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1. INTRODUCTION

In the present paper we study some of
the possible generalizations of the quan-
tum statistics and more precisely of the
second quantization procedure from a Lie
algebraical point of view. The considera-
tion is made in the framework of the
Lagrangian field theory, however the re-
sults can easily be extended to other
cases, e.g., to nuclear or solid state
physics. :

As 1is known/lathe ordinary quantum
statistics can be considerably generalized
if one quantuzes the fields according to
a weaker system of axioms, abandoning the
usually accepted C-number postulate, i.e.,
the requirement for the commutator or
the anticommutator of two fields to be
a C-number. In this case the anticommu-
tation relations between the ferm%_crea— _
tion and annihilation operators f; and f ;*

& .n, 1 2

ffi ,fj }:—4—-(§ -7) Sij (1)
can be replaced by a weaker system of
double commutation relations for the so-

*Throughout the paper the indices
£,n,6,0 take values * or #1;ix,yl=xy+yx
and [x,y]E Xy ~- yX .



called parafermi operators bf, namely

¢ ' |
[(b} -

1 b

The commutation relations (2) exhibit
some remarkable Lie algebraical proper-
ties. It turns out that the parafermi ope-
rators generate the algebra of the ortho-
gonal group’/%. To make the statement more
precise, consider a finite number of ope-
rators bf,..b ;. Then the linear, envelope
over C of the operators '

¢ "

i oll

-’57, (2)

N1 € 1 2
b] ]1bk]=_2(7']"€) Ska J .

b 03], ijk=1,mmn (3)
is isomorphic to the classical Lie algebra
Bn of the orthogonal group SO(2n+1)/3/,

There exists one-to-one correspondence
between the representations of B, and the
representations of n pairs of parafermi
operators /4 Therefore the parafermi quanti-
zation is actually a quantization according
to representations of the algebra of the
orthogonal group in odd dimension and
therefore may be called an odd-orthogonal
quantization. This is an important point,

a first hint that the group theory can in
principle be relevant for the quantum sta-
tistics.

The algebras By,n=1,2,..,constitute one
of the four infinite series of the so-called
classical Lie algebra. 1In the Cartan no-
tation (which we follow) they are denoted
as A,, B,,C,and D, for algebras of rank
n, n=12,...The corresponding groups SLm ,
SO(2n+ 1), Sp(2n) and SO(2n) are well known
and therefore we do not define them here.

Once the Lie algebraical structure of
the parafermi statistics is established,
it is natural to ask whether one can quan-
tize according to representations of the
other classical Lie algebras. In the pre-
sent paper we consider this question in
connection with the algebra of the unimo-
dular group.

In Sect. 3 we determine the concept of
A statistics, i.e., statistics with crea-
tion and annihilation operators ( a -ope-
rators) that generate the algebra of the
unimodular group. Next (Sec. 4) we define
the Fock spaces W, ,p=12,.., and the selec-
tion rules for the A-statistics. The in-
teger p, called the order of the statistics,
has well defined physical meaning: this is
the maximal number of particles that can
exist simultaneously (lemma 4). In Sec. 5§
we calculate the matrix elements of the
a -operators. In the limit p-> ~ the
a -operators reduce (up to a constant)
to Bose operators.

The mathematics used in the paper is
mainly of Lie algebraical nature. In order
to introduce the notation and to make
the exposition reasonably self-consistent,
we collect in the next section some defi-
nitions and properties from the Lie algebra
theory.

2. PRELIMINARIES AND NOTATIONS

Let A be a semi-simple complex Lie
algebra of rank n, X - its Cartan subalgeb-
ra. By w;, ey;,i=12,.,p We denote the roots
and the root vectors of A.The roots o;



*
are vectors from the conjugate space X

of H. Sometimes it is convenient to consider
them also as vectors from X using  the,

fact that every linear functional A < H can
be uniquely represented in the form

X(h) = th,\)  vheX. (4)

Here(,) is the Cartan-Killing form on A
and x ¢ K. The mapping
* *

6: A 5 A 56)\‘ (5)

*
of X on X is one-to-one. From now on we
consider the roots or any other linear ,
functionals either as elements from K
or from K, denoting them in both cases by
the same symbol (i.e., forA we write
also a).

With this agreement we can write

[h,ewi]=mi(h)ewiz(h,cui)emi Vhe X, - (6)
The Cartan-Killing form defines a scalar
product in the space H' which is the real
linear envelope of all roots; H-}' 4+ iK'.
Let hy...h be an arbitrary covariant basis
in X' (and hence a basis in H). The root

@; 1s said to be positive (negative) if
its first non-zero coordinate is positive
(negative). The simple roots, i.e., those
positive roots which cannot be represented
as a sum of other positive roots, con-
stitute a basis in H. Any positive (negative)
root is a linear combination of simple

roots with positive (negative) integer
coefficients. ’

Consider an arbitrary finite-dimensional
irreducible A -module W (i.e., a space
where a finite-dimensional irreducible '
representation of A is realized). The basis
X, Xy in W can always be chosen such
that

hx.=)\i (h)xi=(h,)\i)xi Vhe H ,i=1,.,N. (7)
1 N

Thus, to every basic vector x; €W there
corresponds an image X e H (or X ). The '
vectors x; are the weight vectors and their
images the weights of the A-module W. The
mapping r:x; - A; 1s surjective and the )
number of the vectors r~!'(x) is called multi-
plicitly of the weight A;. Let e, be a root
vector and r; be the weight gf x; . Then
e,x; is either zero or a weight vector
with weight o +A; .The A-module W contains
a unique (up to multiplicative constant)
weight vector x, with properties epixA==0
for all positive roots w; >0.The weight A
of xp is the highest weight of W..The
multiplicity of A is unity and W is
spanned over all vectors

e €p . €. Xp m=1,2,..., (8)

Piy Yig im

i ; are negative roots.
Therefore an arbitrary weight A is of the
form

where o; o, 0.

A=A - 2 ko, (9)
a)i>0
with k; positive integers and sum over po-
sitive (or only simple) roots.
Let 7 ,..,» be the simple Toots of A.
Then for an arbitrary weight A the



n -tuple [A; A . 2 ] has integer co-or-
dinates defined as
Z(A,ﬂi)
= - i=12,...n. (103
i (ﬂi,ﬂi)

The n-tuple [A),..;A ] corresponding to
the highest weight A has non-negative co-
ordinates, and it defines the irreducible
representation of A in W up to equivalence.
On the contrary, to every vector A ¢ X,
such that A;...,A_  defined from (10) are
non-negative integers, there corresponds
an irreducible A-module. Thus, there
exists a one-to-one correspondence between
the irreducible (finite-dimensional)

A -modules and the set [A,,..,A;]1 of non-
negative integers. We call A;,.,A  canoni-
cal co-ordinates of A.

Define an F-basis f fy,..,f_ in H
(or in ) as follows

2 -
f. = — 7 i=1,u..,n (11)
1 1
(".i’"i)

and let K =tr! 2 .., "} _ be the corres-

ponding dual basis, d.e., f'(f)=("f;) =5
For an arbitrary i ¢ K we have
A= EA(f.)f':Z—g(Am-'lf’ (12)
i ! (ﬂi,ﬂi)
and therefore in the K-basis the co-
ordinates of every weight A coincide with
its canonical co-ordinates.

By means of the F-basis one can easily
calculate the canonical co-ordinates of an
arbitrary weight A. Indeed

2()\,ﬂi) ,
fix)\=)\(fi)x)\= GT’;‘—'TX)\ (12 )

1

and therefore the i-th canonical co-
ordinate A; of X is an eigenvalue of f, on
x) -More generally, if h,,..,h is an arbit-
rary covariant basis in X, then the cova-
riant coordinates Ay, a ) 0of the weight
A, i.e., the co-ordinates of A in the dual
(or contravariant) basis h!,..,h"™ are de-
termined from the relation

hix :)\(hi)xAz)\ix)\. (13)

An important property of the set I' of
all weights is its invariance under the
Weyl group S which is a group of transfor-

A

mations of X, S = 1S, lw;- Toots of A}
is a finite group, its elements labelled
by the roots o, of A are defined as fol-
lows:
2(h,w )
S eh-h - 27 o, Vhek. (14)

w 1 ((1) .ol )
H 1

The set I' of all weights is characterized
by the following statement: if A < i, then

Sy, A=A+ jo, e, j-integer (15)
1
and I' contains also the weights
)\,)\ 'ilui,)\ +20)i,...,)\+jmi. (16)

All weights that can be connected by
transformations of the Weyl group are
called equivalent. They have the same
multiplicity. Among the equivalent weights
there exists only one weight, the dominant
one, the canonical co-ordinates of which
are nonnegative integers.



3. UNITARY QUANTIZATION (A -QUANTIZATION)

In the case of ordinary statistics the
second quantization in the Lagrangian field
theory can be performed in different equi-
valent ways. One can start, for instance,
from the equal-time commutation relations.
For generalizations we wish to consider,
it is more convenient to follow the quan-
tization procedure accepted by Bogolubov
and Shirkov /¢/.

Apart from the fact that the fields
become operators and the requirement for
relativistic invariance, their approach is
essentially based on what we call a main
quantization postulate: the energy-momen-
tum vector P™ and the angular-momentum
tensor M™", mn=0,1,2,3, are expressed in
terms of the operator-fields by the same
expressions as in the classical case.

It follows from this postulate, together
with the requirement that the field trans-
forms according to unitary representations
of the Poincare group and the compatibility
of the transformation properties of the
field and the state vectors, that the
field ¥ satisfies the commutation rela-
tion

(P, ¥(x] =-i0"¥(x. ' (17)

This relation expresses (in infinitesimal
form) the translation invariance of the
theory.

To proceed further, it is convenient
to pass to the discrete notation in momen-
tum space. Consider a field ¥ with
mass m locked in a cube with edge L. For

10

the eigenvalues k3 of the 4-momentum
P™ m=0,1,23,0ne obtains

n

kG = 2nd kG- vn 2 Eh A eh P ,(18)

where n=m'n?n3), =123 and n? runs over
all non-negative integers. In momentum
space the relation (17) reads as follows

*

] = tkTa;, (19)

1 1

1+

(P ™a

[

where ai(a3) are the corresponding to ¥(x
creation and annihilation operators and
the index i replaces all discrete indices
(n spin, charge, etc.).

The commutation relations between the
creation and annihilation operators are
usually derived from the translation inva-
riance law in momentum space (19). We
call it the initial quantization equation
(IQE). To determine the commutation rela-
tions one has to specify one more point.
Up to now nothing was said about the order
of the creation and annihilation operators
that enter into P™. In the ordinary theory
it is usually accepted that the dynamical
variables are written in a normal-product
form and therefore for a fermi field this
give

P =S kifif;, (20)
1 -

where'f+kfi)are the Fermi creation (annihi-
lation) operators (1). One can easily
check that the initial quantization equation
(with aj = fﬁ ) is compatible with the
anticommutation relations (1). This 1is,
however, not the case for the parafermi

11



operators (2), apart from the case of
their Fermi representation. The parafermi
statistics cannot be derived from the
normal-product form of the dynamical va-
riables. In order to fulfil (19) Green
chose another ordering of the operators in
P™ and in particular for spinor fields we
wrote /V:

m

1 m + -
Pr=5 Tkilb;b;l. (21)

We see that the ordering of the opera-
tors in the 4-momentum is closely related
to the corresponding statistics. It is
natural to expect therefore that any other
generalization of the statistics may require
new expressions for P"™. In order to get
a feeling as to how one can modify P™ we
now proceed to derive the parafermi statis-
tics in such a way that later on it will
be possible to generalize the idea to other
cases.

We start with the expression (20). In
order to use a proper Lie algebraical langu-
age (finite-dimensional Lie algebras),
suppose that the sum in (10) is finite,

m +,. -

P - 3 k1t . < (22)

This is only an intermediate step. In the
final results we let n - «.

As we have already mentioned, the set
f{,«»f7, of Fermi creation and annihila-
tion operators (1) generates one particular
representation (we call it the Fermi repre-
sentation) of the algebra B .We put now
the question: can the expression (22) be
written in such a form that the initial

12

quantization equation (19) will hold for
the Fermi operators considered as generators
of B ,i.e., independently of the fact we
are staying in one particular representa-
tion of B, - the Fermi one. The Lie al-
gebraical reason why (19) does not hold for
the parafermi operators is clear. It is
due to the fact that the 4-momentum (22)
does not belong to B, since it contains
product of b; and b, which is not a Lie-
algebraical operation. Therefore the IQR,
considered as a commutation relation, is
not preserved for other representation of
B, , If however, the 4-momentum together
with the creation and annihilation opera-
tors can be embedded in a Lie algebra, so
that in the Fermi case P™ reduces to
(22), then the IQR (19) will hold for
any other representation of this algebra.
For this purpose we rewrite the 4-mo-
mentum (22) in the following identical
form

m‘ m - + -
P oSk (-12-If+,f h%if 1) (23)

Consider the Lie algebra generated from

S and !f7, 1. Since Ifhf 1 -1,

we obtain the algebra B, ,e1, where I is the
one-dimensional commutative center. Now
P"eB,el and therefore the commutation
relation (19) holds for any other represen-
tation. In other words, if we substitute in
(23) £* -b% and if},f7}-1, i.e., put

m m + - 1
P Skl b e 5, (24)

.where 1 is the generator of the center

of B,el, then the initial quantization

13



condition (19) will be fulfilled for any
representation of B  el.
The operator

Qm=—;—§i2k'?1 (25)

commutes with all creation and annihila-
tion operators and hence with all elements
of B ®I . Therefore it is a constant
within every irreducible representation
and in the particular case of parafermi
statistics the second term in (24) can be
omitted. Thus, we obtain the expression
(21) for P" postulated by Green from the
very beginning.

We shall now apply a similar approach
for the algebra A,of the unimodular group
- SL(+1D). The nontrivial part is to find an
analogue of+the Fermi operators, i.e.
operators a; that generate some represen-
tation of A, and fulfil the initial quan-
tization equation (19) with 4-momentum
written (in this particular representation)
in a normal-product form. Then we shall
apply the above procedure to enlarge the
class of admissible representation.

First we recall some properties of A
We consider A, as a subalgebra of the al-
gebra glin+1) of the general linear group
GL(n+1).The algebra gln+1) may be determined
as a linear envelope of the generators
ey, b =0,1,....,n, that satisfy the commuta-
tion relations

[e i ’ekflzgjkeif —5& ey i,j,k,£ =0,1,...,n. (26)

Let ¥ and X be the Cartan subalgebras of
A and gln+1), resp. Denote by env X the

14

linear envelope of an arbitrary set X.
In terms of the gn+1 generators we have:

glin + 1) = envie i |i,j =0,1,...,n},

A =envieii-ejj , eijl iZ4j=01,...,nl,

(z27)

H =envihi]hi=e.. , 1=20]1,..., n},

11

H =env{hi—h].lhi =e.., ,i=01,...,n}.

11

For a covariant basis in H we choose the
vectors (h,=e )

11

hgh s, b (28)
The algebra glin+1) is not semi-simple. Its

Cartan-Killing form is degenerate and .does
not determine a scalar product on

It is convenient to introduce a metric in

H with the relation

(h.h.) =2n+15 (29)
1 ) 1)

Restricted on H this metric coincides with
the Cartan-Killing form of A,
From (26) and (29) one obtains

h.e . I=thh' -h ’)eij VheH ,i4j=01,....n(30)

where hO%h!,.,h"is the contravariant (i.e.
dual to homl’"" ) basis in H.Hence the
generators eij,i£] _01,,nare the root vec-
tors of A,.The correspondence with their
roots is

15



e; »h' - hJ i£j=01..,n. (31)

In the basis (28) the generators

ey - 1< G>i),  ij= 0l.,n (32)
are the positive (negative) root vectors
of A . The simple roots are

ni=hi”—hi,i=1”mn. (33)
‘Therefore the F-basis (11) in this case
reads as

f e — % Ch . Ch. o i-ln (34)

i (” 7 ) i i—1 i
We are now ready to define the analogue of
the Fermi operators. Let E. i,j =0,1,
be (m+1)-square matrix with i on the 1nter—
section of i-th row and j-th column and
zero elsewhere. Clearly the mapping

ey » Ky, Li=01,.,n (35)
determines a representation of g+ 1)
and hence its restriction on A, gives
a representation of A '
The operators

i i0 i=Eg 1=12..m (36)

generate the algebra A, (in the above repre-
sentation) since
(A" AT1-E .,
i ij
(37)

+ -
[Ak’Ak]= Ekk—E00 ,ifj,i,i,k=1,..., n.

16

Moreover for the commutation relations
between A%,"”Ai and the operator
n

P =2k,A+iA. (38)

+ +
1= xkAT. (39)
The operators Ag ,Af satisfy the initial
quantization equatlon and can be consi-
dered as creation (£ =+) and annihilation
({=-) operators.

The commutation relation (39) does
not hold for other representations of A,
In order to extend the class of admissible
representation, we represent the 4-momen-
tum (38) like in the Fermi case, in the
form

P -3k ([A AT+ Eg ). (40)

Consider now the L1e algebra generated
from the operators Ai »A* and E,, . One
can easily show, 1t is the algebra gin+ 1=
=A_ ®1. Since P cglln+1),the initial quan-
tization equation (39) holds for any other
representation of glin1).Hence we may define
representation independent creation and

annihilation operators as follows
a =e_Lal - e, i=1.,n. (41)

In this case we have to postulate for P™
the expression

P =2kn-n([a+i,ai_]+e00). (42)

. 1
1

17



+
The operators a; are root vectors of A_.
The correspondence with their roots is

ateT (h°=h ), i=1.,n, (43)
and therefore the creation (annihilation)
operators are negative (positive) root
vectors. Since any other root h'-h’, i£j=1,...,n

hi-hJ =°e—hi)y-° —n')

is a sum of the roots of a; and a:,the
creation and annihilation operators generate
the algebra A, .

The commutation relations of A, can be
written in terms of a? only. From (26)
we obtain

+ - + + +
[[ai’aj ],ak]=5]”.ai +8ijak ,
(44)
+ —_— — -— -—
[[ai,aj],ak]=-—8kiaj—8ijak
[aT,af]=[a4—,a—.]:0.
i j i ]
Definition 1. The operatorSafﬁzljw..satis—

fying the commutation relation (44) are
called a-operators and the corresponding
quantization (statistics) unitary or A-
quantization (statistics).

We observe that the equal-frequency
operators commute with each other. This
property helps a lot in all calculations
with the a -operators.

18

4. FOCK SPACES FOR THE a-OPERATORS

We now proceed to study those represen-
tations of the a-creation and annihila-
tion operators that possess the main
features of the Fock space representations
in the ordinary quantum mechanics. We con-
tinue to consider a finite set of opera-
tors. The extension of the results to
infinite (including continuum) number of
a -operators will be evident.

Definition 2. Let af,“,af be a-creation
(6=+) and annihilation (£=-) operators.
The A, -module W is said to be a Fock
space of the algebra A, if it fulfils the
conditions:

(at)* =a, , i= 1,.., n. (45)

1

Here *

ration.

denotes hermitian conjugation ope-

2. Existence of vacuum. There exists

a vacuum vector |0>eW such that

a [0>=0, i=1,..n. (46)

5. Irreducibility. The representation
space W is spanned over all possible vec-
tors
a al vea {0>, meN_. 47)
i, i, i 0

By Nowe denote the set of all non-negative
integers. The Fock space of A, is called
also A, -module of Fock, Fock module of
the a -operators or simply Fock module.

19



Lemma 1. The hermiticity condition (45)
can be satisfied if and only if the A,-mo-
dule W is a direct sum of irreducible fi-
nite-dimensional modules.

Proof ‘
The generators of the compact form sun+1) '
of A, read in terms of the a-operators as

follows

+ —_
E.,. =ia.+a.)
0] j i
- +
roj»—dj—dj (48)
Ejk: ila?,a;] + ila:,a_j],

- + -
ij— [dj,ak]—|dk,aj|.

Evidently the generators are antiher-
mitian if and only if (45) holds.

As is known, the antihermitian represen-
tations of the compact forms of the classi-
cal algebras are completely reducible. The
irreducible components are finite-dimensio-
nal. This proves the sufficient part. The
necessity follows from the observation that
the metric in any irreducible sum) -module
can be introduced so that the generators
are antihermitian.

From the complete reducibility and the
irreducibility condition (definition 1)

we conclude. Q
Corollary 1. The Fock spaces are finite- \
dimensional irreducible A,-modules. '

In the remaining part of the paper by
Creation and annihilation operators we

20

always mean a-operators. Moreover we fix
the ordering of the basis of H to be (28).
Then the creation and annihilation opera-
tors a'},a] are negative and positive root
vectors. In this case the operators aypse.a
annihilate the highest weight vector XA

of the Fock space and hence xA is one of

the candidates for a vacuum state.

Lemma 2. Let W be a Fock space of A,
Up to a multiplicative constant the vacuum
state is unique and coincides with the
highest weight vector x5 of W.

Proof

First suppose the vacuum is a weight
vector x, #x,.Then the corresponding weights
are also different A#A. Moreover A>A
(i.e., the vector A-1\is positive). The
irreducibility condition says there exists
a polynomial P(a?n”a:) of the creation ope-
rators such that

+ +
xp=P,a )x,. (49)

Denote by «; the root of a?. From (49)
we have
A=A =3 ko
i=1 !
This is, however, impossible, since A-A>0
and 2kjw; <0. We conclude that the vacuum
cannot be a weight vector different from
X
' More generally, suppose [0>cW is a vacuum
state different from xA-An arbitrary vector
x €W and in particular [0> can be represen-
ted uniquely as a sum of weight vectors X\
with different weights Ay

kiC_NO.

21



m
0> = . < 14 j.
| jkakj sA AN A (50)
The vectors x, ,.. x) are linearly indepen-
o m

dent. The non-zero of the vectors

aj X\ »»aiX) are also linearly independent,
since they correspond to different weights.
Hence '

a, [0> =0 implies ai_x/\j:O,j=0,1,...,m. (51)
Let for definiteness A0>A1:>“.>A

The vector cannot be a vacuum state 1if
Ao # A since clearly there exists no poly-

nomial P@? ,..,a}) such that
xp=P@’ ,...,a..:)‘|“0>. (52)
Suppose|&>=xA+xA1+m+xAm. Then (52)
can be satisfi%g only when there exists
a monomial (a}) l..(ah' with the property
: +El + Zn
XA1=(al) n-(an) XA-

This is, however, impossible since for
£,#£0 a;x),#0 and this contradicts (51).

In the following theorem we prove one
convenient criterion for the A -module
to be a Fock space.

Theorem 1. The A -module W is a Fock
space if and only if it is an irreducible
finite-dimensional module such that

ai—aj+xA=0 i£j =1,...,n. (53)

The highest weight vector XA 1s a vacuum
of Ww.

22

Proof

Let W be a Fock space. Then it is fi-
nite-dimensional irreducible A, -module
(corollary 1) and the vacuum [0> = xp
(lemma 2). The operator la;,a’ ], i#j
is a root vector of A, . Its root hi - hi
cannot be represented as a linear combina-
tion of the roots -h°+h' of the creation

+ + X
operators a ,..a, . Hence there exists
no polynomial P(aj,..,a}) of aj,,at
such that

: + +
la ,a;]xAz Pla,...,a )xp #0.

Since aja’x,cW it has to be zero,
ai_afo=10, i £,

the proof of the sufficient part of the
theorem is based on the Poincare-Birkhoff-
Witt theorem /7:Given a Lie algebra A with
basis ep sepn.All ordered momentals
elle 2. eN constitute a basis of the
universal enveloping algebra U of A.

Let in the irreducible finite-dimensio-
nal A ,-module W the equality (53) holds.
Divide the basis elements of A, into

three groups
o 4 ..
1 = ¥ai,[aj,ak]]J<k;l,],kzl,...,niE{e_l,e_z,-n,e_p},

I =fa; ,[a;,a_kl,[ar_,a:][ i<kir#s;ijkrs=1,..,n} =

E{el seeey € q} N

III={a)klk =1,.e., 0},

where o,,.., o, is a basis in the Cartan
subalgebra H.Order the elements within
each group in an arbitrary way. From the
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irreducibility and the Poincare-Birkhoff-
Witt theorem it follows that W is linearly
spanned on all vectors

e_l]]... e_‘ppe]-l] e ej{q(ul;]... o):nx/\ . (54)
Since xpAis an eigenvector of the Cartan
subalgebra and the operators from 11
annihilate xp» the vector (54) is non-zero
only if j1=j2=”.:jq:0.Hence W 1s spanned
on all vectors

Pla,.
where P is an arbitrary polynomial of the
creation operators. This proves that w
is a Fock space with vacuum | 0> =X,

Now it remains to determine the irredu-
cible A_-modules satisfying the condition
(53). In order to solve this problem, we
consider first some questions from the
representation theory of A_. As we mentio-
ned, it is convenient to consider A as
a subalgebra of gln+1). This possibility is
based on the circumstance that the irredu-
cible gltn + 1) -modules are also A_-irredu-
cible. On the other hand, every irreducible
representation of A, in W can be continued
in infinitely many ways to an irreducible
representation of gln+1) in the same space.
For this purpose it is enough to define
the operator fo=hg+h;+..+h in W where -
hg,...h, 1s the covariant basis (28) in K.
Since f, commutes with glin+1), f 4 has to
be a constant in W,i.e.,

+
"’an)x/\ ’

f x =A_x

0 Mo Vxew

(55)
with Ay being an arbitrary number. Let
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o f be the F-basis (34) in X. Then

1 gee n

f

F={fy.f, et} (56)
defines a basis in the Cartan subalgebra
{ Cgltn+ 1), 3

The eigenvalues AgA;,....,A  of F on the
highest weight vector XA ©W characterize
W as an irreducible gl(n +1)-module. Let
X\ 00 Xy De a basis of weight vectors in
W. In view of (55) the A ,-weights Ay Ay
are naturally extended to linear func-
tionals on H from the requirement Ai(fgrAO.
Then for any weight vector x) Wwe have

th=)\(h)xA:(h,)\)xA he K. (57)
The numbers AgA..,A ° are co-ordinates
of the highest weight A in the basis

K =460,0 0,1 (58)

dual to F.We call K a canonical basis of
gln+1) and the co-ordinates [Ag,.., A ]
canonical co-ordinates of the glin+ 1) -module
W. The properties of the Weyl group we
shall often use read more simply in the
orthogonal contravariant basis h°hl,.., hn,
From the equality
. n .

A :E Aif’z.zo L.h'
we obté&% forlthe orthogonal co-ordinate
Lo.Ly,..., L, of the highest weight W the
following expressions
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1

LO = —n-+—1[A0 +nA 1+(n—1)/\2+...+1'/\nJ,

Ll LO_AI’

Lo=Lo-A;-Ay, (59)
Lo=Lg-A;-A,- -A

Since in the Agpmodule W A ,..,A,
are non-negative integers and Ag is an
arbitrary constant, it can be chosen such
that all orthogonal co-ordinates | DN DRSS B
are integers. Moreover

n

L,>L >L > > L (60)
We pass now to the main problem of this
section, classification of the Fock spaces.
Unless otherwise states, the roots and the
weights are represented by their orthogonal
co-ordinate in the_contravariant orthogonal
basis h%hl..,h® in K i.e.,

. n .

A= 0,0l ) = I 0 h . (61)

=0

0 1 n 5 i

Theorem 2. The irreducible A,-module
is a Fock space if and only if its highest
weight is A=(p,0,...,0);p is an arbitrary
positive integer *.

Proof

As we know (theorem 1), the Fock spaces
are those and only those irreducible A_ -
modules whose highest weight vectors X\

*The case p=0 corresponds to the trivial
one-dimensional representation.
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are annihilated by all operators a:a;’,

i#j=1,.,n 1l.e.,

-+

aiaij=0 iZj=1,.., n. (62)

Since ajx =0 and[a;,a§]=e . (62) can be

i

replaced by the requiremen
e XA" 0 12j=1,.., n. (63)

The generators e ;; are root vectors of A,
with roots (31), i.e.,

e e hi—hd | 4§ =1,u.,n.
For i<j ej; 1s positive root vector and
(63) holds from the definition of x,. It
remains to determine those A -modules with
highest weights

A :(L()?le""Ln) (64)

for which the sums
A+bhl =n', i<j=1,e,n (65)

are not weights.

We shall use the properties (14) and
(15) of the Weyl group S. According to (14)
if S,i_,j€8 and A =il 0l 0l ) ds
a weight, then S,i_,j-A is also a weight.
Using the scalar product (29) we have

i
Aoa o _2hhD

h'—h! (hiohin® —n)

i

S -h') = (g6)
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Thus, the Weyl group in this case reduces
to (all possible) permutations of the
orthogonal co-ordinates. For the highest
weight (64) we have- _
i j
S i, M= Wgnl e Ly L) - .
' i j

)
S .
:(n.,Li ”“,Lj,“.)+(Lj-Li).uL.“,o,—l,O,N"O,LO,.”OL

According to (15) all vectors
i j i J
(LO,...,Li,...,Lj,...,Ln)+k(O,...,0,—1,0,...,0,1,0,...,0) (67)
with ngng—Liare also weights. As we
know, for i<j Ling.Suppose L.,>L .. Then
k 1in (67) can be equal to one an

=A +h'—hl, <
is a weight. Hence the A ,-module W is not
a Fock space if in its orthogonal signature
A=@LgyL ,..,L)there exists L >L.for 0<i<j.
It remains to consider the modules with

A=(@LyL L), LyzL. (68)

Suppose for 0< i< j ,
- i ]

/\=A+hJ—hI=(L0,L,...,L,L—I,L,...,L,L+1,L...-,L)
is a weight. Then /\'=(L0,L+1,L—1,L,...,L)
is also a weight. This is, however, impos-
s%ble since A>A.Hence all A,-modules with
signatures (68) are Fock spaces.

We could have stopped the proof here
since the signatures

(L ,L,..,L)

v and (L -L,0,..., 0) (69)

describe one and the same Aj-module. This
could have been done if all information
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was carried by A ,i.e., if the dynamical
variables were functions of the genera-
tors of A, only. This is however not the
case. The 4-momentum (42) P"c A, although
P"cgn+1). Therefore physically the
representations (69) are distinguishable.

We shall determine the orthogonal co-
ordinates of A from the requirement for
the energy of the vacuum [0>-x, to be
zero. In terms of the orthogonal basis
(28)P ™ can be written as

P™- 3 k™ .. (70)

Since for A =(Lg.L,., L) hxp =Lxy, i=1,.,n
we require

n
P”0> =’).‘,]kTL|0> =0 m=1,2,3. (71)
i=
Here k9,..k% are analogs of the energy
spectrum of the one-particle states, k" - 0
(see (18)). Therefore (71) implies L -0.
Later on we shall see that h,, i=1..,n
is a number operator for particles in
a state i. This together with (71) also
gives L =0.
Consider the Fock space W_ with A=(p,0...,0).
Using the definition (41) of the a-opera-
tors from (62) we have

a:a;l0>::5ijpl0>. (72)

We obtain the same expression as in the
case of parastatistics of order p/B/.There-
fore we call p an order of the A-statis-
tics. We conclude that like in the para-
statistics all Fock spaces are 1labelled
with positive integers p, the order of the

statistics.
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The equation (72) together with the
commutation relations (44) of the a-opera-
tors determines completely the represen-
tation space and the representation of the
creation and annihilation operators of
order p. The A-statistics can be defined
by the relations (44). The representations
of the statistics can be obtained from
(72). In this case all calculations can
be done without using any Lie algebraical

properties of the a-operators. Clearly this

point of view is convenient for generali-
zation to the case of infinite and in par-
ticular to continuum number of operators.
The Lie algebraical structure however
helps a 1ot in all calculations. Therefore
we shall continue to consider a finite
number of pairs aj,..,a® of a-operators
and on a later stage we shall let n-~.
Let us consider some Lie-algebraical
properties of the Fock spaces. In the

A

n

an arbitrary weight A=, 0 ) can be
represented as
A=A+232 k.o, , k.ENO,
i 1 1 1
where

- i J
©,€% =th -h'[i>j =01 nl.

Since the sum of the first m co-ordinates,
m=12..n of an arbitrary negative root
w,;eX” is non-positive this is true also
for the vector X k. o, with k., non-
negative 1ntegers. Therefore for an arbit-
rary weight » we have

30+F]+...+Em§ Lo+tL +..+L m=01,...,n.

m

-module W with a highest weight A=(Lg..,L)

From this inequality and the circum-
stance that the weight system -is invariant
under permutations of the orthogonal co-
ordinates we conclude that the vector
A=yl ) with integer co-ordinates
is a weight if and only if

ig +Eil+...+Eim§L0+L1+...+Lm (73)
where ig#i;# .. ;éim=0,1,..t,n; m=0,1,..,n
Clearly (73) is equally for m=n.

Lemma 3. All weights of the A,-module
of Fock W, with order of the statlstlcs P
are 51mp1e. -

Proof

An arbitrary weight vector x, cWw
with weight A is generated from x, with
polynomials of the creation operators,

+ +
= P(al,..., an)xA. (74)

Therefore the weight A=(,0,,...0 ) of x,
can be represented as

AeA+ S k. (~h°+hD)  Kk.eEN.. (75)
i=1 i i 0
In terms of the co-ordinate the last rela-'
tion reads as

(N ol )—(p, ye 0)+(-—2k 1K

ol > k). (76)

g 1eees
Hence k;=f,, i=1,..,n and an arbitrary
weight A is represented uniquely in the
form (75). In terms of the weight vectors
this gives that P@aj,..,a?) in (74) 1is
homogeneous with respect “to every creation
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+
operator a;: ¢
+ + + i + + +
P(al,...,aai,...,an)=a P(al,...,ai,...,a ) .

m

Since the creation operators commute,

: 1 2

P(a;,...,a*):(ai) (@) ~ @) "

n ) 2 n
Therefore every vector x, with weight
A=l 0y 7)) is collinear to the vector
f f !
1+ 2
(a+]) (a;) (a:) " x

and the corresponding weight space is
one-dimensional

This lemma has no analogy in the para-
statistlcs For instance the states |y pHo>
and b /10 ~i#jhave one and the same '
weight but in general are linearly inde-
pendent.

In the following lemma we prove one
important property of the A-statistics.

Lemma 4. Given A, -module of Fock W
with order of the statistics p.The vector

+?l El P2 +pn

/-
@) @y) T..@) "o~ - (76)

is non-zero if and only if

(C o+l 4 vl <p. (77)

In particular in the Fock space W, there
can be no more than p particles.

Proof

In the previous lemma we saw that the
vector (76) has a weight

A= (p =m0 el ), (78)
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If ¢,+..+¢_ <p, then clearly (73) holds
because -Lg+..+L =p,m=0,1,...,n. Therefore A
is a weight. There should exists at least
one weight vector with weight A. Since the
multiplicity of A is one, this is the
vector (76) and hence this vector is not
zero.

If ¢p+..+f >p, the weight (78) does not
fulfil the inequality (73) for m=n-1
and PIJFI,?‘I_Ez N T and the
corresponding weight vector (76) 1is zero.

From (76) and (78) we conclude

h.(a,*)‘... 570> =

1
f +vn (79)
=f , (a+l) (an) | 0> i=1,.., n.
The operator h; is a number operator of
the particles in the state i. The number

operator N 1is

N=N; +Ny+...+N_. (80)
We obtain ,
+ Fl +?n +Pl + ?n
N(a ;) “.t@a) " [0>= gl Ha ) ...ta ) [0>(81)

4. MATRIX ELEMENTS OF THE CREATION AND
ANNIHILATION OPERATORS

The numbers f;,...,¢, together with the
order of the A-statistics p determine
uniquely the state (76). We introduce the
notation

+ g1 + gu
lp;fl,fz,...,ﬂn>=(al) eefa ) 10>, (82)
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The set of all vectors (82) constitute

a basis of weight vectors in the Fock space
. The correspondence between the weight

vectors and the weights written with their

orthogonal co-ordinates reads as

o A T A (p-zle il ) (83)
i=

One has to remember that the notation
Ip;ly 5ol > is defined only for £, +..+{ <bp.

We now proceed to calculate the matrix
elements of n palrs of greatlon and annihi-
lation operators al «,a, 1n the A -
module of Fock W, w1th order of statis-
tics p .

We can write immediately

n
h 0 el > = - 7. sl e, o>
in 1 n (p i=21 Dps gy 0 (84)

hi|p;ﬂ1 ,...,En>=ﬂi|p;ﬂl,..., En>, i=1,...,n.

These equalities follow from the observa-
tion that the orthogonal co-ordinates of
the weight (83) are eigenvalues of the
operators (28) on the weight vector (82).
Since

1=h_ -h

[a”.a 0 1

we have
[ai_,a?]lp;ﬂl;...,ﬂn>=(p-L- E NPy € >, (85)
where L =0+, +..+0

First we calculate the matrix element
of al—.
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¢ i
a.—l‘p;gl,.“’en\):[a—l’(aﬁ) ! ) n ]!0) =
i P, _ Lt ¢
la] @D 'Hah fec@h Mjos @) Tyl el " (05,
(86)

The second term in the last equality
vanishe%. Indeed the vector

-ty 2 +, n

aj@) “..@hH o>
would have had a weight

(p—-EF+1—IEE..2)

l—

which is 1mp0551b1e since ¢ ot lotlgtet

=p+1>p.
Using (84), for the first term we
obtain

l -1 ST R L

1_2 (a ) [al,a ](a ) (ay) ...(an} 10> =
{1 £~ e, e

=3 (p-L-f, +2i+2-(a}) (af) “...ah "lo>.
i=0 2 n

This gives

1|p,[’1, E >= E(p~2f+1)]p,ﬂ 22,...,Qn>.
The generallzatlon for a is evident:
a, Ip:ﬂl,...,ﬂi,...,ﬂn>=li(p —ki?k+1)]p; ZI""’gi—-l""’gn>'
(87)
Moreover
8 1D5 s €y erns > = (Dl oo € 41 e >, (88)
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The metric in W, is defined in a complete

analogy with the scalar product in the

Fock space of Bose (or Fermi) particles.
Postulate ’
a) <0j0>=1

b) <0la’ = 0, i:l,...,ng

¢) ) @) ™0, @h !t 0>) =

1

=\ ~"n P’l +e
=<0[@) @) "@h ta@h o>, (89)

The vectors Ipslses > constitute an
orthogonal basis in W,. To show this,
suppose that in (89) some m;#¢, and let

m;>f;.Then the vector 0

@) @H @) @) M[0> = 0
i 1 i n
since otherwise there has to exist
a weight
m
(p—jElPi+mi,[’l,...,[’i_l,—(mi—[’i), Oip1semeenly)
which 1s impossible. For m;<f, the same
result can be obtained from the hermitian
conjugate of (89). If m,=¢,, i=1,.,n
we obtain

n
(1T N ST AN S S| I TN € 16)
(p-L) i=l
where L =0 +..+0 .
As an orthogonal basis in W, one can
accept the vectors

+ f] + E’n
(a)) ...(a_ )
- 1
050 penny )=y R2E 0>, (91)
p: Vet £
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In this basis we have for the matrix ele-
ments

+ n
a [p;ﬂl,...,fn) = \/(Ei +D(p —jfll Ej)[p;fl sl 4 1,...,€n),(92)

- n
8, P50 el ) = VE, (p 0 MRl ety 1,000 )4(93)

The matrix elements of the a-operators
do not. depend on n. Therefore the results
can be extended in an evident way to the
case of infinite number of operators.

Finally, we point out one interesting
property of the A-statistics. Introduce
the operators

At i,

= ==, 1=1,..., n

T (94)
and consider the matrix elements of these
operators on states with number of par-
ticles much less than p,

21+22+...+2n<<p . (95)

From (92-93) we obtain

AID5L s ) ~VE D5 €yl = 1ol )
(96)

n

+ . ~ .
AL e €)= VE T TID € €4 L)

In a first approximation

+

exact commuta-
tors

]:::aii if 2]+...+En<<p. (97)

[A’;,A .]=[A—i,A_l.] =0

(A, A

— ot
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Moreover if (95) holds then
<A§f1 .t e
Pl s ) = — [0> . (98)
VI T
We see that if the A-statistics allows
a large number of particles p, then the
commutation relations of the operators A;
on states with ¢;+..+f <<p coincide in
a first approximation w1th the Bose crea-
tion and annihilation operators. In the
limit p- ~ the operators A— reduce to
Bose operators.
This property has also an interesting
Lie-algebraical consequence. It shows
that the limit of certain representations
(the Fock representations) of the simple
algebra A, leads to a representation of
the solvable Lie algebra of Bose operators.
We have considered the statistics cor-
responding to the algebra of the unimodular
group. In a similar way one can introduce
a concept of C-and D-statistics’/% or of
statistics that correspond to other semi-
simple Lie lagebras/%.

+
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