 0 I j =0 I 

we obtain for the orthogonal co-ordinate 
L0 ,L 1 , ... , L n of the highest weight W the 
following expressions 
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1 
L 0 == n+l [A 0 +nAI+(n-DA2+ ... +l·AnL 

LI == Lo-AI' 
L 2 == Lo- A I - A 2 ' (59) 

I I •• I •• e e I I I I I I I 

Ln== Lo-AI-A2- ... -An. 

Since in the Ax1module W AI , ... ,An 
are non-negative integers and A0 is an 
arbitrary constant, it can be chosen such 
that. all orthogonal co-ordinates L0 ,L I , ... ,L n 
are 1ntegers. Moreover 

L >L > L > ... >L . 
0- I- 2- - n (60) 

We pass now to the main problem of this 
section, classification of the Pock spaces. 
Unless otherwise states, the roots and the 
weights are represented by their orthogonal 
co-ordinate in the_contravariant orthogonal 
b . ho h I h n • }( • as 1 s , , ... , 1n 1. e. , 

n • 

A. == <e 0 , e I , ... , e ) = :i e . h 
1 

• 

n i == 0 1 
(61) 

Theorem 2. The irreducible An-module 
is a Pock space if and only if its highest 
weight is A==(p,O, ... ,O);p is an arbitrary 
positive integer*. 

Proof 

As we know (theorem 1), the Pock spaces 
are those and only those irreducible An -
modules whose highest weight vectors xA 

*The case p==O corresponds to the trivial 
one-dimensional representation. 
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+ are annihilated by all operators 
i~i==l, ... ,n, i.e., 

a 0 a 0 , 

I J 

- + 
aoaoxA=O i~j=l, ... ,n. 

I J 
(62) 

Since a-:-xA= 0 and [a-:- ,a -J: ]== e 00 (62) can be 
1 I J Ij 

replaced by the requirement 

e ij x A= 0 i~i=l, ... ,n. (63) 

The generators e ij are root vectors of An 
with roots (31), i.e., 

e 00 ..__.. h i - h i , i ~ j = 1, ... , n. 
IJ 

For i < j eii is positive root vector and 
(63) holds from the definition of x A. It 
remains to determi~e those An-modules with 
highest weights 

A = (L 
0 

,L I , ... , L n ) (64) 

for which the sums 

A+hi-hi, i<j 1, ... , n (65) 

are not weights. 
We shall use the properties (14) and 

(15) of the Weyl group S. According to (14) 
if Shi-h i G-S and A== (f 0 , ... ,ei , ... ,e i, ... ,fn) is 
a weight, then Shi-hj·A is also a weight. 
Using the scalar product (29) we have 

S . 0 ·A =A - ~· h i_~l-
0 

)_(hi-hi ) == 
hi-h] (hi-hj,hi -hi) 

(66) 

==(f
0

, ... ,e o, ... ,fo, ... ,en). 
J 1 
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Thus, the Weyl group in this case reduces 
to (all possible) permutations of the 
orthogonal co-ordinates. For the highest 
weight (64) we have· . 

i J 
S . . ·A. = (L 0 , ... , L . , ... , L. , ... , L ) = 

h I_ h J , J I n , 
i J i J 

= ( ... , l.. . , ... , L. , ... ) + (L. -L. ). (0, ... , 0,-1 ,0, ... ,O.LO, ... ,O>. 
I J J I 

According to (15) all vectors 
i j i j 

<L , ... ,L ..... ,L ..... ,L 4k<O, ... ,O,-l,O, ... ,O,l,O, ... ,O) (67) 
0 1 J n 

with O<k<L.-L.are also weights. As we - - J I 

know, for i<j L.?.Li.Suppose Li>L .. Then 
k in (67) can ~e equal to one anA 

A=A. +hi-hi, i< j 

is a weight. Hence the An-module W is not 
a Pock space if in its orthogonal signature 
A=<L 0,L 1, ... ,Ln>ther.e exists L i> L. for 0 < i< j. 

It remains to consider the 1modules with 

A=(L 0 ,L , ... ,L ), L
0

2_L. (68) 

Suppose for 0 < i < . 
. J . • I 

A=A+ h J_h 1 =<L0 ,L, ... , L,L -l,L, ... , L,L+ 1, L , ... , L > 

is a weight. Then A'=<L
0
,L+l,L-l,L, ... ,L) 

is also a weight. This is, however, impos­
sible since A '>A.. Hence all An-modules with 
signatures (68) are Pock spaces. 

We could have stopped the proof here 
since the signatures 

(L 
0
,L , ... , L) and <L -L,O, ... , Q) 

0 (69) 

describe one and the same An-module. This 
could have been done if all information 
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was carried by An, i.e., if the dynamical 
variables were functions of the genera­
tors ofAnonly. This is however not the 
case. The 4-momentum (42) Pm~An although 
P m ~ gl<n + I). Therefore physical! y the 
representations (69) are distinguishable. 

We shall determine the orthogonal co­
ordinates of A. from the requirement for 
the energy of the vacuum 10 >=X A. to be 
zero. In terms of the orthogonal basis 
(28)Pm can be written as 

m n m 
p =!.k.h .. 

j =) I I 
(70) 

Since for A.= <L 0 ,L, ... , L) hxA. ~ Lxt\, i =I, ... , n 
we require 

n 

PmiO> = ~ k~LIO> = 0 
i= I I 

m = 1 ,2,:l. {71) 

Here k~ , ... , k0 are analogs of the energy 
spectrum ofnthe one-particle states, k~ · o 

I (see (18)) . Therefore (71) implies L = 0. 
Later on we shall see that h., i = J, ... ,n 

I 

is a number operator for particles in 
a state i. This together with (71) also 
gives L = 0. 

Consider the Pock space \\ with A. =(p,O, ... ,O>. 
Using the definition (41) of ~he a-opera­
tors from (62) we have 

- + 
a.a. IO> = 1> .. p!O>. 

I J lj (7 2) 

We obtain the same expression as in the 
case of parastatistics of order p /s/. There­
fore we call p an order of the A -statis­
tics. We conclude that like in the para­
statistics all Pock spaces are labelled 
with positive integers p, the order of the 
statistics. 
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The equation (72) together with the 
commutation relations (44) of the a-opera­
tors determines completely the represen­
tation space and the representation of the 
creation and annihilation operators of 
order p.The A-statistics can be defined 
by the relations (44). The representations 
of the statistics can be obtained from 
(72). In this case all calculations can 
be done without using any Lie algebraical 
properties of the a-operators. Clearly this 
point of view is convenient for generali­
zation to the case of infinite and in par­
ticular to continuum number of operators. 
The Lie algebraical structure however 
helps a lot in all calculations. Therefore 
we shall continue to consider a finite 
number of pairs a~, ... , a~ of a -opera tors 
and on a later stage we shall let n 4 "". 

Let us consider some Lie-algebraical 
properties of the Fock spaces. In the 
An -module W with a highest weight A=<LO' ... 'Ln) 
an arbitrary weight A = U

0 
, ... , ~n) can be 

represented as 

A=A+~ k.w., k. ~N 0 , 
1 1 1 

where 

w .~ ~ 
1 

j 
=lh -h li>j =O,l, ... ,nl. 

Since the sum of the first m co-ordinates, 
m = 1,2, ... ,n of an arbitrary negative root 
wi~~- is non-positive this is true also 
for the vector ~ k.w. with k. non-
negative intege~s.

1

T~erefore for
1 

an arbit­
rary weight A we have 

~ 0 +r 1 + ... +~mS L 0+L 1 + ... +Lm m=O,l, ... ,n. 
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From this inequality and the circum­
stance that the weight system is invariant 
under permutations of the orthogonal co­
ordinates we conclude that the vector 
A= (~ 0 .~1''""'~ 11 ) with integer co-ordinates 
is a weight if and only if 

~ . + ~ . + ... + f . < L o+ L 1 + ... + L m 1 0 1 1 1 m- (7 3) 

where i 0 ~i 1 ~ ... ~im=O,l, ... ,n; m=O,l, ... ,n. 
C 1 ear 1 y ( 7 3) is e qua 11 y for m = n . 

Lemma 3. All weights of the An-module 
of Fock WP with order of the statistics P 
are simple. ' 

Proof 

An arbitrary weight vector xA ~ WP 
with weight A is genera ted from xA with 
polynomials of the creation operators, 

+ + 
x,\ = P<a 1 , ••• ,an )x A. (74) 

Therefore the weight A=(f 0 .~ 1 •••• ,fn) of x,\ 
can be represented as 

n . 

A=A + ~ k. (-h 0 +h 1
) 

i = l 1 
ki~ No. (75) 

In terms of the co-ordinate the last rela-' 
tion reads as 

n 
(f

0
,f

1
, .... ~ )=(p,O, ... ,O>+( -~ k.,k

1
,k

2 
, ... ,k ). (76) 

n i =l 1 n 

Hence ki = e i' i= l, ... ,n and an arbitrary 
weight A is represented uniquely in the 
form (75). In terms of the weight vectors 
this gives that P<ar, ... , a:) in (74) is 
homogeneous with respect to every creation 
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+ operator a i: f. 
+ + + 1 + + + P(a 1 , ... , aa i , ... ,an)= a P<a 1 , ••• ,ai, ... ,a m) 

Since the creation operators commute, 
-1 t + fl + f2 +en 

P<a 1 , ••• ,a
0

)=(a
1

) <a 2) ... (an) . 

Therefore every vector xA with weight 
A =<f 0,f 1 , ... , P n) is collinear to the vector 

+fl +f2 +fn 
(a 1> (a 2) ... (a

0
) x 

and the corresponding weight space is 
one-dimensional 

This lemma has no analogy in the para­
statistics. For instance the states [hhiO> 
and b >; t 0 " if j have one and the same i j 

weight but in general are linearly inde­
pendent. 

In the following lemma we prove one 
important property of the A-statistics. 

Lemma 4. Given An-module of Fock WP 
with order of the statistics p.The vector 

+PI tf2 +rn ' 
(a 

1 
) ( a 

2 
) • • • (a 

0
) I 0 ', ( 7 6 ) 

is non-zero if and only if 

(f I + f 2 + ... + p n S p . 

In particular in the Fock space ~ 
can be no more than p particles. P 

Proof 

(77) 

there 

In the previous lemma we saw that the 
vector (76) has a weight 

A = ( p - f I- ... - f n, f I , .... , f n) • (78) 
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If f I+ ••• +f
0 

S p, then clearly (7 3) holds 
because -L0+ •• .+Lm= p, m = 0,1, ... , n. Therefore A 
is a weight. There should exists at least 
one weight vector with weightA. Since the 
multiplicity of A is one, this is the 
vector (76) and hence this vector is not 
zero. 

If fr+ ... +f 0 >p, the weight (78) does not 
fulfil the inequality (73) for m= n- 1 
and fi =fJ ,fii =f2 , ... ,Pin-I = fn and the 
corresponding weight vector (76) is zero. 

From (76) and (78) we conclude 
f f 

+ I + n 
h . (a 1 ) ... (a ) I 0 > 

1 n• 

f f. 
+ I + n =f . (a 
1
> ••• (a ) I 0> 

1 n 

(79) 
i=l, ... ,n. 

The operator hi is a number operator of 
the particles in the state i. The number 
operator N is 

N=N 1 +N 2 + ... +Nn (80) 

We obtain 
f p f f -ti +n +l +n 

N<a 1 ) ... (an) \0>=(f~ ... +fn)(a 1) ... (an) \0>~81) 

4. MATRIX ELEMENTS OF THE CREATION AND 
ANNIHILATION OPERATORS 

The numbers f 1 , ••• , f n together with the 
order of the A-statistics p determine 
uniquely the state (76). We introduce the 
notation 

e e 
+ I + n 

\p;f1,f 2, ... ,f
0 

>=(ai) ... (an) \0>. (8 2) 
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The set of all vectors (82) constitute 
a basis of weight vectors in the Fock space 
WP • The correspondence between the weight 
vectors and the weights written with their 
orthogonal co-ordinates reads as 

n 

IP;e1 •. r2 , ... , e > ..... <p- l e. ,e1 ,e
2

, ... ,e ) . (83) 
. n i= 1 1 n 

One has to remember that the notation 
lp;el , ..• ,en> is defined only for el + .• .+f n;; p. 

We now proceed to calculate the matrix 
elements of n pairs· of creation and annihi-
1 . + + . h at1on operators aJ., ... ,a~ 1n t e An -
module of Fock WP with order of statis­
tics p . 

We can write immediately 

n 

h lp·e ..• ,e >=(p-l e.)lp; e1, ... ,e_n>; (84) 
0 ' l' n i=l 1 ..• 

h .I i>; e 1 , ••• , e > = e . I P; e 
1 

, ... , e > , i = 1, ... , n. 
1 n 1 n 

These equalities follow from the observa­
tion that the orthogonal co-ordinates of 
the weight (83) are eigenvalues of the 
operators (28) on the weight vector (82). 
Since 

[a:,a71 = h
0

- h
1 

we have 

[a-:-,a:-llp;f 1; .•• ,e >=(p-L-L)Ip;e
1

, ... ,e >, (85) 
1 1 n 1 n 

where L = £1 + £2 + ... + f n 

First we calculate the matrix element 
of a~. 
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e e 
-~ o o [- + l + n I al p;Ll'"''Ln>= a l'(al) ... (an) ] 0> = 

- + e 1 + e2 +en + e l - + £2 + en 
=[a 1 ,<a 1) 1<a 2) ... (an) IO>da 1) a 1 <a 2) ... (an) JO>. 

(8 6) 

The second term in the last equality 
vanishes. Indeed the vector 

- +r2 +eniO a I (a 2) ... (a n) > 

would have had a weight 
n 

<p - l e. + 1, -1 ,e 2 , e 
3

, ... , e ) 
i = 2 1 .. n 

which is impossible since £0+£2+£3+ .. .+ en 
=p+1>p. 

Using (84), for the first term we 
obtain 

e ci . e1-i-I + I - + + 
_l (a 1 ) [a 1 ,a 1 ]<a

1
) 

!=0 

e e + 2 + n 
(a2) ... (an) 10>= 

£1-I e -1 e e 
. + I 

= l (p-L-r +2I+2)·(a ) 
i =0 l I 

+ 2 + n 
(a?) ... (a ) I 0> . 

- n 

This gives 
n 

a~ I p; e I, ... , en> = e l (p -. :} i+ 1) I p; £1- I ' e 2 , ... ,en> • 

The generalization for a~ is evident: 
I 

. n 

a~jp;e 1 , ••• ,e., ... ,e >=L(p -lf,+1)jp; f
1

, ... ,e. 
1

, ... ,£ >. 
1 1 n 1 1.-l ... 1- n 

- (8 7) 
Moreover 

+ 
a.lp;fl, ... ,e. , ... ,£ >=lp;£l, ... ,f.+1, ... ,e >. 

1 1 n 1 n 
(8 8) 
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The metric in WP is defined in a complete 
analogy with the scalar product in the 
Pock space of Bose (or Fermi) particles. 

Postulate 
a) <010>= 1 

+ . b) <Oia.=O, I=l, ... ,n 
I e e 

) (( + m I + mn I + I + n 
C a 1 ) ... (a n) 0 > , (a I ) ••• (a n ) I 0 > ) 

e e - mi - m n + I + n =<OI<ai) ... (an) (ai) ... (an) IO>. (8 9) 

The vectors lp;VI, ... ,f > constitute an 
orthogonal basis in WP~ To show this, 
suppose that in (89) some mi I= Vi and 
m. >f .. Then the vee tor 

1 1 n 
m. fi + r. f 

- 1 + 1 + n I (a.> (a 
1
> ••• (a. ) ... (a ) · 0 > = 0 

1 1 n 

since otherwise there has to exist 
a weight 

m 

let 

(p - I f 1· + m i ,f I , ... , f i- I • -( m i -f i ), pi+ I • •..• , f n) 
. -I 

which is impossible. For midi the same 
result can be obtained from the hermitian 
conjugate of (89). If mi=fi, i= l, ... ,n 
we obtain 

. . p! n <IP.fi, ... ,r >,lp,f , ... ,r >)=--- 11 r.!, 
n I n (p _ U! i =I 1 

(90) 

where L = f I+ ... +f n. 

As an orthogonal basis in WP one can 
accept the vectors 

+ e f 

lp;f I , ... ,f )= y (p-L}! (a I) I ... (a+) n 
n 

1
-- n 

P· vfi!f2! ... e ' IO>. (91) 
n· 

36 

In this basis we have for the matrix ele­
ments 

+ n 
a.lp;fi, ... ,e )=y(f.+U<p- I f.)lp;fi, ... ,f.+I, ... ,f){92) 

1 o 1 j=I 1 1 n 
- n 

a.jp;fi, ... ,f )=yf. (p-I f.+ l~p;fi, ... ,f. -l, ... ,f },(93) 
1 n 1 j= I 1 1 o 

The matrix elements of the a-operators 
do not, depend on n. Therefore the results 
can be extended in an evident way to the 
case of infinite number of operators. 

Finally, we point out one interesting 
property of the A-statistics. Introduce 
the operators 

+ + a-
A ~ = --L , i = 1, ... , n (94) 

yp 

and consider the matrix elements of these 
operators on states with number of par­
ticles much less than p, 

f+f+ ... +f«p. 
I 2 n (95) 

From (92-93) we obtain 

A-ilp;fi, ... ,f
0

) ==vfilp; ei, ... ,ei -t, •.. ,f
0

) 

(96) 
+ --A.Ip;fi'"'' e ) == vr. +tip; ei, ... ,e. + t, ... ,e ) . 

1 o 1 1 n 

In a first approximation 

+ + - -
[A. ,A.]= [A. ,A .1 = 0 exact commuta-

1 
1 1 1 tors 

- + 
[A.,A.]==8 .. if fi+ ... +f «p. 

1 J 1J n 
(97) 
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Moreover if (95) holds then 

(A~/ l ... <A: / n 

lv;e l , ... J n)"" ----
yCl! ... Cn! 

I 0>. (98) 

We see that if the A-statistics allows 
a large number of particles p, then the + 

commutation relations of the operators Ai 
0 n s tate s w i t h e l + ... + e n « p c 0 inc ide in 
a first approximation with the Bose crea­
tion and annihilation operators. In the 
1 imi t p .... "" the opera tors A~ reduce to 
Bose operators. I 

This property has also an interesting 
Lie-algebraical consequence. It shows 
that the limit of certain representations 
(the Pock representations) of the simple 
algebra An leads to a representation of 
the solvable Lie algebra of Bose operators. 

We have considered the statistics cor­
responding to the algebra of the unimodular 
group. In a similar way one can introduce 
a concept of C- and D-statistics 191 or of 
statistics that correspond to other semi­
simple Lie lagebrasiW. 
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