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In our paper/I/ already published in 1939 
we considered the question about the appea
rance of a stochastic process in a dynamical 
system, which is submitted to the influence 
of a n1arge" system. 

For classical system this question was 
studied on the basis of the Liouville equa
tion for the probability distribution in the 
phase space, and for quantum mechanical sys
tems on the basis of the analogous equation 
for the von Neumann's statistical operators. 

In the mentioned paper a method was elabo
rated which permits us to obtain, in the 
first approximation, the Fokker-Planck equa
tions. 

This method of course could not pretend 
to be on adequate mathematical foundation, 
and hence in the following paper 121 a par
ticular "model" example was considered in 
which the dynamical equations are of an 
exactly integrable type, what has made it 
possible to perform the analysis of the 
previously introduced approximation, in 
this case, on the fully rigorous mathemati
cal basis. 

For quantum.mechanical systems the analo
gous results were also obtained 131. 

In my lectures, that were delivered at 
the Rockefeller University in autumn 1974, 
I presented a slightly modified version of 
the method 0£ works 117 and pointed to its 
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connection with the theory of two-time Green 
functions. 

The present article, which I earlier 
assumed to publish on the basis of these 
lectures, has been written now after getting 
acquainted with a number of important works 
on the theory of interactions of one par
ticle with a large system, that has been deve
loping during the last decade. 

Therefore, I have found it suitable to 
introduce some essential changes in compa
rison with the briginal text of .the mentio-
ned lectures. · 

1. 

Let us consider a· "small system" S, for 
example, consisting of a single particle 
weakly interacting with a "large systei;n" I. 

We· shall first treat this case in the 
framework of the classical m~chanics. 

Following the usual procedure in the clas
sical statistical mechanics, we introduce 
a probability distribution function in the 
phase space of the total system s + I : 

1J · = 1J ( s , I ) = ~ ( O 
5 

, 0 ~) , 
t t t k 

(1.1) 

where !1 5 , O I denote the phase points · of S 
and I in the 0 phase spaces coriesporiding, 
respectively, to these systems. · ·· 

We shall consider now the situation, 
when at the initial moment of time: t=O 
the system I finds its~lf in.th~ staie of 
statistical equilibrium·and at this moment 
the interaction between Sand I is switched 
on. 
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We thus suppose ·that 

j)o (S, I ),.fo(S)g}(I), 

where 11 I(nI) 
I ---

9)(}:) =~ e/I) = z- e 8 

HI(O~;) 
Z = Jdn ~e -.... 0 

(1. 2) 

represents the equilibrium distribution in 
the phase space of the system I. 

Here HI =H i<n iHs the energy of the sys
tem:£. 

As is well-known, the ~volution of the 
probability distribution ~ 1 is determined by 
the Liouville equation, which we shall write 
in the form: 

a j) t m 
at = JI »1 (1. 3) 

the normalization condition for ~
1 

being; 
J1)

1 
dQ 5 dOI= 1. 

The Liouville oper;itor JI acting on functions 
of (!1 5 ,0I) can be defined by means of the 
Poisson brackets: 

JI j) 1= [H, 1\], (1.4) 

where. H is the total Hamiltonian of s +I. 
We wish to point out that only the cases 

when JI does not depend explicitly upon time 
t will be considered. 

Usually the total Hamiltonian H is rep
resented by the sum: 

H =H 5° +H.~. +H. 
. k . Int 
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of proper Hamiltonian of Sand 2, supplied 
by a term describing the interaction bet
weens and 2. Correspondingly, the Liouville 
operator is taken in the form: 

JI=,lls+2 =JI; +JI2 + Jiint • (1.5) 

The interaction part Jlint of JI will be trea
ted in what follows as a weak perturbation 
as though it were proportional to a small 
parameter. 

Let us indicate now some examples of S, 
2 ' ./1 • 

Consider the case when Sis a single par-
ticle and 2 is a .system consisting of N 
identical particles so that: · 

n S = ( ?O 3 0 ) ; {12 ,;, (i\ 'y'I ; ... r N 'y' N ) ' (I. 6) 

where the vectors r and; denote the po
sition and velocity of the corresponding 
particles. 

As usual, all these particles are sup
posed to be inside ·a very 1large cube with 
a macroscopic volume V,and the ordinary 
cyclic boundary conditions are-imposed. 

We may take the following expressions 
for .II O 

, JI. : s Int 

JI 0 

s 
➔ a 

z-VO-a➔-, 
ro 

(1. 7) 

(<I>) a<1>(ro-r) 1 ·a . 1 iJ ) 
JI =JI - 2 J ( - - - -- - (1' 8) 

int int-(l<·<N) ai' ma~· ·Maf • • 
_J - · 0 .0 J 

where <l>(r) is a radial symmetric potential 
function proportional to a small paramet.er, 
m is the mass of the S pa~ticle.and M 
denqtes the mass of a particle of 2. 

6-:. 

We shall consider also the important 
special case when the interaction between 
the·s particle and the particle of 2 can 
be defined as the interaction between the 
corresponding hard spheres. 

Formally, the hard sphere interaction 
can be characterized by the special choice 
of <l>(r)·: 

<l>(r) = + oo 

<l>(r) ... O, 

if r < a , 

if r ~ a, 

where·~·· is the sum of radii ofs and 

(1. 9) 

a particle of I or what is the same, "a ,, 
represents the distance between the centres 
of these particles at the moment of col
lision. 

For such a potential function the expres
sion (1.8) is evidently singular and not 
convenient for use. 

It was found 141,however, that the dyna
mics of hard sphere interaction can be 
correctly described by the "integrated" 
Liouville operaior,of the form: 
/ JI coll. 

int. "" I T ( . 
where: O~j~N) O,J), 

(1; 10) 

T(O,l)za2 ➔ f➔ (v l.;)lo(r➔-1 -aa')x 
v ,a>O 0, 0 I 
0,1 , -·➔ ➔ ➔ ➔ 

(1.11) 

xB (a)-o(r 0-r 1+aa)lda. 
Vo, VJ 

Here v01 .. v0 -v 1 ,; is the unit vector, 
B. 0 ,~(a~ is the operator acting on func
tions F (v0 , v 1 ) and replacing their argu
ments by: 

➔ ➔ * ➔ 2M ➔ ➔ ➔) 
vo ➔ Vo= vo- M+m a(vo,1. a' 
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➔ ➔ ➔ 2M ➔ ➔ ➔ 
v ➔ .V*=V +--a(v .a). 

I I I M+m 0,1 (1 .12) 

The possibility of replacing (1.8) by the 
"integrated" opera tor (1.10) is due enti
rely to the instantaneous duration of hard 
sphere collisions in the classical mechanics. 

So, it should be noted that in analogous 
situations in quantum mechanics the replace
ment of the Poisson brackets: 

[Hint'g)] 

by a collision type operator acting on g) 
may be permitted only as an approximation 
in the cases when the effective time of 
collision (which is here essentially posi
tive) could be neglected. On the contrary, 
we make no approximation in the classical 
mechariics when we use n:~ instead of 
(1. 8), but, 'of course, the unphysical over
lapping configurations must be excluded so 
that :D must be equal to zero for such con
figurations. 

We may also consider the case when, in 
addition to a hard core interaction, we 
have also the regular pair (O,j) interaction 
described by a smooth function <l>(r) , pro
portional to a small parameter, defined for 
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r ~ a and which we formally continue for 
r< a by putting 

ll>'(r)=O for r < a. 

In this case: 
coll (<I>) 

nint = n int + n int (1 .13) 

. · coll 
Let us notice now that in order that nint 
could be treated as a "small perturbation" 
we must suppose that the corresponding 
mean free path 1 

~ N a2 

'V 
is very large with respect to a: 

~a
3 «1. (1 .14) 

we:wish to stress here that this con
dition (1.14) does not imply that the inter
action between the particles of I is small. 

Consider, for example, the model in which 
S represents a neutron interacting only 
with the nuclei of the I particles (these · 
nuclei being also represented as hard 
spheres) and the system I is a van der Waals 
fluid consisting of hard spheres whose dia
meter aI is by many orders larger than the 
effective diameter of their nuclei. 

In this model 
• aI » a. 

Of course, the rea1 problem of the diffu~ 
sion of a neutron in a fluid must be treated 
on the basis of quantum mechanics. 

But in some cases it can also be treated 
in the quasi-classical appro~imation. Then 
we need only to replace the T(O, j) ope.ra tor 
from (1.11) by a similar collision operator 
calculated by solving the quantum mechanical 
two-body problem. It has a very simple form 
in the case when only s-scattering is to 
be taken into account. 

Finally, we wish to point out that be
cause all I particles are identical, we • 
must take as nI a Liouvill~ operator sym-
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metric with respect to phases of these par
ticles. 

The interaction part Jiint (1.13) being 
symmetric in this sense, we see that the 
total Liouville operator JI is also symmet
ric in this sense. 

By noting that the initial function ~o 
given by (1.2) is symmetric, we find that 
~t is a symmetric function of (t1,-;1); ... {rN,vN). 

Let us return to the general equation 
(1.3) for the evolution of the probability 
distribution ~1 in the phase space. 

It will be convenient to introduce the 
following notation: 

( 'U) ,.J 'U dO ; s s {1JL~: ,-J'lJdQ}:, 
(1.15) 

( 'lJ \+I z I 'lJ dos do I. 

Consider now a dynamical variable A(S) which 
is related only to the system s·: 

A(S) z A(O s ). 

Its average value at the moment t will be: 

<A(S)> .. (A(S) ~ (S, I)) s 'C' 
t t +"' 

which yields: 

<A(S){ ,.,(A(S)f t (S)) s =f A(ns )f t(ns) dO s, 

where 

f (S) =( ~ (S , I)) 'C' . 
t t "' 

(1 .16) 

(1 .17) 

We thus see that the reduced distribution 
f 1 (S) represents the probability density 
in .the phase space of S at the moment t. 

10 

It is clear also that in order to evaluate 
the average value of the dynamical variab
les A(S) only the reduced probability dis
tribution ft(S) is needed and not the comp
lete distribution ~t (S, I). 

Proceed at present to outline a method 
for obtaining the approximate equation· 
for ft (S) in a closed form. 

Our starting point is the Liouville 
equation (1.3) written as follows 

a ~t = < JI o + JI 'C' + JI . > ~ 
at s "' mt t 

(1.18) 

with the initial condition (1.2). 
Denote 

~t -ftj)(I ),.~t 

and remark that because of (1.17): 

(~t)I =0. 

(1.19) 

(I. 20) 

By integrating (1.18) 
that identicall.y 

over fl:r and observing 

-
(JII g) ) I"" 0 

# 

we get 
af 1 -a- zlJI 0 +(JI ~(I))'C'lf +(JI. ~ )'C'. 

t S int k t Ill t t k 
(1.21) 

The relations (1.18), (1.19), (1.21) yield: 

a~t .. a ~t - ~ 9:) <I> z: 

at at at 

"' ( JI o + JI 'C' + JI . ) f ~ (I ) + ( JI os + JI 'C' +JI. t ) ~ t -
S "- mt t k Ill 
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-l(JI; + ( Jiint ~(I))I)ft +(Jii:-At)Il~(I). 

By definition g)(I),, is the equilibrium dis
tribution with respect to JII: 

JII g) (I)= 0 

and therefore: 

JI S ft (S) g) ( I ) = ft (S) JII g) ( I) ,. O. 

Let us introduce the notation: 

Jis ""JI~ + ( Jiint g)(I))I 

(1. 22) 

r,.,JI_ -(JI. ~(I))~ 
Int Int .:. 

and remark 

JIS +r ,..JI~ +Jiint 

(rAt)I ... (JiintAt)I -(JI int ~(I))I(At)I".' 

,,,(JI. A)~. 
Int t ,:, 

We then obtain the following :_quation for At: 

aA ·. , ·--
at t = ( JIS +JI I ) At+ r At - ( r At )i ~(I) + 

(1. 23) 

+ rft ~(I) 

and the equation (1.21) can be rewritten 
in the form: 

::t ,.,JISft +(Jilnt A/£· .(1.24) 

12 
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The initial condition (1.2) yields: 

At"" 0 for t ,,, 0. (1. 2 5) 

When we consider the equation (1.23) with 
the initial condition (1.25), from the 
intuitive point of view it seems natural 
to admit that A1 is, roughly speaking, 
proportional to the strength of the inter
action term r . 

Therefore in this intuitive and somewhat 
naive approach the term in (1.23): 

r At - (f At) I '.D( I) 

should be treated as the term of the "second 
order of smallness". 

By retaining in the exact equation (1.23) 
only the main term in interaction, we ob
tain the approximate equation: 

a At m * at = ( JI s + JI I) A t + r ft (S) .v ( I ) ( 1. 2 3) 

evidently with· the same initial condition 
(1.25), which cdn formally be solved: 

A =j e<Jis+Jii><t- r) rfr(S)'.D(I)dr. 
t 0 

By substituting this expression into (1.24) 
we get: 

af t 
-!. .. JI f +f at s t 

0 or 

< JI s +JI I Ht-r) 
( JI . e r '.D ( I})~f d r Int ,:, T 

~ -JI f + at st 

t <Jis+JIIHt-r> 

+f(JI. e ![JI. -(JI.tg)(I})]Sl(I}l)~fdr. 
0 mt Int m .:. r 

(1. 26) 
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We thus have obtained an approximate non 
Markoffian kinetic equation for the reduced 
distribution f 1 (S) in the closed form -
in the sense that it does not depend upon 
complete distribution for the total sys
tem S +I. 

This equation was established in the 
framework of the classical mechanics. To 
make it valid also in the quantum mechani
cal treatment of the dynamical system S+I, 
only some obvious changes are needed. 

First let us represent von Neumann's 
statistical operator in the matrix form: 

gJ t = :D t (XS ,XS ; X I, Xi>, (1. 27) 

where X s , XI are the complete sets of va
lues of the commuting variables characte
rizing respectively the states of the dy
namical systems S and I. X8· , Xf are the 
sets of values of the same variables. 

The Liouville operators JI , JI~ , JII , 
Jilnt are to be regarded as operators acting 
on the expressions of the type (1.27) con
sidered as the.classical functions of va
riables Xs , Xs ; XI, Xf.. 

These JI -operators may be defined by 
means of the quantum mechanical Poisson 
brackets: 

[H, :D],. JI9) 

Further, the notation (1.15) must be 
trivially transformed as follows: 

14 ,-; 

( 'll ) s = Sp 'll ... J'll ( X s , X s ; X I , X I ) d X s 
(S) 

ii 

- -
( 'll ) 

2 
= Sp 'll "" f 'll ( X 8 , X ~ ; X 2 , X _2) d X2 

<I> 
( .'ll ) =Sp .'lJ "' f 'll ( X , X ; X ", X " ) d X dX " . 

s+I (S+I) s s .:.. .:.. s .:.. 

In particular: 
f (S) = f (X s , X 5' ) = S_p :D 

t t (:l') t 

In usual situations one can take for Xs , 
X 2 the positions r and the spins of all 
particles concerned or, alternatively, their 
momenta P and spins. 

The integration over X 5 or X2 is to be 
understood as the integration over all con
tinuous components of X and the summation 
over all their discrete components. 

We may now literally repeat our reaso
ning, starting from the quantum mechanical 
Liouville equation, and obtain the appro
ximate equation for the reduced statistical 
operator £

1 
(S) in the same form as (1. 26). 

It can easily be seen that the method 
outlined here is a slightly modernized ver
sion of the method elaborated in our first 
paper 111 and also further developed by 
A. V. Shelest /SI. 

2 • 

We shall now proceed to consider the 
kinetic equation (1.26) for some specific 
examples of the dynamical systems S, I within 
the framework of the classical mechanics. 

We first take the example mentioned at 
§ 1 when (n 5 , n 2 ), JI5 , Jlint are represen
ted by formulae (1.6), (1. 7), (1.8). 

Our attention will be confined here to 
the case when the statistical equilibrium 
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of the system I alone described by the Gibbs 
distribution ~(I)corresponds to a spatially 
homogeneous state. 

Thus, the situation where the system I 
in the statistical equilibrium represents 
a crystal is to be excluded. 

We further suppose that the interaction 
potential function, proportional to a small 
parameter, is regular. 

The following Fourier representation: 
➔➔ 

1 i k r 
cl>(r)= - I e v(k) 

V (k) 
(2 .1) 

will be used, where: 
➔➔ 

- i k r 
v(k),.Je ct>(r)d?. (2. 2) 

The summation in (2.1) runs over the 
usual quasi-discrete spectrum of wave num
bers.( corresponding to the volume V: 

k = ( 2rr~ 2_rrn 2 2rrn 3 ) 
L ' L ' L 3 

0 1 , 0 2 ,n3 being integers and L =V. 
In view of the radial symmetry of ct>(r) 

the Fourier transform v(k) is a real func
tion invariant with respect to the reflec
tion: 

V (k) =- V * (k ) = V ( -k). (2. 3) 

Rewrite our kinetic equation in the form: 
aft t 
--,,,,JI

5
f +f K(t-r)f dr, a C t O r (2. 4) 

( Jis +JI-}T 
K(T)=(JI. t e I [JI. t - (JI. ~(I)) ]~(I)) . (2. 5) 

In 1n mt 2 2 
. 

16: 

To investigate this equation, it will be 
convenient to establish a useful identity 
concerning the expressions of the type: 

( JI . F (S , I )) 'C' • 
int ,:. 

We have, in virtue of the definition (1.8): 

➔ ➔ 

(JI. F(S I)) = I ( act>(ro -r.) , _!_ _a_F(S I)) 
mt ' I <i> at m av ' I 

0 0 

-Il..c ac1>c~-1i> 
<i>M ato 

a ·p-F(S, I)) 2 . 
vi 

But the second term in the right-hand side 
of this relation is identically zero because 
it contains 

-t- F (S, I) 
av j 

integrated over all the velocity space ofv .. 
Therefore we obtain: 1 

1 a act> <r o-r. > 
(Jiinl(S,I))I,,_-m-... ~( ➔ 1 F(S,I))'C'. (2.6) 

avo <i> aro ,:. 
,I 

Let us apply this identity to the case, when 
we take: 

F ( S, I ) .., ~ ( I ). 

The substitution of the Fourier representa
tion (2.1) in (2.6) yields: ➔ __ .,,.. ___ _ 

l l ➔ ikr'0 -ikr. 
(J\nt~I))2 =- -~ ·'VI ike v(k)(I e 

1 ~ (I))'C'. (2. 7) 
mav

0 
(k) (j) ..:.. 

Remark now that because of the spatially 
homogeneous character of the statistical 
equilibrium of the system I described by the 
Gibbs distribution ~(I) the expressi~ns: 
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➔➔ 

-ik r. . . 
_(e l gJ (!, ))!, 

must be invariant with respect to arbitrary 
space translations: 

➔ ➔ ➔ 

r. ➔ r. + r . 
Hente 1 

-r+ ➔ ➔➔--➔➔ 
-1u.. . -ik r -i k r. . 

( e 
I 

g}(!,))!, "'e (e 1 9)(!,)) !,· 

As~ is an arbitrary space vector, we see: 

(e -it~ 9)(!.)) !. .. o if k ;, o 
and in virtue of (2.7) 

(JI int 9) (!.))!. = 0. (2. 8) 

Therefore from (1.22) it follows 

Jls=Jl; · (2.9) 

Let us further apply the identity (2.6) to 
expression {2.5). 

By taking account of (2. 8), (2. 9) we 
get: 

1 a ➔ 
K(T)"'m -:.•Q(T), (2.10) 

avo 

➔ ➔ (JIO JI 'C'\ ➔ ➔ 
➔ a<1>(r -r.) s + uT a<I>( r -r- ) 
Q(T) -~ ( ➔o l )e o 11 x 

<1,11> aro at. 
L a v, 

X ( m -::;- + -t )g} (!_))!, • 
av 0 

11 

(2.11) 

Here the fundamental property of 1) ( I)·: 
➔ 

1 a V• 
- - -- ~ (I) ... J ~ (I) 

M av e 
j 

(2.12) 

also was used. 
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The substitution of (2.1) into (2.11) 
yields: 

Q(T)=--.-\I ;_ kv(k)v(k/&(k,k 1), (2.13) 
V (k,k1H1 ,1

1
) 

where: 

➔➔ ➔➔ (JlO+JI ) ,+ ➔ ,.+ ➔ 
. ➔ ➔ ikro -ikrj S IT iK1ro -iK1ri1 ➔ 
& (k,k 1),., ( e e e e e k 

I 
x 

➔ 

1 a V' 
x < m ~ + i > 9) <I >>I · a v0 . 

But ~(I) is invariant with respect to the 
translations: 

➔ ➔ ➔ • 
ri ➔ ri +r ; J ,.,1, ... N, 

where r is an arbitrary space vector. 
Therefore ➔ ➔ ➔ 
➔➔ -i(k+k1)r ➔➔ 

& (k, k 1),., e & (k,k 
1 

) 

from which it follows: 
➔ ➔ ➔ ➔ 

&(k,k1) .. o• ~ if k+k
1

,'0. 

We thus see that in the sum (2.13) only 
the terms with k~ =- k➔ ought to be retained. 

We further remark that JI 8 commutes with 
JII,rj and JlI commutes with¼. 

Hence, expression (2.13) may be rewrit
ten in the form: 

➔➔ 

➔ 1 ➔ ikr 
Q(T),.. - I k v 2 (k) e o 

V2 (k) 

➔➔ 

JIS T -i k ro 
e e x (2.14) 

-f,t JIIT ik r. ➔ 1 a I ➔ 
x( I e 

I 
e I e I k (- ➔-+-v. )9)(I))I. 

(j) (j) m a V 0 J 
0 
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By considering the movements in the isolated 
system I corresponding to the Liouville 
opera tor JI I we get 

➔➔ ➔➔ 

JI T ikr- ➔ ➔ ikr. (-T) ➔ ➔ 
e I Ie 1 (kv.)"" Ie ,J (kv.(-T)),,, 

(j) J (j) J 

➔➔ ➔➔ JI T ikr. (-T) d ➔ d ikr. (-T) d I 
"' - I e 1 - (kr.(-T)),,, i-r,;:-I e l =i,--e x 

(j) ,,.. ➔ dT l aT (j) uT 
.._. ikr. 

X kC J 
(j) 

from which it follows, in view of (2.14): 
➔ ikr➔ JIO · ➔ ➔ 
Q(T)_,_l_Ikv2(k)e oe STe-1krox 

'V2 (k) 

1 ,.. a i auk (T) 
x I Uk(T)-(k. -)+0 - ---1 

m ay 
O 

aT ' 

where: 
➔➔ ➔➔ 

-ikr. JIIT ikr. 
Uk(T)=( I e 1 e I e 1 ~(I)).,_. "" 

(j) (j) k 

-ikr➔ JIIT &r'j 
,.,N( e I e I e 

(j) 
~(I))I =NRk (T) 

-i"'? 
Rk (T) = ( e 1 JI ➔➔ 

IT ikr. 
e I e 1 

(j) 
~(I))I . 

(2.15) 

(2.16) 

Introduce the average particle density: 
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fl=,, ]i_ 
V (2.17) 

and rewrite expression (2.15) with the help 
Of (2 .16): . ➔➔ JlO . ➔➔ 

➔ l ➔ 2 1kro ST -1kr0 
Q (T) = n -v ~ k v (k) e e e x ( ) 

(l) 2.18 
1 ➔ a i aak(T) · 

x~mRk(T)(k av ) + 0 aT I. 
0 

In this notation our kinetic equation (2.5), 
(2.10) takes the form: 

aft(r~,vo) ➔ a ➔ ➔ 
O t "' - VO a r➔O f i< r 0' V 0) + ( 2 • 19) 

I a t ➔ ➔ 
+ - --:;- f Q ( t-r) f ( r

0 
, v

0
) dr . 

ffi av O T 
0 

Consider the Fourier representation: 
➔ 

➔ ➔ l ·if~ 
ft(r0 ,v0 ),,,V-Ie ff(t,v

0
) (2.20) 

(f) 

and remark: 
➔➔ 

ikr0 e 
Jio ➔ ii ➔ s T -i(k+ L ho 

e e 
➔➔ ➔ ➔ ➔ 

-ifr 0 i(k+f)vT 
,. e e O · 

Then it is easy to see that equation (2.19) 
leads to the indi1idual equations for each 
component f e(t, v 

O 
)·: 

➔ 

a f e< t, v O ) ➔ ➔ ➔ 
---=i(f. v

0
)f e(t ,v

0 
)+ 

where 

at .. . 

I a 1 ➔ ➔ 
+ - ~ ( Q f ( t -r) f e( r , v

0 
) d r , 

m av tJ 
0 

(2.21) 

. Hi'+ f>~oT 1 ➔ a i aak(T) 
Q1T)=n.1.Ikv

2
(k)e !Rk(T)mkav+"if aT 1(2.Z-2) f . V(~ o · 
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Or, performing the usual limiting process 
of the statistical mechanics: 

➔ ➔ 

➔ n ➔ i(k + f )'; T 
Q l:T)'"' -

3 
f k v 2 (k) e O x 

(2 rr) ( 2 ._ 2 3) 

xi R (T).L k ~ + i. aRk(T) }dk. 
k m av O 0 aT 

Equation (2.21) is convenient to make use 
of the Laplace transform: 

OO -z t ➔ ➔ 
/ e f f(t,v 0 )dt=f e)v

0
) 

(2.24) 

z .. £ - iw , Re z = £ > 0. 

By performing the Laplace transform in both 
hand sides of equation (2.21) we get: 

zfn (vo)=i(f. v)fo (v )+ 
L,Z O L,Z 0 

1 a 00 ➔ . .z T ➔ ( 2 • 2 5) 
+in--::;- J Qp(T)e dTf II (vo)+f,,(0,vo) a VO O t,z L 

oo ➔ -zT ➔ 2 
J QrCT) e d T == 7 J k v (k) x 
0 (2 77) 

➔ ➔ 

oo [i(k+f)v'0-z]T 

xi JRk(T)e dT}1-(k-a-)dk + 
0 m a ➔ 

VO 

(2.26) 

➔ ➔ ➔ 

+ n Jkv2(k)lLFe[i(k+f)vo-z1T aRk(T) ➔ 
(2rr)3 0 o aT dT} dk. 

But_ 00 [i o~\ e\;
0 

-z] T 
!._ f e 
0 0 

aRk(T) dT .. _ L Rk (0) + 
aT O 

22 

• ➔ ➔ ➔ 

➔ oo [i(k+fh0 -z]T 
+1-[(k+f)v

0
+izJJRk(T)e dT 

0 o 

and on the other hand, from (2.16): 

Rk(0) .. .!_ ( I e -ik 'J I e ik-;j ~( I))~ 
N (j) (j) ,:,, 

from which it follows: 
Rk (0) = R.k (0) . . 

As the function v( k) also has such a symmetry 
~roperty, !tis easy to see that: 

➔ 2 ' ➔ Jk. v (k) Rk (0) dk a0. 

Therefore equation (2.25) may be writien 
in the form: 

_zf f,z (vo) .. i(7 .vo)f f,z (vo) + 

0 ➔ a 2 00 ·[ck l > ➔ 
+ m(2rr)3 J(k--.:;)v (k)IJRk(T)e i + vo-z]T (2.27) 

av(). 0 dTlx 
A 

➔ ➔ ➔ 

( 1 k➔ a . (k+ f)vo+iz )dk➔ f (➔) f(0 ➔) 
X - -:--:.+------ II Vo+,, ,Vo. 

ffi av 0 l.,Z l. 0 ,; ' 

Remark that the integral term at the right
hand side of (2.27) containing v~k) is 
formally proportional to the square of the 
small ➔parameter. Considering the case when 
z , e are small, we may neglect them in 
this integra~ and obtain a simplified ap
proximate equation: ' 
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➔ ➔ ➔ ➔ 

z f ( v 
O

) = i (e • v 0)f ( v ) + 
t,z e,z 0 

-+-> 

2 ➔ a "" ik"o T ➔ 
+ n 

3 
f v (k)(k -:::;- ) f Rk (T)e dT k x 

m~rr) a~ 0 . 

(2. 28) 

➔ 

1 a vo ➔ ➔ ➔ 
x(-~+-)dkfe (v

0 
)+f 0 (0,v

0
). 

m av 0 ,z (, 
0 

It must be stressed, however, that equation 
(2.27) does not contain the terms of hirher 
degree in the interactidn and that there is 
a possibility* that these terms may become 
singular in the neighbourhood of Z= 0, f=O. 

Th~refore, equation (2.28).also cannot 
be considered as giving the tr:pe asympto
tic behav:iour of f e z< v0 ) for e ➔ o, z ➔ o. 

On the other harid, it is interesting to 
point out that equati6n (2~28) can be for
mally obtained from the equation for the 
reduced probability distribution: 

aft (ro,vo) ➔ a ➔ ➔ 
a =-vo-a➔ ft(ro,vo)+ 

t r
0 

(2.29) 
➔➔ 

0 2 ,..i) "" ikv 0 T 
+ 

3 
J v (k)(k--) J R1/T) e dT x 

m(2rr) i) v
0 

o 

➔ 

➔ 1 a VO ➔ ➔ ➔ 
x k (--:;- + -)dk f (r

0
, v

0
) 

m av 0 t 
0 

* In fact there~are strong indications 
for the plausible character of such a possi
bility. 
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by using the Fourier expansion (2.20} and 
the Laplace transform acting upon t. 

So, these .two equations (2. 28) , (2. 2 9) 
are completely equivalent: o~e of thein 
corresponds to ( z, f) representation and 
the other to (t,i'0 )- representation .. 

It is clear that (2.29) is th~ typical: 
Fokker-Planck equation for the Markoffian 
stochastic process. 1 

Eyidently it possesse~ also _sp~t~ally 
ho'mogeneous solut.ions f/v➔0 ), - satisfying 
the kinetic equation: 

➔➔ 

a_!_1'v'o) 
i) t 

n '2 . ➔ a 00 ikTQ T 
~ f v (k)( k -::;-- ) f l\ (T) e dT x 

,m(2rr) i) V 0 

➔ '' 
o (2.30) 

➔ 1 a vo ➔ ➔ 
xk(--+-)dkf(v) 

m av 0 t 0 
0 

which shows that in the ordinary situations 
f1 (v'0 ) apprQaches the Maxwell velocity dis
tribution with t'he increase of time. 

We have already pointed out that forf=0 
the correction terms to (2.27) or (2.28) 
may becom~ singular ·for z ➔ 0. 

Correspondingly, in t -representation 
equation (2.30) may not give th~ correct_ 
behaviour of asymptotical smallness of the 
difference: 

ft(vo)-fMax<;o) 

for sufficiently large val~es of J· 
This question.will be further discussed 

in §4-. · 
' ' Now we wish to establish some useful 

properties of the function Rk(T). 
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Consider the equilibrium average for the 
system I 

➔ ➔ ➔ ➔ 

<p(t,r)p(0,r)>I =(p(t,r)p(0,r')~(I)), (2.31) 

where p (t,r) is the microscopic space density 
of the I particles 

p (t, r°) z( I >o (r-r. (t)). 
l~j~N l 

Because the equilibrium average is in
variant with respect to the time transla
tion, expression (2.31) is equal to 

➔ .. ➔ JII t ➔ 
<p(0,r)p(-t;r)> cc<p(O,r)c. p(O,r')>. (2.32) 

I I 

Therefore, by applying the Fourier represen
tation we get: 

<p(t,1)p(0,r ')>I,,., 

➔ ➔ ➔, ➔➔ .~➔ 
1 ik (r-r ) -ikr. JI t. 1 krj 

"" 2 I c ( I c J c I I c ~ (I))~ = 
V (k) (j) . (j) ~-

JI:r' i t7r~ 
c Ie 1 ~{I))I 

(j) . 

➔➔ 

2 1 -ikr-
= fl+ ;:2 I ( I e J 

V (k~O) (J) .. 

what yields, in view of (2.16): 
➔ - ikG-1'> 

<p(t,r)p(0,r')>I=n2+n.!.. I Rk{t)e · 
V (k~O) 

(2. 33) 

or in the limit of the statistical mecha
nics 'V ➔ oo , n,;, Const•: 

➔• ➔ ➔, ' 
➔ ➔ 2 ik (r-r ) ➔ 

<p(t,r)p(0,r')> -n +...!L fR {t)e dk 
- I . (21r)~ k 

(2.34) 
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As the microscopic particle density is 
a real function, the left-hand side of the 
relation (2.34) will also be r~al and 
hence 

R*(t)=R (t). 
k -k 

(2.35) 

Return now to the integral term in equa
tion (2.29) and rewrite it in the form: 

➔➔ 

n 2 ➔ a I oo ikv0 T 00 

--
3
- f v (k)(k --:+)LI f Rk(T) e dT + f R (T) x 

(2 1T )' m a VO O O •k 

➔➔ ➔ 
-ikv T ➔ _l a V ➔ 

x c O dT I k ( - + _J!.) d k f (t v ) 
m a➔ 0 t 0' 0 . 

VO 

But the relation (2.35) yields: 

1 00 •➔ ➔ 
- I f R ( 1k VT 
2 

0 
k T)e O 

➔➔ 

oo -ikv 0 T 
d T + f R k (T) e dT I = 

0 -
➔➔ 

T ikv O 1'. 
=Ref Rk(T)e dT. 

0 • 
~ 

Therefore equation (2.29) for the reduced 
probability distribution may be written as 
follows: 

➔➔) a ➔➔ > 
aft(ro,vo =-v'o-:;- ft (ro,vo + 

at a r o 

(2.36) 
➔ 

+ n 
3 

f v2 (kXk _a_) F(k v )k( _!_ L +~)dk f (~ ,vo), 
m(21r) a; o ma""; 0 t 

0 0 
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where 
00 iw t · 

F(w)=Ref Rk(t)e dt. 
0 

(2.37) 

We see that in order to make this equa
tion completely definite, we need to deter~ 
mine the function (2.37). 

In §3 we shall outline a method for ac
tually calculating this function in some 
frequently considered situations. 

Here we shall only note that in view 
of the equality between (2.31) and (2.32) 
it follows that: 

Rk(-t),,,R (t) 
-k 

what yields: 

l 00 
iw t 

F(w)=y J Rk(t)e dt. 
-oo 

(2.38) 

Thus, because F(w) is the Fourier transform 
of the equilibrium correlation average 

➔➔ ➔➔ 

l -ikr. JJ 2 t ikr. 
Rk ( t) = - lim i < I e 1 e I e 1 > ( 2 • 3 g) 

n V->oo (j) (j) 2 . 

between two mutually complex conjugate dy
namical variables, we have: 

F(w ):;,, 0. (2.40) 

We shall proceed now to examine the next 
example when all conditions are the same 
as in the previous example with the only 
exception that here the hard sphere inter
action will be considered instead of the 
regular interaction (1.8). 

So we shall take 
coll 

JI . =JI . 
int int (2.41) 
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. f JI coll . . where the expression o int 1s given by 
formulae (1.10), (1.11). 

In §1 we have already pointed out that 
the basic Liouville equation (1.18) gives 
the exact description of the dynamics when 
unphysical overlapping configurations are 
excluded. Of course, no overlapping confi
guration will appear at the later moments t 

if they were absent at the initial moment 
of time: t,.,O. 

So we must impose the following condition: 
~ 0 (S, I)= O (for t ""O), if at least for one 
value of j =l, ... ,N 

➔ ➔ 

I rO-rj l<a. (2.42) 

If this condition holds, it will be auto
matically satisfied by :Dt fort> o *. 

We see now the difficulty which arises 
when we try to apply equation (1.26) for 
the present case (2.41). In fact, this 
equation was obtained with the help of the 
initial condition (1.2): 

'.D oCS, I) '"' f o< S) '.D {I) 

~ It is t9 be stressed that expression 
(1. 11) for T(O, l) may be used only if we 
study the evolution of 3) t for t > o. If we 
wish to investigate this evolution in the 
!nverse flow of time (t < O), another form for 
T(O,l) must be used. The direction of time 
in these operators is ~pecified by our 
conv~ntion concerning the significance 
ofv,v: either they are precollision and 
postcollision velocities or this order is 
to be reversed. For the,clarification of 
this point see paper /4/. 
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and such a form for ~o does not possess 
the property (2.42). 

The probability of overlapping configu
rations is, therefore, not equal to zero. 

We shall, nevertheless, make use of 
equation (1.26) taking into account that 
the probability of overlapping S with 
a 2 particle is proportional to a small 
quantity na 3 and assuming that the role of 
such overlapping will be negligible for 
the calculation of the lowest density con
tribution to the terms of this equation, 
especially, in the case when fin fft,v0 ) 

is sufficiently small and t is sufficiently 
large. 

Further, in §4 another form for ~o~,2) 
will be introduced which automatically 
excludes the overlapping configurations, 
and in this way we shall present & poste
riori justification.of our present procedure. 

Proceeding to concretize the considered 
approximate equation, let us first substitut 
(1.7) , (1.10), (1.11) into the relation 
(1.22): 

JJ
5

,,,JI; + 2 (T(O,j)~(l))
2

,,, 
{l~j~N) . (2.43) 

= JI5+ N < i<o. 1>~ <2>>2 

Note that the equilibrium· distribution· 
g)(l) · for the classical dynamical system 
I has the form: · · 

9)(2),,.,W(rr, .. :,rN) TI. <1>
2
(v.), 

. (I~ j~N) J 
(2.44) 

30. 

where 
Mv 2 

M 3/2 -20 ➔ 
<I>iv) =(~) e , f<I>

2
(v)dvx 1 (2.45) 

is the normalized Maxwell velocity distribu
tion. 

The normalization property of ~ (I)·: 

f ~ (I)dn 2 = 1 

•yields: 

f W(~ , ... ,rN)di'1 ••• df"N=l. (2.46) 

Consider the equilibrium average of the 
microscopic I -particle density at a point 
f: 

➔ ➔ ➔ 

n=<p(r)> "" I fo(r-r. )1>(I)dn
2

,,, 
I O~j~N) J 

➔➔ m ➔➔ ➔ ➔ 
"'Nfo(r-r ).v(I)dU~xNfo(r-r )Wdr ..... dr. 

I ~ I I N 

By taking into account the spatial homoge
neity, we see that,this averaged density 
does not depend upon r and therefore: 

f
. ➔➔ ➔ ➔ 

N o ( r - r 1 ) W dr 1 ••• dr N• n. 

Due to this relation, formulae (1.11), 
(2.44), (2.45) yield: 

N(T(O,l)~(I)) 
I 

2f( ➔ ➔ ➔ (2.47) 
=na v 01 -a)0(v 0 0)18 (o)-11<1> (v·)docfv 

. • 0,1 VO'Vl 2 I I 

0(r)=-{l, 
0, 

for r > o 
for r<O. 

= 
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We see that it is just the Lorentz
Boltzmann collision operator acting only on 
functions of v O ·: 

N(T(O,1) T, (1))
1 

f(S),,,. 

2 J( ➔ ➔ )0(-• -:➔-1 ~ ➔ ➔ ➔ • ,,,,na v .a v •GJ B (a1-l!<I> (v )f(r v )da d v 
0,1 0,1 vO'v1 I I o' o 1 

It will be convenient to introduce the nota
tion: 

f (S) = X (S) <I> O ( v O) (2.48) 

<I>0(v 0 ) being the normalized maxwellian 
for s: 2 

m 3/2 -~-
<I> (v )=(--) e 20 

0 0 2rr0 
Then by observing that: 

, 3 ·2 3/2 M -
➔ -(-~-) (--) X 

B (a) <I> (v )<I>L(vl )-- 2rr0 2 rre (2. 49) V V O 0 0 I 

*2 

m;2 ~~.!., I = <I> (v )cfllv,) x exp I - 20 - 2 0 
O 0 

from (2.43) we get: 

JI
8 

f(S)= JI s x(S)ct>
0

(v 
0

) = 

➔ ax(r~,;0 ) 2 
=<I> (v)l-v 0 -• +na L xi (2.50) o. 0 ar S 

0 

L,x=J(v01 ,;;)0(v .~)1>~(v
1

)1B (;;)-l!x 
s •• 0,1 ,:,, v0 ,v 1 

x x < r 
O 

, ;-0 > dad ;
1 

• 
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We now shall retu·rn to equation (1. 26) 
and begin by putting in the form: 

➔ ➔ ) 

aft(~.~o) 
at 

ax/ro,vo 2L xi+ ➔ ____ +na s 
cc<I>o<vo)l -vo• ar (2.51) 

t 

+ J K(t-r )x (?
0

,-;
0 

)ct>0 (v
0
)dr, 

0 T 

where 

- (JIS +Jltt - -
K(t)= ( I T(O,j)e ~ (T(O,j)-(T(O,j) '.D(l))

1 
)'.D(I)~ 

(j) - (j) ( 2 • 5 2 ) 

- JIS t JI 2t -
,.,N(T (0, l)e e I (T(O,j)-(T(O,j) '.D(I )) ) '.D(I )) 

<i> 2 I 

JI5 commutes with JI 2 and 
commutes with the variables 
is ~ommuting with the variab-

Note here that 
in general JI s 
0 2 while JI2 
les n s. 

In order to simplify this expression 
(2.52) we shall use the Fourier represen
tation: 

➔➔ 
➔ ➔ 1 ik(r-1.) 

S (r-r ) ,. - I e J 
i V (k) 

and obtain: 
- i1tt-1 > 
T (O,j),., 1.. I e O j T ( v v ) 

V(U k w j (2.53) 

with 
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1k~ .. 
i ~-?,--· .__, ! . 

➔➔ 

- 2 • ➔ ➔ ➔ -iaka ➔ 
Tk(v

0
,v.)=a [(v .a)O(v .a)le · B (a)-

' . O,j O,j VO'V. (2 54) 
-:-} ➔ J • 

-c iaka Id; 

1, X > 0 
O(x)""I 

0, X ~ 0 

On the other hand, from the identity 
(2.49) we find: 

Tk(v
0
,vi )x(r~1, ~ 1 )<1\/v 1/D(i)= 

= I T k (VO' V. ) X (ro ' v'o) l <I> (I (VO) :J) ( 2 ) . 
.l 

We therefore may write: 
- ./ls t 

K(t)x<I> :n[T(O,l)c · Q(O,l)dr dv➔ 
0 · I I ' 

(2.55) 

where 
•➔ _., -ii 

Jl.._, 1 1k(r0 -r.) _. 
Q(0,1)= 2 Jc - 2 e 1 · l\(v

0
,v.)xl<1>0 (v0 )x 

(k/0) (_i) · l 

.llzt · _ 
x:D(i)dr;dv

2 
... drNdvN + Jc , (~I-T0 (v 0,vi)x- (2.56) 

-JITO(vo,v.)xl~(v.)dv-:'l<l>(v()):D (2)dt2d;2 ... dr'N dv. 
l - l l . . . ... N 

•'"' -~ 

Note that the first tetm·iri~the right-hand 
side of (2.56)· can be rep.resented in the 
following way: 

➔➔ 

➔ ➔ ➔ ➔ ➔ ➔ • '-'>. ,:-,➔-; i k r0 Q
1
(r ,v ;r ,v )-= 2 Q (k;r 0 ,v

0
;r 1 ,v1')e 

0 0 I I (k,/ O) I 
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Q I (k ;r O ' ~ O ; r I' y' I ) = 
➔➔ 

,n t -ik r. _ ( 
2 ) 

=Je 2' <1e J ITk(vO,vj)xl<l>o(vo)W(rl'r2' .. .rN)x .57 

x n <1> < v > d; dv' ... dr dv . 
(I~ j~N) ::£ j 2 2 N N 

Let r be an arbitrary space vector. Then 
by performing the change of integration 
variables: 

➔ ➔ ➔ ➔ ➔ ➔ 

r 2➔ r2 + r , ... r N ➔ r N + r 

we get: 

Q 1(k;t
0
,v

0
;r

1 
+r,v

1 
)'"' 

➔➔ • ➔➔ 
-ik r JI 2 t -1kr. _ 

"' e f e 2 e 1 I T k ( v 
0

, v . ) x I x 
(I~ j~N} J 

{ ) ➔ ➔ ➔ ➔ ➔ ➔ d➔ ➔ d➔ ➔ x <I> v W ( r1 +r , r +r, ... r +r ) II <I>~( v ) r dv ... r dv . 
0 2 N (I~ j~N) ,1;,, j 2 2 N N 

. 
But because of the~space homogeneity the 
function 

wct1 +r, ... ,rN+r) 
is equal to 

W (rl ' ... ; N). 

We therefore obtain: 
ir-; ➔ ➔ ➔ ➔ ➔ ➔ ➔ ➔ ➔ 

e Q1(k;r
0

,v
0

,r
1

+r,v
1

)zQ
1
(k;r

0
,v

0
;r

1
,v

1 
). 

For;,,. - r\ this, relation yields: 
➔➔ 

Q (k ➔ ➔ ➔ ➔ -ikr1 ➔ ➔ ➔ 
I ;ro,vo;r1,v1)=e Q1(k;rovo;v1) (2.58) 
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with 

Q 1<k ;ro, v o; v 1 ) =QI (k ;r O' v 
O

; 0, v 
1 

). 

Considering the second term in (2.56) we 
find in the same way that it does not de
pend upon 1 1 : 

JIIt - ➔ ➔ ➔ ➔ ➔ ➔ ➔ J e I x (r0, v0;v
1
.)<I>

0
(v

0
)~(I)dr

2
dv

2 
... dr cl~= 

0~ i;£ N) N"" l L: • 5 9.) 

= Q /r o·" o; vi ) , 

where, for the abbreviation: 

- (➔ ➔ ➔ ) - ( ) ( ➔ ➔ 
X ro,vo;vi =To vO,vj X ro,_vo)-

(2.60) 
- ➔ ➔ ➔ 

-J!T0 (v0,vj)x(r0 , v0) l<I>
2

(vi)dvi 

It is to be noted that the function x 
satisfies the identity: 

I -( ➔➔➔ ) ➔ X r0 ,v
0
,v <l>I (v)dv=O. (2.61) 

We now can sum up our results (2.55), 
(2. 58), (2. 59) and obtain: 

c> ➔ JI ➔➔ 
- -ikr St ik r 

K(t)x<I>
0 

= n 2 J T(O,l)e 1 e e O x 
(ki60) 

X Ql(k ;;o,vo;; l)dtl,dv'l + 

- JIS ·t ➔ ➔ ➔ ➔ ➔ 
+n J T(O,l)e Q/r

0
,v

0
;v

1
)dr

1
dv

1
. 

On the other hand ➔➔ 
-k;' ➔ -ikr

0 J T(O,l)e-
1 

r1 di\ =T_k(v
0

,v
1
)e 
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and therefore: 

( 

➔➔ JI ➔➔ 

K t) x <I> ,., n 2 J T ( v v ) e -ikr0 s t ikr 0 
0 (k;tO) -k (1• I e e x . 

➔ ➔ ➔ d ➔ 
x QI (k; r O' V ff VI) VI + (2.62) 

Jis t ➔ ➔ ➔ ➔ 
+nJT0 (v 0 ,v

1
)e Q

2
(r

0
,v

0
;v

1
)dv

1
. 

We now proceed to bring the expressions of 
Q ,Q to a more explicit form. 

I 2 "d h . 1 Cons1 er t e 1ntegra : 
➔➔ 

JI2 t ~ -ikrj ➔ ➔ m ➔ ➔ ➔ ➔ 
Je .:. e 8(v.-v)'.D(!)dr

2
dv

2 
... drNdv1,r (I< j<N) l 

= = 
By using our previous reasoning, we find 
that it depends upon r\ as exp!- ikr1 I and 
thus we may define a function Uk(t,v1 ,v) 
in the following way: 

➔➔ 

JI~ t. -i k.r. ➔ ➔ . , ➔ ➔ ➔ ➔ 
Je .:. I e l o(v.-v)~(I}dr dv .... drivN= 

(I~j~N) l 
2 2 (2.63) 

I , 

➔➔ 

-ikr l 
= e 

1 
- ~ ( v 1) U / t ; v~ , v). 

. V . 

Of course, Uk depends on V. 
This relation leads to the equality: 

JI 
. ➔➔ 

It -ik r. ➔ 
Je I e l¢(v.)~(2)dr2dv➔2-··drJvN= 

(I~j~N) l 

➔➔ 

-ikr
1 = e 

1 ➔ ➔ ➔ ➔· V~
2

(v1 )JU/t;v 1,v 1)¢(v1)dv1. 
(2.64) 
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It will be convenient to consider the ex
pression 

( 
➔ ➔,) 

Ukt,v1,v 1 

as the matrix representation of an operator 
U (t;l) 

k 

acting only on functions of~ according 
to the formula 

Uk(t;l)f(v\),,.JUk(t;1'1,viH<v,)dv,. (2.65) 

We thus can write: 
➔➔ 

JI I t :..ikr. ➔ ➔ ➔ ➔ ➔ 
Je I e l ef>(v.)~(I)dr2 dv2 ... drNdvN= 

O<·<N) J =J= 

➔➔ 

(2.66) 
-ikr 1 

= e IV<I>2(v1)(\(t;l)¢(v ~-

In view of (2.58), (2.59) we now obtain: 

➔ ➔ ➔ 1 - ➔➔ 
Q1(k;ro,vo;v1) .. <1>o(vo)<l>I(v1)vUk (t;l)Tk(vo,v1)x(rovo) 

➔➔➔ · I ..:. ➔➔➔. Qi ro, Vo; VI)= <1>/ vo)<l>lv .>"v Uo( t; 1) X ( ro' Vo; vi ). 

These equalities are to be substituted in 
the definition (2.62). We shall first 
transform the expression of the type: 

.llst<I> ( )h( ➔ ➔) e o vo ro,vo 

which figures in (2.62) . 
Owing to formula (2.50) we get · 
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,Jlst· . ➔ ➔ . 

e <l>o(vo}h(ro,vo)'"' 

➔ a 2 > (-v0 -=- + na LS t a~ ➔ ➔ =<I> (v )e ro h (r
0

,v
0
). 

0 0 

We remark al so that <I>lv I ) 
c Jls • and 

commutes with 

T_k ( V (iv 1><1>o(v l)<l>I(v /"' <l>/v1)<112(vl)'i\ (v ci V ,· ),' 

In such a way we finally obtain from (2.62): 

K(t)x(S)<t>
0

(v
0

)= 

➔➔ 

1 ➔ - - -ikr0 =¢> (v )n-- I fdv 1<I>·(v
1
)T (v ,v )c x 

O O V (k=/Ol I -k O I 

( ➔ a 2, >• ➔➔ -v -+na 's 'k .· () a~ • I r - . _ .. ➔ 
x c c o Uk ( t , I) T k ( v 0, v 1) x ( r 

O 
, v 

0
) + 

. . . - • (-➔ .!.I_ 2 
+<l>(v)n1-Jdv<t>fv)T( ) voa;++na Ls)•.· 

0 0 V I ~ I o v o' v I e x 

X Uo (t; Ox (r'(), i~; ;l) ' 
- - : . ' 

and therefore ~quation (2.51) yields! 

➔ ➔) a 2 ➔ ➔ > ax1 (ro,vo ,,,.,_-; -··-·+ na. Ls lx
1 

(r
0
,vo + 

at . o aro . 

➔➔ 

l · t · ➔ _ -ikro: 
"+n-v 2 f dr Jdv <I>~ (v.1.>T k/ (v ,v )e, x 

k,,/ O O I k • · 0 I 

a 2 ➔➔ ➔ ➔ <-v"oa-➔ +n a Ls Ht-r ) /kro u (t-r;l}Tk(vo, vi )x (~ O' Vo>+ 
ro k. . . , r xe · 
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1 1 ➔ _ -<-; a 2 
+n-JdrJdv<I>(v)T( ) op+naL 5Ht-r) 

V O l l l O v o' v I e r O x 

xU0 (t-r;l)xr(r:i,v\1v1 ) 
(2. 6 7) 

f/r~v'o) =<I>o<vJxt<;a-;o>· 

Note that 
➔ a 2 . ➔➔➔ 

•➔k ➔ (-vo -+ n a L Ht-r) I (k+ e )r 
-1 r a? s 0 

e O e o e 

➔ ➔ 

i e~ (-iv-;,o~+ f)+na 2LsHt-r ) 
,.e e 

Then it is easy to see that by using the 
Fourier transform 

➔ 

➔ ➔ 1 i er➔ ➔ 
x (r ,v)=-:--v I e o x (t,v

0
) 

1 o o rn e 
(2.68) 

we shall obtain from (2.67) the individual 
equations for each xe= 

➔ 

axo(t,vo) ➔ 
[. ➔ 2 ➔ 

.. , -i e. Vo +na Ls Ix e<t, Vo)+ 
at 

1 t (· ➔➔ ➔• 11 

+nv(?'o)JdrJd;l<I>~ (v )T (v ) -•vo(k+f)+na2 l's}{t-r)' 
,. o "" I -k -O' v I e x 

- ➔ 

xUk(t-r;l)Tk (v
0

,v
1 

)xf(r,v0 ) + 
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➔ ➔ 2 
t . (-iv11f+na LsHt-r) 1 ➔ - • 

+n-JdrJdv1 <1>1 (v 1)To<v0 ,v 1)e x (2.69) 
Vo 

xU
0

(t-r;l)_xr<r,v•
0

, ;I). 

-In particular, for p,,,o·: 

ax < t, v .. ) .· 2 ➔ • 

----"0- =na L x (t, v ) + at s o 

1 t ' +nv-; J dr Jdv\<I>~(v )T (v ,v) X 
(k;eO) O "" l -k O I (2. 70) 

➔➔ 2 ( ) - ➔) 
(-ivok+na Is> t-r U (t-r; 1 )T k (vo, vi) X (r • vo + x e k 

1 t ➔ . - , na 2i .. s( t--.) .,.. _,. ➔ 
+n- (dr Jdv1 <I>~(v

1
)To<v(lv

1
)e · U

0
(t-r;l)x(r,v ,v

1
). Vo . - o 

In these equations th~ kernels under the sign 
of the integral # 

. l . 

J ... dr 
0 

are function of t-r and therefore the 
method of the Laplace transform can be used. 

We also see that for dealing with these 
equations the explicit expression for the 
operator 

U (t;l) 
k 

which is defined only by the dynamics of 
the isolated system l, must be found. 

This problem will be considered,in the 
next section. 
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We now wish only to point out that by 
means. of the Uk operator the functions Rk(t) 
which appeared in the previous example may 
also be calculated. 

In fact from (2.16) we get 
• -+-> 

ik~ JI 1 -ikr-
R lT),,. V c Jc I <°1/ 1 9J (I)dv1dr2dv2 .•• drrJlvN(Z. 71) 

and employing the definition (2.63), we 
find: 

R k(T) = f<l>iv 1)Uk(T; ; .. ;;)dv°1dv'i . (2.72) 

3 . 

In the present section we shall draw our 
attention to the study of the equilibrium 
correlation averages. 

Let I ·be a dynamical system'of the clas
sical mechanics whose Gibbs canonical dis
tribution will be denoted, as previously, 
by :D(I). 

Consider a dynamical variable, a function 
of the phase point: 

'lJ "' 'lJ (n i> 
and denote its expression at the moment 
of time t by: 

1J(t)"" 'lJ {nI(t)), 

where ni(t) is the solution of dynamical 
equations, which starts from nI at the 
initial moment t =0·: 

n r<0) .. n 2 
Note that for the general nonequilibrium 
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distr~bution '.D
1 
{I) satisfying the Liouville 

equation: 
a5J t = JI '.D 
at I 1 

'.D 1 == 5)0 for t = O 

we have the well-known identity: 

< 'lJ { ""J 'l1(t)'.D0 (I)dn2=J 'll(nI)~i\ (I')dnI. (3 .1) 

We now proceed to investigate the correla
tion equilibrium averages of-two dynamical 
variables: 

< 'lJ { t) 93 (r )> =={ 'lI (t) 93 (r) 5) (I )) 
2 

,. 

=f 11 (t)93 (r)5)(I)dn 
2

. 
(3. 2) 

The invariance of such equilibrium averages 
with respect to the time translations gives: 

< 'll(t)93(r)>z< 'll(t-r)9J>·. 

Therefore the Fourier integral can be writ
ten in the form:- ., 

oo -iw(t-T) 
< 'lJ (t)93(r)>- f J (w)e dw. 

-oo 'U!B 
(3.3) 

It is to be pointed out that just as in the 
quantum mechanical case, we here have the 
well-known inequality: 

J 'lJ *. 'lJ( l,J ) ~ 0. (3. 4) 

In the quantum mechanical treatment of 
problems of the statistical .mechanics ave
ry important role is played by the method 
of two-time Green functions, defin~d by 
~he relations: · 
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Gret (t-r),.0(t-r)<( 'llt, :J3r ]> 

(3. 5) 
G d (t-r)= -0(r-t)<[ 'lJ , :J3 ]> 

a v. t r 

where [ ···· .... ] denote the quantum Poisson 
brackets. N.Bogolubov jr. and B.Sadovni
kov161 have extended this method to the case 
of classical mechanics. 

Their definition of two-time Green func
tions is the same (3.5) with the only diffe
rence th~t the Poisson brackets (3.5) are 
to be understood in the classical sense. 

These authors introduced the function 
1 00 , 

« 'lJ :J3 » "' -- f J (w )-~ <lw ' 
, V 2r, 0 -oo 'lJ ,:J3 -W , +V 

(3. 6) 

which is regular in the complex plane of 
the variable v wiih the exception of its 
real axis. The function (3.6) defines the 
frequency representation · 

'l, r,a 1 00 iw t 
« u, :13 » = -- f G (t) e dt 

<u 2 TT -oo r,a 

of the retarded and advanced Green function 
by means of the relations: 

« 'll, :B»r ,.,« 'll, :J3 » . + 
w w+io 

(3. 7) 

« 'll, :13 » a =« .'ll, :13 » :o+ 
W <u-1 

which yield: 

( ·0 J 'll :J3 w),., 1 - I« 'lJ ,:13 
' • (u 

» . +-«.'ll,:13» · +L (3.8) 
w+ 10 · w-iO ·. 

It is to be noted that first the usual li
miting process of. the statistical mecha
nics: v ➔ oo must be performed and after that 
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the limiting process· of approaching the 
real axis is to be carried out. 

Let us now say a few words about the 
possibility of the effective determination 
of the Green functions. 

One of the methods elaborated for this 
aim /6

/ can be briefly resumed as follows: 
An infinitesimal explicitly time depen

dent term: 

BH = e H-iw t 

l 
f> 0 

:J3 (n I) o,; + e f t + i w l 

is added to the Hamiltonian: 

H 1 ~ H2 + oH
1 

• 

:J3 * en )o<f* I 

Note that because of the sign off 

oH t .➔ o, when t -• -oo; 

(3. 9) 

We shall start with the corresponding ' 
Liouville equation: 

a~ 
__ .!.,,.Jf~+(oH :i) ] at ~ 1'.1 

with the initial condition at h-oo; 

j) = j)(I). 
-00 

In other words at t=- 00 we have the statis
tical equilibrium situation and the infini
tesimal perturbation (3.9) being adiabati
cally switched on. 

Of course 
j)t =1)(I)+o~t. 

Then~ if the one time average of a dy
namical variable: 

'lJ = 'll(nI) 
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is considered, it was found that: 

< 'lJ > :c< 'lJ > + 0 < 'lJ > 
t eq. t 

o< 'lJ > = C -(c,Hif) j t 

l 
2rr« 'lJ ,:B» 

w+ic 
o~+ 

-i(-<,H if )t 2 < 'lJ :B* » . o ~*. 
+e 77 < • -w+1c 

(3 .10) 

We thus see that in order to obtain the ex
pression of the Green function in the upper 
half plane of v, it is sufficient to cal
culate the variation 

o< 'lJ '> 
I 

of the one time average, induced by the 
infinitesimal perturbation term (3.9) in 
the Hamiltonian. 

We further note that it follows from 
(3.9): 

J ~B. 11 ( <u) = J 'lJ /R ( -cu ) 

what yields: 

« 'lJ ':B» 
w-if 

,.,«:B, 'll» 
-w+ic 

(3 .11) 

Therefore the frequency representation of 
the· Green function in the lower half plane 
can be obtained in the same way by inverting 
the roles of 'lJ and :B. 

This method is very fruitful espicially 
when dealing with the so-called hydrodyna
mical approximation. 

Here, however, we wi11 adopt the other 
procedure connected with the Laplace trans
form method now widely used in the works 
concerning the problems of the statistical 
mechanics of classical systems. 
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By considering the expression of the sta
tistical equilibrium distribution: 

5}(I)=z-I e -HiQ2)/0 

we easily find: 
'l, m1 1 (i'I 1 d'll(t) 

[ .u (t); .vlI)]=- 0 [ 'U(t);H
2

]j;(2)=-7r at 5}(I). 

Then the identity with the Poisson brackets: 
[ 'll(t); :B]5}(I)+[ 'll{t);5}(I)] :i3=[ 'll(t); ~g}(I)] 

and the relation: 
( [ .'ll ( t); :B:D( I)]) 

2 
,., O 

yield: 

<[ 'll(t); :Bl>x{[ 'll{t); :B]'.D(I)) 
2 

"" 

=-t ¾< 'll(t)~> . 

On the other hand, the relations (3.5), 
(3.6)give: 

1 oo (-c+ iw )t 
« 'lJ, :B» . = - f e <[ · 11(t),:B]> dt 

w+ u 2rr o 
from which it fpllow~: 

00' cl 
'lJ m 1 •Zl 'lJ m d << ,.n>> .=--fe -d < (t).n> t, 

w+•c 2rr0 0 t · (3.12) 

where 

Z:cf-lW, (3.13) 

or 
1 oo -zt 

« 'll,:B» "" -- lzfe < 'll{t) :B>dt- < 'lJ :B>I . (3 .14) 
w+ic 2 rr0 0 

Because of (3.11) we also obtain: 
1 00 -zl't 

«'ll,:B» =--lfz*e <'ll(t):B>dt- <'ll:B>I. (3.15) 
w-ic 2rr0 o 
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We, therefore, see that the Green functions 
on the upper and lower half plane are imme
diately determined by the Laplace transforms 
of the equilibrium correlation averages of 
the type: 

< 'lJ 1 93 > , t ~ 0. 
(3.16) 

In order to reduce the problem of the 
determination of such correlation averages 
to the problem of calculation of the one 
time averages we may start with the stan
dard Liouville equation: 

a '.D 1 
- = JI~ '.I) ; t > 0 at k t X (3.17) 

with the initial condition: 

'.I) 0 = '.I) (I)+ 93 ( n I ) 8 ( for t-0 (3 .18) 

expressing that the initial (fort =0 ) ex
pression of ~ 1 is only infinitesimally 
different from the equilibrium distribu
tion. In this situation: 

~t ,.~(I) +Bi\ 

and by making use of the relation .(3.1) we 
get: 

8 < .'lJ > 
t =f 'll(t)33~(I)dn~of =< 'lJ(t)33> o(= 

"" eq. (3 .19) 

JII t 
= I'll o~t dQI ""J 'lle ;B~(I)dnio(. 

Note that within the present approach, we 
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have to deal only with the time independent 
·Liouville opera tor JI I . The variation is 
now introduced not in JI1 but in the initial 
expression of :D . 

To investigate a more specific situation 
we shall consider the case when, as in the 
previous section, the dynamical system I 
consists of N identical particles of mass M. 

Let us further assume that the Liou
ville operator has the form: 

(0) 

JI I"" I J1 i + I JI i ,i (3. 20) 
O~i,~N) O~i1<i2~N) I 2 

where 

JI(,O) X - V, ~ 
1 1 ar 

j 
and 

(<fl I > 
JI % JI 

i1,i2 i1,i2 

or A 
(coll) 

JI xJl , 
i I ,i2 i1 ,j 2 

_or 

JI = JI 
(<fl) 

i1,i2 i1,i2 
'+JI (coll) 

i1 ,j 2 

(3. 21) 

(3. 2 2) 

(3.23) 

the notation here being the same as pre
viously. 

We shall now turn our attention upon 
the method of the reduced distribution func
tions in the form elaborated already in my 
monograph in. 1946. 

These reduced distributions are introdu
ced as follows: 
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➔ ➔ ' (i\ ➔•➔ ➔ ➔ 
F1 (t;l)=F1(t;r1,v 1) = V f JJ

1 
dr2av2 ... drNdvN 

➔ ➔ ➔ ' 2( 1 F 2 (t;l,2) .. F (t;f' ,v ;·r ,v )= V 1--N) x 
2 I I 2 2 (3. 24) 

➔ ➔ ➔ ➔ 

x f9\dr3 dv3 ... drNdvN 

••••••• -~ ➔ ➔ ➔ . e 1 s -1 
F_(t;l,2, ... ,s) .. f (t;r

1
,v

1
; .•. r ,v )=V (1--N) ... (1---)x 

s s s s N 

x f 9) dr 1dv 1 ... drNdvN . 
l s+ s+ 

Owing to the symmetry of 9)
1 

we see that Fs 
are symmetric functions of the phases (1), ... (s): 
Because 

9) = e J1:~: l 9) 
l 0 

we may also write: 

F( . ➔ ➔) Vf Jt~:,t (i\ d ➔ ➔ ➔ ➔ 
I t, r1, v1 "" e ~1

0 
r dv ... di dv . 
2 2 N N (3.25) 

.. -
It is easy to see that the functions F1(t;l); . 
F2 (t;l,2); ... give, respectively, the probability 
density to find one particle with the phase 
(r\, v1), two particles with the phase (~3

1 
;1

2
,;

2
), 

a11d so on. 
Consider the additive dynamical variable 

'lJ ,., I A (r~ , v. ). 
{l~j~N) l l 

(3.26) 

By starting with the definition (3.24) and 
utilizing the symmetry property, we find 

'lJ I A( ➔ ➔ ) ➔ ➔ ➔ ➔ 
< >

1 
= n . . r I , v1 FI ( t ; r I , v I) di I dv I , (3.27) 

or in a more abbreviated form: 
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< 'lJ\ zo fA(l)F
1
(t;l)d{l). 

In the same way the average value of the 
binary dynamical variqble can be expressed 
by means of F2(t;l,2), etc. 

The Liouville equation yield the fol-
lowing hierarchy of equations: 

aF1(t;l) (O) 
-a-t--= JI 1 F1(t;l)+nf JI 1,2F2 (t; l,2)d(2) 

a F2 (t; 1,2) (O) (O) 
---,.,.(JII +JI2 +JI12>F2(t;l,2)+ at , 

(3. 28) 
+n f(JI1,3+JI2, 3 ) F 3 (t;l,2,3)d(3) 

........ 
aF8 (t;1,2, ... s) 

ac 
(0) 

=( I JI.+ I JI .. )Fs<t;l,2, ... s)+ 
O<j<s) l O<j <j <s) l1l2 

'"'• =1 2"" 

+ o•f ~ JI. 1 F ft;l,2, ... s,s+l)d(s+l)· . 
. (~j~s) J,s+- s+ 

When dealing with the reduced distributions 
Fs it is usually·assumed that for 

·v N ➔ 00, -znzCoost 
V 

they have definite limits which also satisfy 
equations (3.28). . · · 
· ·Incas~ of,the equilibrium distribution 
this assumption was rigorously proved/7/ 

for a yast class of physicallf admissible 
short range potenfial functions <l>I(r),. if 
the particle density is sufficiently small. 
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-l -- ·----·- -

Under these conditions the analyticity 
of Fs as functions of .n was also estab
lished ! 7 /_ 

We may remark that the study of equilibri
um~ is greatly simplified by the fact of 
their factorization property: 

➔ ➔ 

F (l, ... s)=f(r 1 , ..• r
5

) Il <I>~(v ). 
cq. (l~j~s) k j 

(3. 2 9) 

As far as I know the behaviour of nonequi
librium F

5 
was not investigated at the 

rigorous mathematical level. 
Let us now consider the equations (3.28) 

in the limiting situation of infinite volume 
V=oo. From the formal point of view we have 
here a system of linear equations for the 
reduced distribution functions Fs. 

It is necessary, however, to point out 
that not all solutions of these equations 
are physically admissible. 

Take, for example, 
F (t ; 1, ... s) 

s 

and distribute the indices l, ... s. into e 
groups [j

1
], ••• [j pl containing, respectively, 

s1, ... sp numbers: 

F (t;l, ... s)=F . (t;[j
1 

], ... {j
0

]) 
s s1+ .. +se r. 

s = s 1 + ... +sf 

Suppose that the distances between the 
particles belonging to different groups tend 
to infinity. Then, from the physical point 
of vi~w, it is natural to expect that the 
correla,tio~ }{~·tweJA. ~'.he s·e·ts [j

1 
], ... [j f ] 

of ~ _;particl'es vanl"shes: 
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F (t; [j 
1 

], .•. (j .,])- F (t; [ j ]) ... F (t;[j 0 1)➔ 0 (3 30) 
s 1+ .. +se r. s1 I sf r. • 

when 
Jr. -r. I ➔ oo; pp'.., 1, ... e ;i c;;[j l; i ,c;; Ci , 1. 

J p lp, ' p p p p 

These relations expressing the general 
principle of correlation weakening 161 can 
be considered as a kind of boundary condi
tions * imposed on Fs . 

Of course, these i•boundary conditions" 
are nonlinear. To make them 1 inear 181 we 
introduce the functions G (t;l, ... s)(s '""2,3, ... ) by s . 
putting: 

~ (t; 1,2) =F
1 

(t;l}F
1 
(t;2)+G

2
(t; 1,2) 

(3.31) 
F3 ( t ; l , 2 , 3) = F

1 
( t ; 1 ) F

1 
( t ; 2 ) F

1 
( t ; 3 ) + F

1 
( t ; 1 ) G 

2 
( t;2 ,3) + 

+ Fl (t;2) G2 ( t;l,3) +FI( t;3) G2 (t;l ,2) +G l t;l,2,3). 
....... 

Then ( 3. 30) ·yields the 1 inear conditions: 

G2 (t; 1,2) ➔ 0, 

Git;l,2,3) ➔ 0, 

if I ii -12 l ➔ 00 

(3. 3 2) 
if max (1 rl ..:'r2l, r;.-~,. l~-~ll ➔ oo. 

* For the mathematical treatment of 
equations (3.28), a lot of difficult ques
tions arises, for example: 

- In what sense the relations (3.30) are 
to be understood ? 

- What other conditions on Fare to be ' s 
taken into account? 

- What initial conditions for t""O, are 
to be imposed on Fs, etc.? 
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By using the definition (3.31) we get the 
hierarchy of nonlinear equations for F

1 
,G

2
,Gg .. : 

aF (t;l) (O) 
--1---- 00 .11 1 F1(t;l)+ nf JI

1 2
!F

1
(t;l)F (t;2)+G<t;l,2)ld(2) 

cJ t · , I 2 

rJG~~t;l.:_~ ~" (,Jlio>+.Jl~o) +.JI· )G (t;l,2)+JI F (t;l)x(3. 33) 
at I ,2 2 .· I ,2 I 

xF (t;2)1 n f.11 IF (t;3)G (t;l,2)+F (t;l)G (t;2,3)+ 
I · 1,3 I 2 I 2 

+G/t;l,2,3)1d(3)+n f .11 •• IF (t;3)G (t;l,2)+ 
. 2 .. l I 2 

+ F
1 
(t; 2)G

2 
(t;l,3) +G:~ {t; 1,2,3) I d(3). 

. . . . . . . . . . 
Let us now r~turn to the prqblem of equilib
rium averages . 

We shall have to deal with two additive 
dynamical variables: 

11 = L A (j ) , ~ ~ L B (j) 
(I~ j~ N} (I~ i$ N ) 

for which: 
(eq) 

JB(l)F1 (l)d(l)=O (3.34) 

or, what is the same 

< 53 > ,,,, 0. 
eq. (3.34') 

Consider the solution of the Liouville 
equition infinite1y·c1ose to the Gibbs 
equilibrium distribution 

9) = 9) (I ) + o 9) 
t t (3.35) 
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starting from the initial expression: 

9)0 ,., 9) (I) + o9)o 

o 9)0 = I B(j) of 
O~j~N) 

(3. 36) 

and introduce the corresponding reduced 
distributions: 

(eq) , . (eqJ 
Fl (l)+oFI (t,l), ... Fs (1, ... s)+oFS(t;l, ... s); .... 

Then in accordance with (3.19): 

< .'U (t)1bof .. nJA(l)oFI (t;l)d(l) 

and the relation (3.25) yields: 
JI t 

oF1(t;l)=-V fe 2 o 9)
0

d(2) ... d(N). 

(3.37) 

(3. 38) 

The variation of the relations (3.31) 
permits us to introduce oG2 (t; 1,2); ... oG

8
(t;l,2, ... s); ... 

We .further remark that the variation of 
the nonlinear equations (3.33) leads to 
linear equations,for oF1(t;l);oG 2(t;l,2), ... 
... 8G 8 (t ;1,2, ... s ); ... with the coefficients de
pending upon equilibrium functions. 

Let us now proceed to obtain the initial 
expressions for these variations. 

So, from (3.35) we obtain: 

1/o( o F 1 (O;l) = B(l) Fl (l)+n 0- t) JB(3)F2 (l,3)d(3) 

1/of o F2 (0;1,2) ,.,I B(l)+B(2) I F2 (1,2) +n(l- ~) JB(3)~ (1,2,3)d(3), 

where to shorten the notation, ·we have 
omitted the index "eq" of F (1, ... s). 

s 
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In virtue of (3.34) it follows: 

fB(3)F2 (1,3)d(3)= f B(3)l F2 (1,3)-F1 (1) F/3)1d(3)= 

= f B (3) G 2(1,3) d(3) 

and thus: 

o F1 (0;1) =I B(l) F 1(1)+ n(l- J ) fB(3) G2(1,3) d(3) Io t. 
We also have: 

oG2(0;1,2)=oF2(0;1,2)-Fl (l)oFI(0;2)-Fl (2)oFI (O;l)z 

=I B(l)+B(2) IG2 (l,2)+n(l- ~ )JB(3)l Fa (1,2,3)-F
1
(1)F

1
(2)F

1
(3)

-F1 (l)42(2,3)-F1 (2){\(1,3) - F1 (3)G~(l,2) ld(3}-

-; f B (3) I F3 (1,2,3) _:_ F
2 

(1,2) F
1 

(3) I d(3) ~ 

Therefore, by neglecting terms of the order 
1/N, we _obtain: 

o G2 (0;1,2) 2,1 (B(1) +B~2))Gil,2) +nf B(3) G3 (1,2,3)d(3) lot. 
As it was al ready° po iiit.ed out we here cons i
d er only the case when the state of statis

. tical equilibrium in I is spatially homo-
geneous. 

Consequently: 

Fl ( 1) "' <I> 2 ( v I ) . 

G (1,2) =g (r
1
-1 )<I> (v ) <I> (v ) 

2 2 2 II 22 

G3 (1,2,3) =g3 (i\-r; , r2 -r~. )<I> 
2 

(v1 )<1>
2

(v
2

)<1>
2 

(v
3
). 
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We thus see that the condition (3.34) can 
be written in the form: 

f B(r, v) <1>
2 

(v) di\Iv" .o. (3.39) 

We also have: 

➔ ➔ ➔ ➔ ➔ ➔ o F (0;1)= <I> (v 1)1 B( r 1, v 1) +nf g/r
1
-r

2
) B(r

2
,v

2
)<I>~(v

2
) x 

I . 2 ..., 

X dr;dv; lot 
(3. 40) 

oG 2 (0;l,2).,<I> 
2

(v1 )<I> 
2

(v2)1(B(r~ 3
1 

)+B(r
2 

,v
2

))g
2
(r

1
-r

2
)+ 

+nfg (r4-r,r4-r)B(r ,v) ·<1> (v )dtdv lot. 
31323 33 23 33 

,i ••••••••• 

Consider now the special case when: 
➔➔ 

➔ ➔ ➔ ?> -i k r ➔ 
B(r,v) .. Bk(r,v,=e ¢(v) (3.40~) 

and remark that fork ,/0 the condition (3.39) 
is automaticallyA verified and for k 2:0 this 
condition requires: 

➔ ➔ 

f¢(v)<l>
2

(v)dv ,.,o 
(3.41) 

➔ 

¢ (v) ""Bo 

Then 
➔➔ ➔ ➔ 

-ik r I ➔ ➔ i k r ➔ 
oF1 (0;l)=e <I> (v )1¢(v )+nfg(r)e drx 

2 I I (3.42) 

X I¢ ( v')<I> {v) dvl of 
1: 

;s1· 



and in general: ➔➔ 

( 
➔ ➔ ➔ ➔ ➔ ➔ -ik r ➔ ➔ ➔ ➔ 

oG,. O;rl +r,vl; ... r,,+r,v )=e oG (O;r ,v ; ... r V ) 
" s s I I s' s 

As the linear equations, obtained from 
(3.33) for 

oF
1 

(t ;l); ... oG (t;l, ... s); ... 
s 

are invariant with respect to the space 
translations, we, therefore, also get: 

➔➔ 

o F ( t ; 1) "" e - i kr 1 <I> ( t , v➔ ) o ,; 
k I 

➔➔ 

(3.43) 
➔' ➔ ➔ • ➔ ➔ ➔ -ik r ➔ ➔ ➔ ➔ ) 

oG (t;r1+r,v1'···r +r,v ) .. e oG (t;rl,vl ;, ... rs,Vs. 
s !'4 "' s 

Here, of course, ct>k(t,v\) 
are linear functionals of 

By using the relations 
(3.38) we obtain 

as well as 8G8 

¢(; ). 

_(2.64) '· (3.36), 

ct> k ( t , V I ) z ct> I (VI ) f u k ( t , ;I , V; )¢ ( v➔i ) dv; , (3.44) 

where, for k,..o the condition (3.41) must be 
satisfied. From (2.72) it also follows: 

Rk(t)= fct>k(t , v
1 

)dv'
1 

➔ 

for ¢(v)=l,k=IO 
(3.45) 

Take first the case when 
<ct> I > <ct>> 

JI = JI ; JI =JI 
I ,2 1,2 int foi. (3.46) 

We.may then recall that to bring pre
viously formulated approximate equations 
(2. 2 9), (2. 30) or the kinetic equation to 
the explicit form, we rieed the evaluation 
of Rk(t) (ki'O). For the case 
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JI JI (coll.) 

1,2 "' 1,2 
JI. =JI(coll) 

in·t int (3. 4 7) 

the corresponding approximate equations 
(2. 69) , (2. 70) acquire the explicit form 
if we succeed in obtaining the expression 
of Uk 

We thus see that for both cases (3. 46), 
(3.47) we need to evalu_ate <I>k(t,v1). 

To attain this purpose, we shall rest
rict ourselves to the simplest approximation, 
in the nonlinear system of equations (3.39) 
we shall ~onsider only the first of thev 
and neglect here the correlatiori function 
G2 (t ;1,2 ). In such an approximation we have 
to deal only with one nonlinear equation: 

aF1 (t;l) (OL 
at ,. JII 1•1(t;l)+nf .ll1,}\(t;l) Fl (t;2) d(2). ( 3. 4 8) 

It is evident that in the case (3.46) this 
equation turns into the well-known Vlasov 
equation: 

a F1(t;;1,;1) • ~➔ 
----=-VI at 

a F1 (t;; 1 .v' 1 > 

av1 
+ 

n a +Ml.-f<I> ( ➔ ➔ - ➔ (3.49) 
arl I rl-r2)p(t;; )dr I aFl(t;rl'v) 2 

2 
I 

a ➔ 
vi 

p(t;r)=f Fl(t;r,,\)dvl 

That kirid of one-component Vlasbv equation' 
is used, for example,to describe a simpli-
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fied model of electron plasma-namely of 
classic electron gas, consisting of nega
tively charged point particles in a uni
form positively charged compensating back
ground. 

In this model 

<I> 
2 

(r) = e 2 
/ r. (3. SO) 

Note that for the statistical equilibrium 

p = 1. 
eq. 

To take account of the external field created 
by the positive background, we must subtract 
its constant charge density from the charge 
density of electrons. ~his amounts to rep
lace the expression (3.49) of the particle 
density by: 

- ➔ ➔ ➔ ➔ 
p ( t ; r ) "'" f F1 ( t ; r , v 

1 
) d v 

1 
- 1 

In the state of the statistical equilib
rium the total charge density is null and, 
therefore, the equation for the variation 
o F 1 ( t; 1 ) w i 11 be : 

aaF1<1;r1,v1) ==-v aaF1<t;r1_?1~+ (3.51) 
at I at 

n J ➔ ➔ ➔ ➔ J<11.-.(v1) 
+-M- -- f<I> (r -r )op-(t·r )dr -2. 

a ➔ '-' I 2 ' 2 2 ➔ rl .:.. a vi 
As we consider here the case when ¢(v) 2 l 
and as for consistency of approximation we 
must drop from (3.42) the term containing 
the correlation function g(r), we obtain: 

➔➔ . 

~ F ( . ➔ ➔ ) -ikr1 · 
u 

1 
0,r.,v1 =e <1>

2
(v

1
)of. 

Then the relations (3.43), (3.45) yield: 
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2 J<f\ Ct; v) 
at 

➔➔ ➔ 411e n ➔ 
z-i{kv}{<I>k(t;v)+ Ok2 R/t)<l>jv)l( 3 .S2) 

<I> (O;v),.,4> (v). 
k 2 

To solve this equation let us introduce 
the Laplace transforms: 

oo ➔ -zt - ➔ 
f<I> (t;v)e dt==<I> (z;v) 

o k . k 

Rez>O 
(3.53) 

oo -zt oo - ➔ ➔ f R ( t) e d t • f <I> (z, v) dv 
O k o k 

which bring the equation (3.52) to the 
form: 

2 
(z-i((v))ik(z;v') "-ikv 4 rre n R (z)+<I> (v) 

0k 2 k 2 
from which it follows 

~ <I>I,(v) il,v➔ 4rre2 n ~ 
<l>k(z; v),., ➔ + ➔ ---Rk(z). 

z-i (k v) z-i(kv) 0k2 . 
Therefore, in virtue of (3.53) 

I <1>£'.2 d; 
z-i(k➔v➔) 

00 -zt 
f \Ct)e dt,,. ------------
0 

2 ➔➔ 

1_ 411 e n f ik_v <I> (;)d; 
e k 2 z- i (k v ) I 

or: 

Rez>O. 

"" f <I> I (v) ➔ 

f 
-zt · .( ➔➔ dv 

-0 Rk(t)e dt,. z-1kv) 

1 + 4" e2n - 4 "e2 n <I> I ( v) ➔ ( 3 • 5 4) 
0k2 0k2 z f---'=----d v 

z-ikv' 
&1'1 



We see that just the left-hand side of 
(3.54) really enters into equations (2.27), 
(2.36). 

We can now give a more explicit form 
to the integral 

<I>-I (v) ➔ 
f ·it ➔ dv 

Z- 1 V 
(3.55) 

by remarking that ~I(v) is here the norma
lized maxwellian velocity distribution. 

To this end let us choose the direction 
of the vector k as the z-axis in the integ-
ration space of (3.55). · 

We then obtain: 
' M u2 

~I (v) ➔ M ½ oo e 2& 
f ➔➔ dv=(-2-) f ----du. 

z - i k v rr0 -'-oo z - i ku 

Here 

I oo -r (z-iku) _ 
. k = f e dr, Rez > 0. 

z-1 u 0 

The integration over "u" yields: 

Mu 2 2 2 2 

½ 
i r ku - ~ - r k u 

M 2 00 2 u eq 
(--) f e du=e 

2rr0 -oo 

0 
U e,t V 2M 

from which it follows: 

"'() 222 z 2 ..., .._. v oo - r z -u k r l oo -r-- .. r 
~ ➔ eq ku J ➔➔ dv = f e - dr= -- f e eq e dr 

z-, i k v . o ku o - eq_ 

and. in particular: 
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~ (0 00 2 . I, ➔ 1 . -r wr .. wr 
lim f ------ dv "" -- f e I cos -- + 1 sin --ldr= 
➔ o · -~ ➔ ku o ku 'ku c · c- lw - 1 K V eq eq eq 

c>O 
w2. . 

- ------ 00 2 1 yrr 4k2u2 -r uH 
= -k-- f 2 e eq + i f e · sin -k--dr I. 

u eq - 6 u <'q 

Therefore the re~aticins (2_.37), (3.54) 
give: 

➔➔ )2 <a•vo ➔➔ ) 

F(k v0 = •-;r-
00 

-r2 

. r= ueq . -f e I l~e +1 
-- 2 0 ku 

eq 

sin(~)dr 
ku,.q 

=Re-~~~--.:____ ___ --' 
➔ ➔ O• V oo 2 ➔ -• ( ➔ -> 2 

(I- Of -r . O• V 4 2 ➔➔ O•v ) 
-u-oe sin(r--'l)dr}+-"-c_n_i a•vo_i- -4-f-I+ 4rrc2n 

0k 2 eq c u,.q Ok2 - 2-vrrc u,,q 

(3.56) 

Consider now equation (2.36) for t~e 
case when Sis a poin~ particle with the 
charge Ze interacting with thB I particles 
only via the .Coulomb interaction. Then 

. . • -2 . #" . 

v(k) '= 4rrZe · 
k2 (3.'57) 

By substituting (3.56)·; (3.57) into '(2.36) 1 

we obtain the kinetic equati'on of the' Mar·kof-
f ia:Ii ·typ·e. · _ · _ · · _ · , 

In a ~ori ifm~li~ied ·ap~rd~tmit~cin :th~ 
analogous kin~tic ·eq~~tftjri ~~i pr~vidtisly 

: f~unc} ·by S .V. Temko 191.'~he ger1ei;al_iza tion _to 
tlie ·quantum case~~~ conii'd~i~d fn '.the · 
paper/IO/ ·by 'yu·.·t.Klimo:ritovich ;arid S.V.TeJ!il<o. 

It is clear that the main use 'bf the .. ; . 
mentioned equation was directed __ to_ desc.ribe 
the movement of a charged particle in the 
classical electron plasma. 
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We wish, however, to point out that all 
our equations were derived from the general 
approximate equation (1.26) which itself 
was obtained under the assumption that the 
interaction between Sand I was small. 

But if we suppose that e 2 can really be 
treated as a small parameter, ~e ought to 
drop from (3.56) the denominator, because 
all its terms but 1 are proportional to e

2 

and v 2(k) already contains the square of 
this parameter. 

We then obtain a simplified expression~ 
(;.-; )2 

-• - --~ 
F(k·v )=-l __ jrr e 4ueq 

o ku 2 eq 

which is proportional to 1/k. 
In the considered equation (2.36) 

•➔ 2 ·• 
dk = k dkda 

so the integral over k would -be 
7_1_ k2 l k2 dk "" J ~ . 

o k4 T O k 
We see that it diverges logarithmically 
both for small and large values 1 of k. 

In the language of quantum field theory 
we have here both "infrared" and "''ultravio
let" divergence. 

It is easy to see the physical origin of 
these divergences in the considered case 
of the Coulomb interaction. 

Note first that the potential energy of 
interaction between S and a I -particle will 
be small relative to their mean kinetic 
-energy when: 

.L « 0 
r JZ!e 2 
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Therefore, a correctly evaluated contri
bution of k space to the integral comes only 
from the region where: 

0 
k« k "" -- (3. 58) 

max !Zic 2 

On the other hand, it is necessary to 
take into consideration the effect of scree
ning of a charge in the pl~sma at large 
distances characterized .by the Debye length. 

Neglecting of such a screening effect 
causes the divergence for small k. 

When we take the full form (3.56), denomi
nator being included, we see that for small 
k the function F(f.~ r is of the order k 
so that the "infrared" singularity is eli
minated. 

But , f o r k ➔ "" 

1 ➔ ➔ ) ___ . e 
F(k,v -:- ku 

0 eq 

( ;:;. -; )2 
0 

4u 2 
eq 

and the logar~thmic divergence remains for 
large k. ~ 

Therefore, in order to make the integral 
term in the right-hand side of equ~tion 
(2.36) convergent, we may use a·cut off pro
cedure by integrating over k in the interval 
(O,kmax) instead of (O,+oo). 

To elaborate a self-consistent ~ay of 
approximation not needing cut Qff procedure, 
introduced ad hoc, we must refine our 
appr_oach by separating,··. for example, from 
the short range part of the Coulom~ inter
~ctiori, a special collision type Liouville 
operator. 
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We shall not consider here this problem 
and proceed to the study of the case (3.47). 

Equation (3.48) now turns into the 
Boltzmann-Enskog equation for the hard 
sphere interaction: 

aF1 (t;r\,; 1) 

rJ t 

► iJFl(t; ?, , ~I} 
~ - V • 

J av
1 

+ 

2 ➔ _,, ➔ • . -• -• -i' ➔ 
tna f v ■ oO(v -a}l,5(r -r -a <r}b (a)-

11 . I ,2 I .2 I 2 0 v , v 
· I 2 

-8(r'-r +a ,;)!F (t;r 3 )F(t;r',; )d;;dr'dv'. 
I 20 I Jl I 22 22 

(3.59) 

Here b,.
1

s (J) represents the operator acting 
on functitns f(v

1
,;

2
) by changing their argu

ments into: 
. 

VI 
• _ _,, JI • • • -•_ ➔ -+ .. • ( ) 
v" = v -a (v -a}; v •v·1'~.v

2
ta(v •o). 3. 60 

I I 1.2 2 2 1,2 

Vector ; is a unit vector and 

a 0 =a~ 

is the diameter of hard spheres characte
rizing the~ -particle interaction. 

It is to be pointed out that when 
(<fl'," ) 

/I = .II -
1,2 1,2 

and <I> 
2

(r) corresponds to a short range re
pulsion, we can obtain for F1(t;l) the kinetic 
equation containing a collision type ope
rator by making use of the second· equation 
of system (3.33) and neglecting there the 
term proportional ~o the particle density. 

Here, however, we shall deal only with 
the. simplest case of the Bol tzmann-Enskog 
equation (3.59} for hard sphere dynamics. 
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The corresponding generalization of the 
following considerations does not lead to 
any essential difficulty. 

By taking variation of equation (3.59) 
in the infinitesimal neighbourhood of the 
equilibrium solution, we obtain for oF 1(t;l) 

the following equation: 

aoF (t;t1, v1) -• a "F (t·i-' v_,)+na2 f(v .;,)o<J _.'!r)x 
I = - v ~- 1

' I , I' 1 o · I ,2 I ,2 at tar) . 

xlli(r•-; -a ;)b (<rj-o((,~; +a ;}1(<11 (v )oF (t;r'
2
3

2
h 

I 2 0 v , v 2 0 ,, I I 
I 2 -

➔ <ti < v > o F < t; ?
1 
,v >> d ,7 d; d v . 

~ 2 I I 2 2 
(3.61) 

As it was previously noted, the initial 
condition is given by formula (3.42). 

For the consistency of our -low density 
approximation we ought to retain only the 
first term and hence: 

,')fl (O;r 3 )= :-ikulef., (v }<l> (v )·. 
I I I 2 I 

from (3.43) further we have: 
➔ ➔ 

➔ ➔ ,-ik r ➔ 
8F

1
(t;r.,v )=c I <l>(t·,v )oc 

I 'I k I s • 

Therefore by putting here: 

<ti (t ;v ) c=,·<1> (v. )X ( t; V } 
k l }: I k I 

(3.62) 

we m~y bring equation (3.61) to the form: 

. axk(t;v\) . ➔• ➔ • ➔ i 2 ➔- ➔ 
-.,-. --,--- .. 1.k v

1
Xk{t;v 1)+na0 Lk(v )X (t;v )(3.63) 

ut ·,·· . · I k l 
-· : : ➔ : _.,. , ➔ 

Xk(O;v
1
)=¢(v

1 
),_ (3.64) 
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where Lk(v\) is the operator acting on func
tions f( v

1
) as fol lows: 

~ ➔ .-+ 

ia k-a ·ia k-a 
➔ ➔ ➔ ➔ ➔ ::'\ 0 ➔ 0 

L (v )f(v 1 ),., f(v -a)0(v
1 2

.a,le f(v* )-e 
k I I ,2 , 2 

t-f(v'*)-f(v')l<t> (v )<I> (v )d;<l; . 
I I 002I I 

rev>+ 
2 

To solve (3.63), let us introduce the Lap
lace transform: 

no -zt . ., -
Jc X (t;v)dt=X (z;v) 

o k k 

(3.65) 
"" -zt ➔ ~ 
Jc it> (t;v)dt,.,<I> (v)X (z;v) 

0 k 2 k 

which brings the equation with the initial 
condition (3.64) to the form: 

(z-ikv\ )Xk(z; v 1)=na~ 1,_(vl )Xk (z; v I)+¢ (v 
1 

). 

Therefore: 
~ ➔ ➔ 2' -1 
X (z;v )=l z-ik-v -na L (v )I ¢(v ). 

k I I O -k I I (3.66), 

By making use of (3.44), (3.65), (3.66) we 
get: 

00 -tz ➔ ➔ ➔ 2 -1 
f e, Uk(t,v I )dt=lz-ik-v

I
-na

0
Lk(v

1
)1. (3.67) 

0 

Here it must be remembered that this operator 
relation was obtained by using the ini~ial 
condition (3.42) and therefore (3.67) holds 
always fork to, and for k ""o it remains valid 
only if applied to a function f(v 

1
') satisfying 

:the condition (3.41). 
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Recall further that each of equations 
(2.69), (2.70) has only one term containing 
u (t-r ~ 1 ) . This opera tor is applied to an 
eipressionx which as a function of VI 

satisfies the condition (3.41), in virtue 
of (2.61). We may also add that the men
tioned terms are proportional to 1/V . Let 
us now investigate, for instance, equation 
(2.70). By using the Laplace transform and 
taking the limitV ➔ 00 the following equation 
is obtained: 

( 2 L .( -• )) - ( ·• { • z-na v x z ; v ) .. X v ) + 
S U O fl 

(3.68} 
n ➔ ➔ - -

+-., Jdkfdv <I> (v )T(v.,v )W (z;l)T (v ,v )x 
(217f I 2 I -k O I k k O I 

x X (z; v ) 
0 

x(v hx(O,v' ), 
0 0 . 

where 

A 

➔ ➔' ➔ ➔ ➔ _ _, ➔ 

L {v
0
)f(v

0
)= f (v 

1
.a)O(v -a)<I> (v )1B (a)-lix 

s o, ·O,I I I vo,v, 

xrl;dv/(v
0

) (3. 69) 
- ➔ OO -z l ➔ 
X ( z ; v ) "' f e x ( t; v ) d t , Re z > 0 

0 O 0 

I ➔ -• 2 ➔ I 
00 - Z + j v-0 K - na L ( V o)it -• 

wk (z;l)= J e s Uk(t, V )dt. 
0 I 
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I 

As the operators 
➔ ➔ 2 ➔➔ 2 ➔ 

i V k -na L (vo), ik V +na L (v ) 
0 S I O k I 

are acting on functions with different ar
guments, _they do commute and therefore the 
relation (3.67) gives: 

Wk(z;{)=lz~i;- 0 k--:na2 ~ (v--)-i; .k~na2 L (;)1~
1
(3.70) 

· . · 0 - S O 1· 0 kl 
• -, l . , ·'• .• ·t • 

We-may thus bring equation (3.68) to the. 
form: 

I 2 L ( ➔) ➔ - ➔ ➔ z-na . v
0 

-R(z;v )lx(z;v )=x(v ), 
S O O . 0 (3.71) 

where 

➔ n ➔ ➔ - -➔ ➔ ➔ 
R(z;v

0
)=-3 fdkf.dv <I>'"'(v

1
)Tk(v0 ,v1)!z +1(v0 -v1)k-

. (2rr)' · . 'I ,:., . 

(3.72) 
2 ➔ 2 ➔ -1 -

- na L / v 
O

) - n a 0L k ( v 1 ) I T k ( v 
O 

, v 
1 

) • 

Consider now a function F(v'0 )- By recal
ling our reasoning of §1, which led us to 
formulae (1.15), (1.16), (1.17) we find ,that: 

· J F(v O) 11>0 (vo') xtt; VO ),d vo'~IF(; }f (t;; )'dv· ,., · 
., 0 0 0 

'.'i_ , ', . , 

- 1 ➔ f ➔ ➔ ➔' 1 ➔ m · "'V f F (v
0

) (t; v
0 

)dr0 dv o= V JF!v
0

(t) !.vo<S, I_)d0
5

dn2"' 

= JF lv/t) _l x (v
0

)9)ae (S, I_) ~n
5

dn
2

, 

\ 

70 

where 

9) (S, I ),.,1- <I> (v }9) (I) 
ae V O O eq 

f 9) (S, I)dO dO '"'= 1. 
ae S ,:., 

Ke thus see that the expression: 

<F(v➔o(t))x(vo)> ""I <l>o(v }F(v >x(t;;/ )dv 
ae O O O 0 

represents the two time correlation average 
taken over the "approximate equilibrium" 
probability distribution 9) (S,I) which dif-

ae 
fers from the exact equilibrium distribu-
tion 9)eq(S, I} for the total system s + I 
by neglecting correlations betweens and I 
particles. 

But we must point out that only the 
case when the probability of collision bet
ween Sand I particles is small: 

na3 <<l 

is considered here and in such a situation 
the correspondrng fOrrelations may be neg
lected while computing the main term. So, 
in this approximation we may write: 

< F(v➔ (t)}x(v )> ""f F(v )<I> (v )x(t; v }d-; . 
_ 0 0 eq O O O O 0 

(3.73) 

Let us take, for example: 

F(vo) .. x(v➔ }=V 
. r:· 0 O,x 

Then in the adopt~d approximation: 

je-z1
<v (t)v >dt=J<I> (v )v x(z;v )dv ,· 

0 O,x O,x . 0 0 O,x O 0 (3. 7 4) 

where x (z; v'0 ) is defined by equation 
(3.71) in which x(v➔ )=v . 

O O,x 
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The validity of the approximation (3.73), 
(3.74) will be discussed in §4 where the 
initial condition for~ (S, I) will be taken 
in the form: t 

g) (S , I) = x (S) g) (S , I ) · 
0 eq (3.75) 

instead of (1.2). 
Let us now stress that equation (3.71) 

is quite analogous to that found in the 
paper/II/ by J~R.Dorfmann and E.G.D.Cohen 
for the low density case and therefore can 
be treated by the procedure elaborated by 
these authors. In their paper M =m, a 0 =a, 
so that the particle Scan be considered 
as a "tagged" particle of one large system 
I, but this circumstance is not relevant 
for the validity of their approach and it 
can be repeated almost literally for equa
tion (3.71). 

Therefore, we shall not discuss this 
point further. 

It is to be stressed that this equation 
follows from (2.69), (2.70) which were 
obtained without any assumption about the 
smallness of interaction in the I system. 

Of course, to reduce (2. 69), (2. 70) to 
an explicit form the expression of the ope
rator Uk(t ;I) is needed. 

But such an expression can be found not 
only by using the Boltzmann-Enskog equation 
for hard spheres. The application of other 
more sophisticated kinetic equations is 
quite possible. 

We may also use the so-called hydrodyna
mic approximation (which is independent of 
the assumption about the smallness of in~ 
teractions in I) to find the explicit 
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expression of the operator Uk(t;l} 
region: 

1 k « - , t >> t , e2 I 

in the 

(3.76) 

where t 2,t ~ denote, respectively, the mean 
free path and the mean free time for I. 

As it can easily be shown, just this 
region is relevant for the long time beha
viour of the correlation averages,e.g., of 
the type (3.73). 

4 . 

We shall continue here to study the in
teraction of the particles with the large 
system I under the same conditions as in 
§§1,2 with the only exception that instead 
of (1.2) we choose the initial expression 
of g)

1 
(S, I) in the form: 

g)o ( S , I ) ,., h ( S ) '.I) (S , I ) , 
eq 

where ~eq ffl,I) is the distribution function 
corresponding to tht overall statistical 
equilibrium of the total system S+I. 

In the considered situation: 

j)e (S, I)=W(r~,r1 •.. -~)<1>
0

(v
0
) fl <I> 

2
(v.) 

q (I< ·<N) I 
=!= 

( 4 .1) 

and the normalization 

( j) (S, I)) ,,,1. 
eq S+I 

Therefore 

J I ( ➔ ➔ ➔ ➔ ➔ d ➔ 1 . •• W r (1 r 1 , ••• r N) dr 
O 

dr 
1 

.•.. r N = . 
,V V 
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Since W is translationally invariant, this 
relation yields: 

f. .. JW (r
0
,r

1 
, ... r )dr➔ ... dr➔ = .!._. 

V V N I N V 
(4. 2) 

We thus obtain: 

(~0 (S, I)) = h(S)(~ (S, I)) 
I cq I ( 4. 3) 

=h(S).!..lf> (v ). 
V o o 

Let us note that in the case of the pre
viously ·considered initial condition (1.2) 

( ~ 0 (s, I ))I= f (S-). x(S) <I>
0

(v
0

). ( 4. 4) 

Therefore in order to preserve this previo
usly adopted normalization, we take in (4.3) 

h(S)=Vx (S). 

Then the initial value of ~.~,I) 

~ (S,I),,.Vx(S)~ (S,I) 
0 c~ ( 4. 5) 

will satisfy the same relation (4.4) as in 
the case (1.2). 

Starting from ~.5) the time evolution 
of ~1 (S,I) is defined by the Liouville 
equation: 

a~. <o> 
--=(Jls.+JII+JI. )5)• (1.18) at Int . 

. 
We now introduce the function x. (S): 

74s 

( ~ ) ~ = X (S) If> ( v ) = f (S) 
t .:. l O O t ( 4. 6) 

and note that it can be used to compute 
the equilibrium correlation averages of 
the type: 

<F(n (t»x<n )> . 
S S eq 

Really, it is easy to see: 

V<F(n (t}}x(n )> =(F(n (t))Vx(S)~ (S,I)) = 
S S eq S eq S+I 

=(F(n (t)}~o(S, I)) ~ ==(F(n )~ (S, I)),~ 
S S+.:. S t S+.:. 

.. (F(S}(~ (S, I))~) 
l .:. S 

# 

and thus: 

v < F(n
8

(t}}x<n
8

)> =(F(S)x (S)) 
, eq t S 

( 4. 7) 

"" f F ( r , ; ) X ( t ; r 3 ) If> ( v ) dt dv . 
00 0000 00 

Noting that · 

<f(S)> z(f(S)~ (S,I)) I=l(f(S)<I>o(vo))c;; 
eq eq S+ V u 
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,I 
,I 

we also may write: 

<F(n (c)) 'X en )> 
S S eq 

l<IF(n )1 2
> <lx<n )12 > 1½ 

S eq S ·eq 

➔ ➔ ➔ ➔ ➔ ➔ 

f F(r ,v )x(c;r ,v )<I> (v )dr dv 
00 0000 00 

( 4. 8) 

-----------
III F(;o,;o)l

2
<1> (v ) dr dv fl x(r ,v )1 2 

<I> ( V )dr dv 1½ 
00 00 00 0000 

and this expression is clearly independent 
of the normalization of x (S). 

We now proceed to use the method outli
ned in §1 to obtain an approximate equation 
for x (S). 

t 
Denote: 

~ - V x (S) ~ ( S, I ) = L'1 t . 
t t eq ( 4. 9) 

Then because of (4.3), (4.5), (4.6): 

(1"11)1= 0, 1"10:0. ( 4 .10) 

By integrating (1.18) over n1 and using the 
identity: 

( JI 
1

F (S, I)) I = 0 

we get: 

ax (S) 
_!,_ 

at <I> ( V ) "' JI O X (S) <I> ( V ) + 
0 0 S l O 0 

+V ( JI. x- (S) SJ --{ s ' I))-~ + ( -JI . l\ }."C' 
int t eq k int k 

74i, 

( 4 .11) 

and thus: 

ax~) 
1 

_t_=JI 0 x (S)+V--(JI. x (S)~ (S,I))~+ at S t <f> (V) Int t eq k 

since 

0 0 

1 + --(JI L'1 ) 
<I> ( v ) int t }: 

0 0 

JI ~ X t (S) cl>/ v O) = <I> o< v O ) JI; X t (S) . 

Let us now introdtice the operator 
only on the functions f(S) of the 

(I) 
JI 5 f(S)=V(JI. f(S)<I>" 1 (v )'.D (SI)) 

int O O eq ' I 

Then (4.12) yields: 

(4.12) 

(I) • 
JI 5 acting 
phase n : 

' s 

(4.13) 

ax (S) 
_! 1 (I) 1 -

=.TT 
0 x (S)+-- JI5 X (S)<I> (v )+-(JI. L'1i) .( 4 .14) ac S t <I> (v ) t O O <I> ( v ) int I 

0 0 1 0 0 

From (1.18), (4.9), (4.15) we get: 
a L'1., 
--=(JI 5° +JI~+JI. )~ +V(JI 0 +JI~+JI. >x (S)'.D (S,I)-a ( k ID t t S k Int t eq 

1 (I) 
- VI .n O X (S) + -- JI X (S) <f> ( V ) + 

S t .<1> (v ) S t o O 
· 0 0 

(4 .15) 

+ _I - ( JI . L'1 ) ~ I ~ (S, I ) 
<I> (v) int t k eq 

0 0 

1"10"" o. 
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It is easy to see that: 

i ! 
( JI O + JI ~) x (S) 9) (S, I ) == I JI O X (S) l 9) (S, I ) + 

S .:.. t eq S , t eq 

+)( (S)(Jl 0 +JI~)9) (S,I). 
l S k eq 

But 

( JI O + JI~ +JI . ) 5) (S, I ) = 0 
S ,:. mt eq 

and therefore 

( JI O +JI~) x (S) 9) ( S, I ) = f JI O x (S) I :D- (S, I}-s .:.. t eq S t eq 

-x (S)JI. 9) (S, I). 
t mt eq 

From (4.15) it now follows: 

at..t o V 
--=(Jl 5 +Jl~+JI. 1 )t..t ---1 (JI. t.. ) l:D- (S,I)+ at ,:,. 1n q> (v ) . int t I eq 

0 0 . 

+VfJI. v (S):D- (S,I)-x(S)JI. 9) (S,I)l-
1nc1 eq t int eq 

V 0) 
- --1 JI x (S) <I> (v ) I :D (S, I), 

$ (v ) S t O O eq 
0 0 

or 

at..t V -. 
--= (JI 8 + JI~ +r)t.. --{(rt.. )~l:D-eq (S, I)+ 
a t "" t <f}O (VJ t u 

+ V (JI. x (S )- X (S) JI. ) :D- (S, I)-int t t int eq 
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1 (I) 
-V :D- q(S,I}I --. JI x (S)<I> (v) l 

" <I> (v ) S t O 0 

t.. = 0, 
0 

where 

and 

( I) 
1-, = .II. - JI 

tnl S 

(0) (I) 
.IT =JI +JI s s s 

0 0 

Let us consider the case when: 

(4.16) 

(4.17) 

(4.18) 

.JI. = I .II (0,j). (4.19) 
int (I< ·<N) 

=J= 

Here .II (0,j) represents the Liouville operator 
corresponding to the interaction between S 
and j- th particle of I. 

For example:· , 
(coll) 

.II 
int 

-
I T(0,j). 

(l~j~N) 

Consider the expression: 

V(JI(0,j):D-e/S, I)f(S))
2 

. 

Note that (4.1) gives: 

V( JI (0,j) 9) (S,I)f(S)) ~= 
eq "" 

= V f JI (0,j)F (0, j)f(S)<I> (v )<I>" (v. )d( d;, 
s,I o o I 1 1 1 

(1 .10) 

( 4. 20) 

(4.21) 
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where 

F ~<O,j): J ... Jsct -~~)o<; __ ;.1wcr~,;1 ... 1N)dr~dr1 ... dr~. 
S,,:., V V O l l 

Taking into account the symmetry of the 
function 

W(ro ,r., ... rN) 
with respect to the variables 
we see that, 

➔, ➔, 

r l , ... r N ' 

Fs,I (O,j)= £-·· lo(r~-r~)o(~ -r;)wer~;r; ... r~)dr~ dr1 ... d~ 

(4.22) 

f f W( ➔:.. ➔., ➔ ,)-1::>, -d➔ = ... r ,r r ... r uc ... r'. 
V V Oj2 N 2 N 

Let us introduce the reduced space cor
relation function with the usual normali
zation: 

C ➔ ) . 2 ➔ ➔ ➔ ➔ )d ➔ d➔ w r0 ,r 1 =V .j···lW(r0,r 1,r 2, ... rN r
2 

... rN (4.23) 

From the translational invariance and 
isotropy it follows that this function 
has a radially symmetric form: 

w(r➔ ,r
1

) =W(jr -r I). 
0 0 l 

The limiting expression (for V ➔ 00 ) of 
w(r) possesses the property of correlation 
weakening: 

w(r) ➔ 1 

r ➔ 00 • 

If the interaction between S and I is comple 
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tely absent, this function would be equal 
to 1. 

In the considered case of small inter
action w(r) is close to unity with the 
possible exception of the range of strong 
repulsion forces. 

Returning to (4.22), (4.23) from (4.21) 
we get: 

V(.11(0,j)11 (S,I)f(S)) 
cq 2 

l - ·• ➔ 
=- f .11(0,j)f(S)cf> (v )cf>~(v. )dr.dv. 

V O O 2.. l J J 

(4.24) 

- cf> (v) 
=V(.11(0,j)f(S)_J}_..Q..:j; (2))~ , 

V cq ,:., 

where 

JI (O,j) = JI (O,j) w( Ir~ -rj I) (4 • 2 5) 

and therefore: • 
d 

- cf>(v) 
V(JI,. 1 f(S)~ q(S,I)) = V(JI. f(S)__Q__£_ ~ (I)) 

n -e I Int V eq I ( 4. 26) 

Here 

- -
JI. =2 JI(O,j). 

int O<"<N) 
. =J,.. 

(4.27) 

We thus may formulate a kind of prescription: 
i~ we replace feJS,~). by its appro~ima
t1on completely 1-gnor1ng the correlation 
between S. and I : 

1.1: 



:T 
! 

. cf> (v ) 
~ (S, I) ➔ o · o ~ (I) 

eq y eq ( 4. 28) 

then the "renormalization" of the inter
action, that is the replacement: 

JI int ➔ JI int ' (4.29) 

serves to correct the effect of correlation 
neglecting (4.28). 

At least this prescription comes true 
when appli~d to the construction of the 
operator JI~~ . 

From (4.24) we ~lso notice that all 
these expressions for j ,,,1, ... N are mutually 
equal and, therefore, by taking into ac
count the definition of JIO) we obtain: 

s 
{I) -

JI8 f(S)- n f JI (0,1)<1> (v ) f(S) dt dv . 
<l>(v) I l I I 

0 0 
( 4. 30) 

We now turn to the evaluation of the cor
rection term in the right-hand side of 
(4.12) 

_1 _(JI 
<I>o<vo) int At)! (4.:q) 

For this purpose let us go back to (4.17), 
(4.18). In order to extract from (4.17) the 
approximate expression of At which could be 
used in (4.31), we neglect in (4.17) the 
"terms of the second order ·of· smallness", 
At itself being considered as havirtg a firs 
order of smallness . 

. In such an approach· we, first .d-rop-•out .;,, 
from. ( 4 ~ 17)''. the terms con~afning -f:Ai . , :: • 

, Further- the, zeroth, order·· appro~imation 
for~ (S,I), namely (4.28), is,used;·,,-:: - eq 

ai 

In order to correct somehow the accepted 
way of -approximation, we may try to apply 
here the previously formulated prescription 
and replace 

JI. ➔ JI. 
int int (4.32) 

in (4.17), (4.31). 
We thus obtain the following approximate 

equations: 
(a) 

aA (a) 
-~=:(JI +JI ) ~ + at s I t 

- - (4.33) 
+(JI. tx (S)- X (S)JI. )<I> (v )1) (I)-1) (I) X 

in t t Int O O eq eq 

(I) . 
X I JI X (S ) cf> ( V ) I 

S t O 0 

(a) 
,1 t X 0, for t = 0 

and, from (4.14), since x(S)<t>
0

(v).f(S) 
• t t we get: d 

aft(S) (a)-
a ""JI f (S)+(JI. A ) . 

t S t int t I (4.34) 

We must emphasize, however, that the 
accepted procedure for accounting S - I 
correlation does not formally possess inner 
consistency. 

In fact we retain here only some correc
tion terms while the other, formally of the 
same order of smallness, are neglected. 

Nevertheless, from the intuitive physical 
standpoint this procedure may be justified 
in the same way as that used by Enskog in 
his theory of dense hard sphere gases. 

83 



Ii 
i ! . 

I . ' 

..-_l 1 

For example the correlation function w(r) 
becomes vanishing in the region of strong 
repulsive forces. 

So its introduction via the replacement 
(4.32) serves to restore the smallness of 
probability of finding lr~-r. I within this 
region. 1 

Going back to (4.33) we easily obtain: 

( a) t (JI S +JI I )( t- r ) _ ~ 
!). = f e ((JI . x (S) - x (S) JI . ) x 

t O int r r int 

x <I> (v )9) (I)-
o O eq 

(4.35) 

(I) 
-~ (I)IJI x (S)<I>

0
(v

0
)1)dr 

eq S T 

On the other hand, 

IJI(li' (S)<I> (v ) I= (.ii x (S)<I> (v )~ (I))~ 
S r O O int r O O eq "-

(JI. <I> (v )~ (I))~= V (JI. ~ (s, I))~ 
tnt O O eq k tnt eq k 

=- V ([ JIS0 +JI~] 9) (S, I)) 
k eq 2 

= - JI 
O 

<I> ( V ) - V ( JI ~ 1) (S ' I)) ~ =: 0 . 
S O O k eq k 

Therefore (4.35) gives: 
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(a) t <Jis +JI i><t-r) - -
!). ,. f e l(JI. x (S)-x (S) JI. )<1>

0
(v )x 

t 
O 

mt r r mt 0 

X ~ (I) -
eq: ( 4. 36) 

_g) (I)((JI. x (S)-x (S)JI. )<1>
0
(v )g) <I))~ldr. 

eq mt r r mt <1 eq "-

Since this function is symmetric with res-
pect to the particles 1,2,.:·N of I 
from (4.19), (4.34) we get: 

a f (S) (I ) ~ ( ) 
_t --=(JI 0 +JI )f (S)+N(JI(Ol)!). a) ar s s t • t 2 (4.37) 

The substitution of (4.36) into (4.37) 
leads us to the approximate equation for 
x (S) in a closed form. 

1 We now proceed to disentangle this equa
tion in the case of hard sphere collision 
interaction (1.10). 

First note tqat in virtue of (1.11): - -
JI (O,j) .. w(a)T(O,j) 

from which it follows that: 

JI (l) ( 2 s =W a)na fs , ( 4. 38) 

where the opera tor £5 is defined in ( 4. 44) . , 
Let us further notice that.: 

Ji = w(a) JI. = w(a) I T(O,j) 
Int mt (I< ·<N) 

=J .. 

(4.39) 

and consider the expression: 
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T(O,j}x(S)<I> (v )!D (I)-x(S)T(O,j)<I> (v )!D (I),,, 
0 0 cq O O eq 

2 ( ➔ ➔)➔ ➔ 1 ➔➔ ➔) ( .... )() = a f 0 v • a v • a 8 ( r -r - a a B a X S x 
0,j 0,j O j v 

0
,vj 

x<I> {v )~ (I)-o(r -r -a7:,)x(S)B (o')<I> (v )!1) (I)ldU: 
(I 0 eq 0 j V 

0
,vj 0 0 eq 

Since identically: 

Bv V (a) tPo<vo)<l>~{v )=tP.o(vo)<I> (v.) 
0' j k j 2 J. 

it follows that: 

B v o· v j ( a ) <I> o ( v 0) !1) eq ( 2 ) = <I> o ( v o ) 9) e J 2 ) • 

Thus: 

T(O,j)x{S)<I> (v
0
)1.> (I)-x(S)T(O,j)<l>

0
(v

0
)!D (I)= 

0 cq eq 

( 4. 40) 

,.,T(O,j)x(S)<I> (v )9) (I).T(O,j)f(S)!D (I), 
0 O eq cq 

where the operator TW,j) is defined by the 
relation: 

T(O,l) ..,a2 JO(v .7:t)v .ao(r -1 -a7:t) 
0,1 0,1 0 I · X (4 .41) 

x 1B (a)-1 Ida. 
vo,v I 

Taking into account (4.36), (4.39), (4.40), 
we can write (4.37) in the form: 

86 

aft(S) (- ➔ ..2_-+na2w(a)f )f (S) + ___ = VO ➔ S t 

at ar O 

(4.42) 
2 t . 

+w (a)f K(t-r)f (S)dr, · 
0 T 

where K(t) is the operator, acting on func
tions f(S), defined by the relation: 

K( t) = 

- (./Is +JI I)t 
,,,N(T(0,l)e I [T(0,j)- (T(O,j)1J (2)) 111 (~))'\' 

(I< "<N) "'I 2 •·•1 ""' 
3':J= 

{4 .43) 
➔ a O} 

.II z - V -- + .JI 
s o a; s 

0 

and where: • 
~ 

(I) - . ➔ --> 2 CJ 
.II = nw{a) f T (O,l}<I>~(v ) dr dv =na w(a).is s k I I I . 

(4. 44) 

f = J 0 < v . 7i- >< v . 7' > 1 s c; > -n <1> ~ c v 
1 
> d v 

1 
. 

S 0,1 0,1 v O'vl k 

We now wish to note the connection between 
the opera tors f 87L 8 from_ (2: • .50) , · ( 4. 44) : 

; 

Ls "" f 0 (vo 
1 

• ;)(vo 1.7:,)<l>~(vl )IB (;)-1 ldvl . ( 4. 4 5) 
• , k VO'VI' 
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Since * 

f <I> (v )h(S),., <I> (v ) L h (S) 
S O O O O S 

it follows that: 
➔ a 2 , 

(-v0 ~ +na w(a)f
5 

)<1>
0

(v )h(S)"' ar 0 
0 

=<I> (v )(-v
0
4 +na2 w(a)L

5 
)h(S) 

0 0 ar O • 

what leads us to the identity: 

➔ a 2 Q 
t (- v0 -➔ + D a w(a) ol. ) 

aro s <l>o (vo)h(S)"" e 

sc<I> (v )e 
0 0 

( ➔ a 2 
t -v

0 
~+ na w(a)L

8
) a r . 

0 
h(S). 

{4.46) 

Going back to (4.42), (4.43) we see that 
the present equation is essentially the 
same as previous ones (2.51), (2.52), the 
only difference, apart from the Enskog 
factor w{a), is entirely due to the appea
rance of the operator T(O, I) in the right
hand side of ~-43) instead of iro,1) fi
guring in (2.52). Therefore, we can apply 
the procedure used in §§2,3. 

* Because 

B (;;)$ (v )<I> (v ,)h(S),..cp (v )<l>~(v )B (;;)h{S) 
v 0• v I o o ! 1 .o -o ,:,, 1 v 

0
, v 

1 
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~ 

Thus we obtain: 

➔ ➔ ) ➔ ➔) a )L) (r V + ax,(, •.•• -<-v'.-.+ na2w(a s x, •. 0 (4.47) at a r 0 

2 t ➔ ➔ 
+ w ( a) f Q( t-r) X (r , v ) dr , 

0 
.r O o 

where: 

Q(t)= _n_ f dk j dv <l>~(v )T (v 'V ) X 
(2 rr) 3 1 ,:,, I -k 0 I 

➔➔ 

-ikr0 
xe e 

➔ : a 2 ( ) I ) ➔➔ _ ( v __ + na w a "S t • k 
0 a ➔ I r 

ro e 0 

(4.48) 

U/t,l)Tk(v
0

, v
1

) 

and where 

➔➔ 

-iaka 
2 ➔ •➔ ➔ ➔ ( ..,_ l' ➔ T (v ,v )=a f(v .a)0Ct.v -a)e B ( aJ-,1da 

k O I 0,1 0,1 v ,v 
0 I 

(4.49) 

44 ➔➔ 
- 2 , ia k a -iaka ➔ 
T (v ,v ),.a f(v -~0(v .;;)(e B fa)-e )da. 

-k O I 0,1 0,1 v ,v 
, 0 I 

Here the opera tor 4_(t; 1} can be defined 
just as in §3, namely by considering the 
infinitesimal variations of the reduced 
distribution functions for the system I 
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in the case (3.40'). Then: 
-~➔ 

-ikr o F1 ( t; 1) = e I CIJk ( t, v I) o e-
(3 .43) 

and 

CIJk (t,v 1 )=<f>}:(v 1 )Uk(t;l} ¢ (v'
1
}= .. 

(3.44) 
➔ ➔ , ➔, ➔, 

= <f> ,, ( v ) f V ( t; v , v ) ¢ ( v ) dv . 
.:.. l k II I I 

It is interesting to note that had we intro
duced another operator Uf (t;l) by putting: 

U'(t;v'
1
,v')<I> (v')=CIJ (v )U {t;v' ,-;') 

k I 11 11- k JI ( 4. SO) 

then (4.47) could be written in the form: 

aft(~,vo} - ➔ ~-+na2w(a)-f )f(r ,v)+ 
---- = ( VO ➔ S t O O (4 51) ac a r o • 

t 

+ w
2

(a) f Q'(t-r) f ( t ,v )dr 
0 T O 0 

with: 

➔➔ 
n _ -ikr

0 Q ' ( t) = (2 1l "f f d l f d v I T -k ( v O , v I ) e x 

<--:oa~➔ + na2wta>fs >t ik; 
xe O e O x 

(4.52) 

x Uk'(t;l)cJJ (v
1
)T (v ,v ). 

}: k O I 

90 

The equivalence of two representation (4.47), 
(4.51) is transparent due to (4.46). 

It is also easy to see that the opera-
tors: 

➔➔ 

-ikr
0 e e 

and 

Uk(t;l) 

-► a 2 
- (Vo~+ n a w(a) Ls )t . k➔ ➔ a r I ro o e 

commute since they act on functions of dif
ferent variables, namely on h(S} and F(v~ ). 

Consider now another identity: 

( 
➔ a 

➔➔ -v ? -ikr o-a ➔ + n a -w(a}) ) 
e O e ro ·s t 

➔ 

i (k+ Y>~ 
e 

➔ ➔ ➔ ➔ 

i p; (-iv0 (k+ P )+na2 w(a) 1,
8 

)t 
=e O e ' 

from which it follows that (4.47) has so
lutions of the type: 

• ➔ ➔ ~ 
➔ ➔ If r0 ➔ 

xt(ro,vo)=e xp<t,vo), (4.53) 

where Xy satisfies the equation: 

axe{t,vo) ,.(-ifv~+na2w(a)Ls)xf(t,v~ )+ 
ar 

2 t ➔ 
+ W (a) f Q o(t-T )x (r, V )<fr 

0 L f 0 

With 

(4~54) 
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Qo(t)=-
0
-JditJdvcI> (v )Tk(v ,v )x 

c. (2 rr) 3 I I I - - o I (4.55) 

-➔ ➔ ➔ •) 
(-iv0(k+ f>+naww(a)Lslt 

x U / t; 1) c T k (VO , VI ) . 

In particular for e = o we have:· 

ax(t,v·) 2 ➔ 2 t ➔ 
~ .. na w(a)L x(t,v )+w (a) [Q (t-r)x(r,v )dr at s o O o o 

where: 
(4.56) 

n ➔ ➔ -

Q (t)"'-- J dk Jdv <l>~(v
1
)T k(v

0
,v

1 
)Uk(t;l)x o )3 I ~ -

(2rr · ( 4 • 5 7 ) 

➔ ➔ 2 
(-i v0k + n a w(a)LS) t 

xe • Tk(v
0

,v
1

). 

In the case of arbitrary initial expres
sion: 

X (r•, ;/ ) 
0 0 0 

we can use the Fourier representation and 
deal with each Fourier component by making 
use of (4.54). 

Proceed now to obtain the hydrodynami
cal approximation for Uk (t; 1). We start 
with the local equilibrium distribution: 

M( ;>_;)2 
(hyd.) ➔ ➔ _ M 3/2 - -20-

F1 (t,r,v),.,p/n(hO) c ; 0= k i, (4.58) 
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where the quantities: 

P=r<t,1>, r=TCt,r), u=iiCt,r) 

represent, respectively, the local particle 
density,temperature and velocity vector. 
These functions must be very slowly varying 
over the distances of an order of the mean 
free path fi and over the time intervals 
of an order to guarantee the smallness of 
the correction term in the right-hand side 
of (4.58). 

Here, all we need is to consider the 
situation where the local equilibrium is 
only infinitesimally different from the 
overall equilibrium state: 

p(t,r)=n +op(t,r) 

T(t ,r) =T +oT(t ,r) 

ii(t,r) =ou(t ,1) 

n, T = Const 

(4.59) 

d 

op , BT, oil being infinitesimally smfill. 
In such a case the main term of o F t rd .) 

obtained by the substitution of (4.59) 
into {4.58) can be written in the form: 

oF (hyd[t,r,v) =<I> (v )I op (t,1) + Mv2 --?_0 __£_T(t,r) + M(vot1(t,r )) I 
I I n 20 T 0 

( 4. 60) 
where op , BT ,Bu satisfy the well-known 
linearized Navier Stokes equations. The 
correction terms to the right-hand side of 
(4.60) are, roughly speaking, proportional 
to the gradients fI _jj_, tI _i!_ of the 
variations op ,,BT ,oii. at at 
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,,I !: 
I• 

i ;f: 

i [ I 
'" I 

Due to the linearity, we may consider 
here the complex values for these varia
tions because, separately, the real and the 
imaginary parts of 'them satisfy the men
tioned equations. 

Put: ➔➔ ➔➔ 

-ikr -ikr 
op(t,r)=C na {t)o,;;oT(t,r)=C T (t)of; 
.·· . , . k . k · . 
➔ ri -ir·r➔ --} 

ou(t,r)=C 'l\{t)o'(. 
Then: · · 

(hyd.) ➔ -ikr' Mv:3e r (t) M{\hvk(t) 
oF {t,r,v)=<ll {v)c la {th------1--+----lo,; 

I }: · k 20 T · 0 ( 4 • 6n 
· .. 

where in virtue of the. linearized Navier 
Stokes equations we have: 

1 aa ➔ • 

- ..::..::..k. = i( c • 111 k ) 
k cJ t 

l a'Pk C 
2 ➔ .. ➔ ➔,~ C 

2
a ➔ ( 4 • 6 2) 

- - =i--Jl ca1,.--1,k111 -k(D -,,)c{cl k)+ _]l_icr 
k at y k f .. y k 

1 ar }'- 1 ➔ ➔I' D k r · - ..::l = i -- C. I k -·)' T k ' 
k at a 

; = _[_ I 

k ' 

where~ is the long wavelength sound velo
city, y=C/Cv is the.ratio.of the specific 

heats per particle=at tonstarit pressure 
and density,· respectively, a= !!£..(n 2-£_)- 1 

aT an 
is thE;. ter,mal expans,ion coefficienr ,.· · 
p=p(n;TJ is the equilibrium· pressure, V 

is. the kinematic viscosity,DTis the termal 

diffusivity; D'r= 1 v+ ((nM )-=- 1 and ( is the • 
bulk. viscosity.. . 

As is ,ir'ell-known (4 .62) .. have ,solutions 
corresponding to five mod'es - two shear 
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modes, one heat mode and two sound modes. 
The time dependence for these modes is 

given,. respectively, by the exponentially 
decreasing functions: 

-v k2
t . . e (shear, or viscosity modes) 

D k 2 1 
e- T (heat mode) (4.63) 

-(±icok+frsk2>t (sound modes) 
e . ' 

where 

rs = D f + ( y-1 ) D T . 

Therefore any solution of (4.62) and 
hence, the expression appearing in brackets 
in the right-hand side of (4.61), conside
red as functions oft are linear combina
tions from (4.63). 

Notice also that v , D , r are of an 
order of fit 'i1 

• We thus se\ t~a t these 
functions cliange very slowly with t/tI 
when k is sufficiently small 

kfI«l, kc
0 

t I« 1. { 4 ; 64) 
,, 

Let us turn again to the variations of 
reduced distribution functions around the 
overall statistical equilibrium in case 
(3.40'). We first consider (3.43), (3.44) 
and make the, following statement: 

For· sufficiently small k (4. 64) the 
function $k~.f) rapidly approaches towards 
the expression: 

$ (v}la (t)+Mv
2

- 30 rk(t) +!.(v.lp (t))+ (4.65) 
I k 20 T 0 k 

+ correction tenn I 

, 95 

:II! 

.. I 

I! 

'1: 

lilr 



I 

so that starting from a certain relaxation 
ti~e t rel.»t 2 <l\ (t,v) prac ticall ):7 coin~ides 
with (4.65). and the hydrodynamic regime 
becomes established. 

Here the correction term contains 
a factor k and depends upon time as a li
near combination of functions of the type 
(4.63). 

Due to (3.41) this statement leads us 
to the conclusion that asymptotically: 

f ( ➔ ➔ , ) ( ➔' d ➔ Uk t,v,v ¢, v } v' ,,, 

2 - r ( t} ➔ ( 4 ■ 6 6) 
a (t}+ Mv -30 _k __ +.M.(v.'P (t)) + correction term 
k 20 T 0 .k 

for 
t > t 

1 
>> t~ k « _l_, _._l _. 

re. k e.I cot I 
It is to be emphasized that in the situa

tion where a kinetic equation, for example 
the Boltzmann-Enskog equation or the 
Enskog equation for dense gases, can be 
used, the mentioned statement can be for
mally deduced. 

Really, when we have such a kinetic 
equation and observe that ~k is proportio
nal to B~, all we need is to examine the 
corresponding linearized equation verified 
by<f\.From this linearized kinetic equation 
not only the validity of the announced 
statement follows. rt· is also possible to 
deduce the linearized Navier Stokes equa
tion and effectively compute their coeffi
cients. In fact such a program was realized 
since the classical work of Chapman and 
Enskog. 
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But it is to be stressed that when-the 
kinetic equation method 'fails, as for example 
in the case of fluids, our statement is
only the usually accepted assumption and 
the coefficients in the Navier Stokes 
equations must be determined by experiment. 

Before going to compute the main term 
in (4.66), we shall make one rather an 
obvious remark concerning the integrals 
of the type: 

kmax -{k2 t 
2 2 f e (1 + a I k +a 2k + ... ) k dk, t > 0 ( 4 • 6 7) 

0 

which enter into the expression of QJ~
By a change of variables: 
k = --1_ 

,J(t 
(4.67) reduces to 

1 yft kmax -q2 q q 2 2 
--

312 
f e (1+ a --=- +a

2 
-+ ... )q dq. 

(tt) 0 1...; tt tt 
So, for large t, we asymptotically obtain 

00 2 ./-
-1- f e•q 2 d - v 17 (4 6 7' ) 3/2 q er- ii 3J2 • (t t) o 4(;; t} 

and, we see that the correction terms a 1k+a2kt .. 
in (4.67) do not contribute to this result. 

The same situation also arizes in the 
case of more complicated integrals with 
which we have to deal when considering QeCt). 

For this reason we need to compute 
only the main terms of the coefficients 
appearing in (4.66) with the functions 
(4.63) and neglect there the terms of the 
order O(k}. 

Let us now proceed to obtain the expli
cit form fo~ the right-hand side of (4.66). 
We first notice tha.t here it is supposed 
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·1: 
i 

th,at adt), rk(t} , 'Pk(t) satisfy equations (4 .62) 
but it has not yet been specified which 
initial values a /0), r k (0) , if\ (0) a re to be 
chosen .. 

Because of (4.66) we only know that 
these in_itial values are the linear func
tionals of ¢'(v). 

In order to i6lv~ this problem and to 
determine these linear functionals, we shall 
apply the ideas of the paper 112/by 
M.H.Ernst, E.H.Hauge, J.M.J. van Leeuwen. 

Consider the variations of particle 
density, momentum density and energy den
sity. 

We have: 
➔➔ 

( ➔) ➔ -='d ➔ -ik r ➔ d ➔ op t,r =nfoF
1
(t,r,v, v~e nf<I> k(t,v) v 

➔ ➔ ➔ ➔ ---Ji ➔ -ilt? ➔ ➔ 
oj(t,r)=nMJ voF (t,r,v)dv=e nMJv<I> (t,v)dv 

l k 

2 . 
oE(t,r)=n~ f v

2
oFI (t,r,v)dv'+; f<I> (r~~)o(J.t,r,r')dr', 

where: 

s:,f ( ➔➔') s:,f ( ➔ ➔➔,➔ ')d ➔ d ➔, u 2 t _;r, r = u F 
2 

t,r, v,r, v v, v. ( 4. 68) 

Remind that we here consider the case 
(3.40'). 

So, the variations of· every reduced 
distributed function has the form: 

.k➔ ➔ ) s:, F ( ➔ ➔ ➔ ➔ ) ·1 r1 (s ➔ ➔ ➔ ➔ 
u t,r1 ,v1 , ••. r ,v =e <I> (t,r ,v , ... r ,v )of, 

s ss k 11 ss 
(4.69) 

where <l>~s) are invariant with respect to 
the space translations. We thus may write 
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"k,... ➔ 
➔ ➔, -1 rl - (2) ➔ ➔, 

of
2
(t,r,r )=e <I> k (t,r-r )of 

(4. 70)' 
-(2) ➔ ➔ (2) ➔ ➔ ➔ ➔ ➔ ➔ 

.1> k (t, r 
1
-r

2
) = f <I\ (t,r 

1
,v 

1 
,r

2
,v 

2
)dv 

1
dv 

2
. 

Hence: 

op (t,r)=e -ih n f <I> k (t , ~) d~ o f 
➔➔ 

➔ ➔ -ikr . ➔ ➔ ➔ 
oj(·t;r),,,e nMfv <l\(t,v)dvof (4.71) 

8E(t-!\ _ -ikr ,r, .. e 
nM 2 ;h ➔ n2 ➔ ➔. - (2) ➔ ➔, -~ 

1-Jv <I> (t,v1dv+-f<l>(r-r')<I> (t,r-r )dr'lof. 
2 k 2 k . 

Note, that in the limiting case k ➔ o 
we should have the space homogeneity and 
the variations (4.71) of particles, mo
mentum and energy would be the exact in
tegrals of motion. 

In the consider~d case of sufficiently 
small k, we can examine the time derivative 
a/at of (4.71). 

By using the hierarchy of equations for 
oFs and by taking into account (4.69), 
it is possible to see that these deriva
tives are propottional to k. 

Therefore the quantities (4.71) are so 
to say "quasi-integrals", i.e. , they a re 
practically conserved on the larger time 
interval, the smaller k would be. 

. Let us fix certain time t 0 6 t rel. when 
the 'transition to the hydrodynamic regime 
is already achieved. 

We then may find such k 0 that up to 
the terms of the order O(~: · 
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Jct>k<t ,v)dv=fcI> co,v>dv 
0 k 

f v<I> k (t0 ,v)dv = f v Cl> /0:V)d~ ( 4 . 7 z) 

nM 2 ::'\ ➔ n 2 ➔➔, -(2) ➔➔ ,)_r • -f v Cl> (t0,v,dv+- f<I>(r-r )<I> (t
0
,r-r ar' 

2 k 2 -k 

nM f 2"" (0~d➔ n2f"" ( ➔ ➔-)~(2) (0 ➔ ➔ ')d➔, = - v '¼'k ,v, v + - '¼' r-r '1' ,r-r r 
2 2 k 

for k~ko. 
On the other hand, since at the moment 

~ the hydrodynamic regime is established, 
we have: 

➔➔ 

op (t -;)- -ikr o, - e nak (tJ of :; 
➔➔ 

➔ -ikr ➔ 
oj (t ,r,} =e nMIJI (t )o( 

0 k 0 
(4~73) 

oE(t ;)= ar(n,ll__op(t -;)+ at(n,n oT(t r) = 
o• o• aT o' an 

-ik;J af(n,n <t > afcn,n r (t > 101: 
=e in <\ o + k o "'' on aT 

where ffu,T) is the equilibrium energy den
sity. 

l\Te further 
➔ 

rk(t) , 'l'k(t) 
the functions 
tically: 

notice that because a
1
/t), 

are linear combinations of 
(4.63) we may write asympto-

➔ ➔ 

a (t )==a (0), rk·(t )=r (0), IP (t ) ='I' (0) 
kO k Ok kO k (4.74) 
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for 
k«-1- __ 1_ 1 ,_1 __ 

cto 'y'D,;c-; 'y'r
8
t; y'vt

0 
· 

Therefore, due to (4.72) and to the asymp
totic equality of expressions (4.71), 
( 4. 7 3) at the moment t 0 , for sufficiently 
smallk, we get up to· the terms O(~: 

a (0) = f ifi (0,v) dv 
k k 

'Pk (0)= fv <I\ (O~)d; 
(4 • 7 5) 

n af(n,T) a (0)+ af(n,T) r (0)= 
an k aT k 

= nM f v2 cI> (0 v)dv + n
2 f <1> (r-r' )~(2 )(0 r-:!..r')dr' 

2 k ' 2 k ' 

for k~ kl' , 
where ~ 

1 1 1 _J __ , --====-· 
· k « - , -==-• -- ·vt kl ~ko, I Cto v'DroY½;to V -0 

In (4.75): 

~.i&!t nC , ( 4 . 7 6) 
dn V 

where Cv is the heat capacity per particle 
at constant density. 

Let us now make some comments concer
ning dn,T). We have-: 

30 n2 (eq) ➔ 
f(n,T)=--n+-f<l>(r)f

2 
(r)dr, (4.77) 

2 2 
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where 
(eq) ➔ ➔ ) f (eq){ 2) d ➔ d ➔ f 
2 

(r 
1 
-r 

2 
= F 

2 
1, v 

I 
v

2 

is the second reduced space distributirin 
function for the statistical equilibrium. 

Of course fJeq > depends upon n and T. 
It will be useful to introduce the chemi
cal potential: 

µ=µ(n,T); n=n(µ, T). 

Then by using the equilibrium fluctuation 
properties, we find: 

I an ::-.. r r.. (cql ➔ 
0 n(--) =l+nfg (r,ur; g \f):f {r)-1 aµ T 2 2 2 

0/ ( a 2f(cq) ( ➔ ➔ )) 2 f(cq} ( ➔ ➔ ) n - n r -r =- n r -r + aµ 2 I 2 T 2 I 2 
(4. 78) 

2 (eq) ➔ ➔ ➔ (cq) ➔ ➔ ➔ 
+n f[f

3 
(r

1
-r2 ,r

1
-r

3
}-f

2 
(r

1
-r

2
)]dr

3 

and thus: 

3 (eq) ➔ ➔ 
n af(n,T) = ~ n + ~ f <I> (rl-r3}[2 f 

2 
(rl -r2) + an 2 2 

(eql ➔ ➔ ➔ ➔ (ev.. ➔ ➔ ➔ an )-1 
+nf{f 3 r1-r2,r

1
-r

3
}-f

2 
tr

1
-r

2
)ldr

3
]dr

2
(0- . 

. . aµ T 

We now can present the 3rd equation 
from (4.75) in the form: 
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( ) Mv 
2 
-3 0 ( ::\d➔ n ➔ ➔ -(2) · e+ ➔ 

C rk O =ef---<l>k O,v, v+-f<l>(r1 -r2)1<l> (O,r -r )-
v 2 2 k I 2 

(eq) ➔ ➔ (eq4 ➔ ➔ ➔ (eq) ➔ ➔ ·. (
4 -[2f 2 (r-r)+nf(f lr-r,r-r)-f (r -r)dr➔ ]x .79) 

12 31213 2 12 3 

an -1 ➔ 
xak (O)n(0-) ldr

2 
. 

aµ T 

In order to find the expressions for <l\(O,v); 
q;~>(o,r

1
-r

2
) we shall make use of our previous 

results (§3). 
So, from (3.42), (3.43) we get: 

<I> (O,-;,)=<l> (v)1¢(v)+nfg (r)eik;drf¢(v')<li (1')d;'I 
k I ~ I 
. . (4.80) 

Therefore: · 

2 2 
f Mv -30 <I> (O v)dv =fMv -30 <I> (v)¢(v)dv~ 

2 k. ' 2 I 
(4 .81) 

and (4.75) yields: 
➔➔ 

a (O)==(l+n f g (T)eikr dr)fcp(v)<l> (v)dv 
k 2 ~ I 

(4.82) 
➔ ➔ ➔ ➔ 
ll\(O)=fv<l> (v)cp(v)dv. 

I , 

Note that the equilibrium correlation func
tion g2 (r) practically vanishes when r 
becomes much larger than the correlation 
length. 

If the equilibrium state of I is not 
close to a critical point, what we here 
tacitly assume, then this length is of an 
order of the range a I of interparticle 
forces._In case of fluids e1 is of an order 
of a

1
, 1n case of gases a

1
« e 

1
. 
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Anyway since k« i- we see that the 
I 

following asymptotic equality: 
f g ( r) e ik? d r = f g (r) d r 

2 2 

2 holds up to the terms of the order O(k ). 
Therefore (4.82) yields, in the accep

ted approximation: 

we 

a k(0)=0/n ( !; }T f ¢ (;}1>iv )dv➔ (4. 83) 

To obtain an expression for <i>~)(O,r
1
-r

2
), 

shall start from (3.40), (3.40'). 
These formulae give: 

-c> ➔ •➔k ➔ 
s:- F (0 1 ) ( ) { -ili:r ➔ -• r2 ➔ ➔ ➔ 
u 2 ; ,2 "'<I> v1 <I> (v) (e 1¢(v )+e ¢(v })f (r -r)+ 

I ~2 I 2 2 I 2 

➔➔ 

Jl f(➔ ➔ ➔ ➔ ➔ ➔ - -ikr3 ➔ ➔ 
+n '3 r1-r2,r1-r3)-fir1-~)]e dr

3
f ¢{v)<I>I(v)dv !of. 

Due to (4.70), it follows that: 

<2> ik(i'1-1:t ➔ ➔ 
ii>k (O,r~-1\)=l(l+e H/r

1
-r

2 
)+ 

➔ ➔ ➔ ➔ ➔ ➔ ik(i' -1 > +nf[f3 (r1-r2 ,r 1-r
3
)- fJr

1 
-r

2
)]e I 3 

X f <p (; ) <I> I ( v} d V. 

(4.84) 

d~!x 

This expression is needed here only to 
calculate the integral 

n f'h ( ➔ -➔ ) ➔ (2) (0 ➔ ~ ) d ➔ 2 'l-' rl-r2 <l>k ,r,-r2 r2. 

Therefore the relevant distances I r
1 
-r

2 
I 

are of an order 0£ the effective radius aI 

11Q4 

of interparticle forces, and we may rep
ilt(r➔-t ) 

lace in (4.84) the factor l+e 1 2 

by 2. 
Furthermore when I r1-?3 j » a I and, hence, 

also I r
2
-1J»a1 the form: 

f (eq)( ➔ ➔ ➔ ➔ } f(cqi➔ ➔ ) r -r r -r - tr -r 
3 I 2' I 3 2 I 2 

characterizing the correlation between 
particles at r3 and those at rl , r2 is 
practically zero. 

So, in our approximation: 

n ➔ ➔ '-(2) ➔ ➔ ➔ 
-f<l>(r-r)<I> (Or -r )dr = 
2 I 2 k 'I 2 2 

n ➔ ➔ _ (eq) ➔ ➔ (eq) ➔ ➔ ➔ ➔ (4.85) 
= -2 f <D (r 1 - r2) 12 J tr - r ) + n J[ f (r -r ,r -r )-

2 12 3 1213 

f (cq)( ➔ ➔ )]d ➔ d➔ ➔ ➔ ➔ 
- 2 r1-r2 _r3 l r2 J¢(v)<l>I(v)dv. 

But due to (4.83) 

(0) ( an )-1 • ➔ ➔ ➔ 
nak 0"7Jji T =f¢,h)<I>I(v)dv 

and thus the second term in the right-hand 
side of (4.79) is equal to zero. Note, 
also, that 

a k - 1 ( d; )T = n ( -an )T . 

Summing up our results (4.79), (4.82), 
(4.83), (4.85) we finally can write down 
the adequate initial values computed up 
to the order O(~: 

a -l 
a (O)= 0(~) f <I> (v')¢(v' )dv' 

k an T I 
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T (O)=C-lf<ll~ (v') Mv'2_30 cf,(v' )d;' 
k v ,:;,, 2 

(4.86) 
➔ 

q, k co)= I <Div, ) v, cf, <v, )dv'. 

It is now possible to calculate the corres
ponding solutions of (4.62).The unit vector, 
➔ k➔ 

c = T enters into these equations. 

Let us also introduce two other unit 
vectors ;{

1 
, ;; in such a way that three 
➔ - 2 ➔ ➔ vectors c , c 

1 
,c

2 
were mutually orthogonal. 

Then: 
➔ ➔➔➔ ➔➔➔ 4 ➔➔ 

'1\ = cl (el 'l'k) + c2(c 2\J'k) + e(c'I\) (4.87) 

and from (4.62) it follows: 
d ➔ ➔ 2 ➔ ➔ 

-(ei 'Pk (t))=- -vk (c 1. 'P (t)), j =1, 2. 
dt k 

Hence: 

➔ ➔ -vk 2t ➔ ➔ 
(c i 'Pk (t)) = e (c i 'I' k(O)) 

-vk2
t ➔ ➔ ➔ ➔ 

= e f <l\fv')(e., v' )cf, (v')dv'. 
-- J. 

(4.88) 

j =1,2. 

It remains to determine three functions: 

a/ t) , s k ( t) = (; 1¥ k ( t)), r k ( t) . (4.89). 

Note that from (4.62) it follows 

1/ 
aak • 

k -=1S 
at k 
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2 2 

I ask . C • Cna 
lk--=1......il.a -Dnks +1----ll-T 

at y k e, k y k ( 4. 90) 

1./k a r k . v -1 --=1--'--S -yD kr. at a k T k 

In order to solve these equations we 
shall define three independent combinations 
AH ,A± from (4.89) in such a way that 
(4.90) yield: 

and 

aA(t) = -UA( t) 
at 

-Ot 
A( t) =C A(O). 

We snarl calculate n so that the term 
proportional to k2 would be included since 
just this term is responsible for the 
damping of (4.89). 

On the other hand, the coefficients of 
the rinear forms A11 , A+ are to be calculated 
by neglecting the terms of the order O(k) 
since the init~al values of (4.89) them
selves -were calculated only up to this 
order of smallness: 

Then we can obtain: 
· -1 2 

AH(t)=y ((y-l)uk(t)-ark(t)); 0 11 =DTk 

Ait)= j y-1(a/t)+ark(t)) =F 1 c;\.k(t); 

n ± = ± ici + ~ r5 k
2 

and inversely: 

a (t)=A (t)+A (t) + A (t) 
k H + -

(4. 91) 
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r (t)=-a-1A (t)+(y-l)a -l(A (t)+A (t)) 
k H + -

s (t)=C (A (t)-A (t)}. 
k O - + 

Therefore 
-n11 i -n i - -n 1 

ak(t)=e AH(O)+e + A+(O)+e - A (O) 

· _ 1 -UHt . . _ 1 ..;.fl+ t -
rk(t)=-a e AH(O)+(y-l)a e , _ A+(O)+ ( 4 . 92 ) 

l -fl t . 
+ ( y -1} a - e - A_ ( O) 

➔ ➔ -fl_ i . -fl+ i 
(e '1\_(t)) = s/t) = c0 A _(O) e - c

0
A )0) e 

Due to (4.86), (4.91) we see that here: 

' 2 
A (O)~Jl(l- ,_ 1)0(£e_)-~ -i C-1 Mv' '- 30 l<I> (v')"'(v')dv➔, 

H y · - an T y · v 2 - 1 · 'f' - · 

A /0) = n .!..y:-~o(E£._)-\1-(yC t 1
a Mv '

2 
-30 _ 

- 2 an T 2 v 2 + 
( 4·. 9 3) 

:-- l c~ 1 (;;,)! <I> 
1

(v ')¢(v''Ydv'': 
, '2 ' 

By inserting (4.87),_ (4.88), (4.92) 
(4.66), we get: · · · · · · 

j..nto 

J Uk {t, v• ,:;')¢ .(v'')dv'' = 
.,. 

2 
-v K t M ➔ ➔ ➔ ➔ , ➔, ➔ 

= e - (v e )J(v~e) <I> (v
1
)¢(v

1
)dv

1
' + 

0 ll ll 1 - · 

108_ · 

-vk2t ➔ ➔ ➔ ➔ 
+e ~ (v1 e2 )J(v;e2)~I.(v;)¢(\)dv'; + 

+ e ..:.!\1t 11- Mv2-30 (aT}-l}A lO) + 
20 If 

-fl+ t M 2 30 -1 M 
+ e 11 + v - (aT) (y-1)- -c

0
(;.;)IA (0) + 

20 0 + 

--0 t M 2 30 -I M ➔ ➔ 
+e - 11+ • \; (aT) (y-1) +oco(V •eHA_(O). 

(4. 94) 

In order to shorten the notations let us 
put: 

(L) ➔ ➔ (R) ➔ ➔ ;M ➔ ➔ 
0

1 
(e,v)=01 (e,v)=yO (e 1v); 

(L) ➔ ➔ {R) ➔ ➔ 'M ➔ ➔ t\ (e,v)=0
2 

(e,v>=v0 (e
2

v); 

w (k)=w (k)=vk2 

l 2 

O~L\;,;)=( M:2 -3'0 -aT}( kB)l/2 
20 cP 

0~q(;,;)=( Mv
2
-30 -(y-l) nCv )( kn )1/2 

20 <ap cP --) 
aT n 

w (k) = n = D k 2 

3 H T 

(L) ➔ Mv2-3e -I M ➔➔ 1 1/2 
0 4 (e,VJ=(l+ ----(aT) (y-1)+ -c

0
(ve)H-

2
) 

<5 > . 2 0 0 _ 
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I 

0 ~R\; ;)=(Oy -·~ apf\(yC f la Mv 
2
-3 0 _ .!_(;;))( _!_) l/2 

(5) ' an V 2 + CO 2 

(4.95) 

co4 (k)=11 =ic
0
k+l.rsk

2
, w (k):11 =-ic k+..!..r k~. 

+ 2 . . 5 . -. O · 2 S 

where· kB .i.cs' _the Bol ~zm~nn constant. 
Then (4.93), (4.94) yield: 

I ( ➔➔,) (➔')d➔, Uk t, V 'V ¢ y .. . V =. 

(Ll ➔ ➔ -<,) _(k)t (H) ➔ ➔ ➔ ( 4,.,96) 
I 0 . ( e, v) e J , ( 0. ( e, v ~) <ll ( v ') ¢ ( v' )dv '. 

0~ i~ s > J 1 · I 
t > t 1 ; k< k1 r1• 

It is to be emphasized that in cases 
when the kinetic equations of Eol tzmann 
type or of Enskog type*· aie us~d, the 
same result (4.96) could be. obtained. 

Strictly speaking not the complete non 
linear kinetic equations are needed but 
only their linearized versions. 

These lineari~ed equations lead us to the 
form (4.96) wh~n the terms propbrtional 
to k 2 are ca 1 cu 1 ate d for w . (k) , w hi 1 e in 
calculating the coef fie ien1ts e<.L>, 0 .m> the 

. . J J 
terms of thy order k .are· neglecte4. • 

Of course in. such an approach the equi
librium and trartiport (v,DT,rs) coefficients 
would have the values corresponding to 
the approximation on which the kinetic 
equation is founded. · 

_We now Fan us,e .. (4. 96) £;or reducing our 
eqtja tions ; ( 4. 54) , . (4 ;56) to an e·xpl'ici t 
form.· · 

* For moderately dense hard spher~ gases. 

·-:~'fo 

Consider first the expression 
Q (t) X (v° ) 

e o 
and note that it contains the operator: 

(-i~o X+na2w(a)L )t ➔ 7 ➔ 
e S ; ,\ = k+ f 

acting on functions of v0 • 

Introduce the scalar product for such 
functions: 

( ·g,h)= f<ll (v )g(v )h(;) dv' 
· 0 0 0 0 0 (4.97) 

the corresponding Hilbertian scalar product 
being: 

(g,h)
11

= (g*,h). ( 4 • 98) 

Due to its definition (4.45) the operator 

n a 2w(a) Ls ( 4. 99) 

is symmetric and hermitian: 

(g,Ls h)= (Lsg,h) ,, 
(g' Ls h )H= (½, g,h )H . 

It is also well-known that its spectrum 
consists of a negative part and of nondege
nerate zero eigenvalue, corresponding to 
the normalized eigenfunction ¢(v)=l: 

Ls .1 =0. 

The gap between negative part and zero 
point for ( 4. 99) is of the order t 0\ where 

(m/110) 112 
1

0 =
4 2 () (4.100) 

na w a 
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I 

represents the Enskog approximation for the 
mean free time for S. 

Of course the eigenfunctions W(;) 
(4.99) corresponding to its negative 
eigenvalues are orthogpnal to 1: 

f<I>
0

(v)W(~)d-;=o. 

The operator 
-➔➔ 2 

EA =-1vA + na w(a)L
8 

of 

( 4 .101) 

is evidently not hermitian but it conserves 
the symmetry property: 

(g,EAh) = (EAg,h). 

Consider the eigenfunctionWA 

EA l!\ (v)"' -w
0

(A) q, /v) 
for which 

w (A) ➔ 0, when A ➔ O. 
0 

By using ordinary perturbation 
easily find: 

theory we 

q,A (;) = 1 + 
1 -I ~--- L ➔ ➔ na2w(a) s (A,v)+o(A2) 

<u
0

(A) = D
0
A2 +O(A2 ) 

-I ➔ 2 -I 
D0 =-J<t>o<v)vxLSvxdv(na w(a)) . 

Notice here that the functions 

V ,V ,V 
X y Z 

(4.102) 

belong to the class 
verse opera tor L;1 

(4.101) where the in
is well defined. 
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In the first Enskog approximation: 
3 m -l/2 

Do=---(-). (4 .103) 
8na 2 w(a) rr0 

By neglecting fort »t0 the fast decaying 
exponentials caused by the negative part 
of the spectrum of (4.99) we could write: 

EA t ➔ -<.t.J (A) t ➔ ➔ ➔ 
e x(v)ze o lf1A(v)J<t>

0
(v).W/v)x(v)dv. 

We must recall, however, that the gap 
between the zero point and negative part 
of the spectrum of (4.99) is of the order 
~

1
- So, for the validity of this asymptotic 

relation, it is necessary that 

or 

D A2 « t-I 
0 , 

-I 3 I /2 
A« (

0
,,,, ( 2 ) 4na 2 w(a). (4 .104) 

Thus keeping to the adopted approxima
tion scheme we shall neglect the terms of 
the order O(A) •in WA and the terms of the 
order higher than O(A2

) in w0 (,\) and put: 

'1\ <v> = 1 
.. (4.105) 

w(A)=DA 2 
0 0 . 

Proceeding in such a way we obtain: 
➔ ➔ 2 

(-iv0A+na w(a)L8)t -<v (Ah 
( ➔) 0 ➔ ➔ 

e X vo =e f<l>o(v)x(v)dv, (4 .106) 

when t» t0 • _ _ 

Before inserting this result into (4.55), 
it is useful to note that (4.55) contains 
the operators: 

113 
11. 

I 
1

'11, 
·1 



T ,T (4.107) k k 

whose dependence upon k is determined by 
the factors 

e±iak(!.;;) 
But 

ka« ;«1 
0 

and therefore for the inner consistency of 
approximations used we must replace (4.107) 
by -

To= To· 

On the other hand the integration over 
k in (4.55) clearly needs a cutoff: 

k < k · max ' 
-1 where k < k 

1
; k « e 

0 max max ( 4 .108) 

since we are studying here only that part 
of Q it) which decreases slower than any 
exponential e - the , with a fixed t c and 
since all our approximation scheme is 
strongly dependent upon this condition 
(see, e . g . , ( 4 . 9 6) , ( 4 .104) ) . 

We now proceed to insert our results 
into (4.55). First, from (4.106) it follows: 

➔ ➔ ➔ ? 
(-iv 0(k+ f)+nlt"w(a)L

5
)t ➔ 

e Tk(vo,vr)x(vo)= 
➔➔ 

-tw (k+f) , 
= e O f dv~<I> o<v~)To(v ~v I) X Cvd. 

Here the right-hand side is a function 
f ➔ ' 0 VI . ·• 

Hence, by making use of (4.96) 
➔ 

(-it00?+ f )+na2 w(a)L 
5

)t ➔ 
U(t; l)e T (v ,v )x(v )= 

k O I 0 

114 i 

➔➔ 

-(w/k)+w 0(k+f>)t (L} ➔➔ ➔, ➔, , , (R)➔➔, 
= I e 0

1
. (e,v )Jdv 0dv 11>o<v0)<Ii~(v 1)0. (e,v )x 

(l<·<s) ➔ I ..:.. J I 
_i_ T. ( , ') ( ') ~- x o,vo,vrxvo. 

From (4.55), it now follows: 
➔ ➔ 

➔ -(w .(k)+w0 (k+f))t ➔ 
Qe<t)x(v)= 7 J dk I. e 1 1Jdv 1<I>fv/x 

o (2rr) I k!<k ( ~J~S) 
max 

x To( VO' vl)0(~l;,;) II f ctvo' dvl'<l>o( vo')<I> ( v"'l0(R~ ;, )T ( v', vi' )x (-;,' )I. 
JI iri 'JOO 0 

By noting that the functions: 

➔ ➔ l m "; + M vl2 
g(vO,vl)= ➔ M ➔ 

mv
0

+ v 1 
Const 

are collision invariants it is easy to see 
that: 

d➔ ( ( ) (L) ➔ ➔ J v
1 

<I>~ v ) T v , v 0 (e , v ) = 
..:.. I O ~ I j I 

~ 
➔ (R) ➔ ➔ 2 (L) ➔ ➔ 

=-Jdv
1
<I>~(v 1)T0 (v0,v1 ) IJI. (e,v

0
)=-a L IJI. (e,v0 ) 

k J , S J 

Jd➔,d ➔' ( ') ( ')0(R)(➔ ➔,) T ( ' ') (➔') vo vr<I>o vo <l>I vi i e,vl o vo,vl X vo = 

=- f dv'~ d;1 <1>
0 

(v ~) <l>I (v;) IJli(R)(;, ;;>T 0(v ~, v ;> x (;~) = 

2 ➔ (R) ➔➔ (➔') 
= - a f dv ~ <I> o< v ~) IJI . t e , v ~) L5 X v O , 

J . 
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where*·: 

(R) (➔ ➔)=m(L) (➔➔)- m ( ➔ ::'-. • -1 ·2 q, e , v -r e, v _ -- e . v, , J _ , 
j i (M0)1;2 J 

q,(R) (e 'v) = q,< L) (e 'v) = ( niv2...:. 3 0 )( kB l /2 
3 3 20 C (4.109) 

p 

(L) ➔ ➔ l 1/2 2 3 0 -1 ➔ ➔ 
q, 4 (e,v)=(-

2
) ( mv ... (aT) (y-l)+E!.c

0
v•e), 

<5 > 20 0 

q,(R) (;,V)=(.Lt\ mv
2-30 SL_~ V•e· ). 

( 4 ) 2 2 C + Mc 
5 P 0 

So we finally obtain the explicit ex-
pression 

QaCt)x (v )= na4 f dk ~ -<w/k>+wik+ f))t (L) 
L o 

3 
"'-e L'I' ➔➔ 

(2rr)lkl<k O~j~S) s. (e,v0)x 
max - l 

➔ (R) ➔➔ ➔ (4.110) 
xfdv~<I>0(v~)q,i (e,v~)L5 x(v~), when t»t

0
, t> trel 

which can be substituted in the equations 
(4. 54), (4. 56). We first consider the case 

when e= o. 

* It is easy to see that we may add to 
the right-hand side of (4.109) any terms 
which do not depend upon v since their 
contribution will be zero. 
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Then (4.56) yields: 
➔ 

¾(t,vo) 2 ➔ 2 . t ➔ ➔ 
--- =na w(a)L5 x (t,v )+w (a) fQ (t-r)x(r,v)dv at o O o 

Qo(t-r)x(vo)= (4.111) 

4 kmax -(w. (k)+w
0
(k))(t-r) ➔ (L) ➔ ➔ 

=~ f k2dk I e I fdeL
5

'1'. (e,v
0
)x 

(2rr)3 O ( l~j ~5) 1 

➔ (R) (➔ ➔,) ➔, ). x f dv'<I> (v' )q, · e,v L X (v · . 
0 0 0 j S 0 

It is clear that if 
X (0, v'

0
) = Const 

then also 

X ( t, v ) = x (0, v ) = Const 
0 0 

because 
L 

5 
Const = 0 . • 

11 

From physical point of view this trivial 
solution corresponds to a change in the 
normalization ~f ~~JS, I). ➔ · • . 

By subtracting from )( (0,v
0

) a su1 table 
constant, we can obtain 

I <Po(vo)x(0,vo)dv o=o. .(4.112) 

Note that this property is conserved too 

f<I>/v
0
)x (t, v

0 
)dv

0
,,, o 

because 
f <I>(v)L g(v)dv =0. 

0 0 S O 0 

(4.113) 
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Therefore, we shall restrict our attention 
to functions (4.112), that is to functions 
orthogonal to unity: 

(1,x)=O. (4.114) 

To obtain the first approximation for 
x(t~). we neglect the correction term with 
Q0 in the equation (4.111) thus getting: 

tna 2 w(a)Ls 
x(t,v

0
)=e 'x(O,v

0
). 

Since the spectrum of the operator 
n a2 w(a) L 

s 

(4.115) 

is negative, in the space of functions 
(4.114) and is serarated from zero by a gap 
of the order oft;, the function (4.115) 
decreases exponentially when t>>tQ. 

We thus may write this approximation in 
the form: · 

oo tna2 w(a)L, 
x(t,v

0
),,,o(t)fe s dtx(O,v)= 

0 

=-O (t)(na2 w(a))-I L -\ (O, v ). 
S 0 

By inserting it into the correction 
term in the right-hand side of (4.111), we 
obtain: 

ax(t,vo) 2 ➔ __ .,,__ = na w(a) Lsx (t,v
0
)-

a t · 

-w(a) (na 2r 1Q 
0
(t) L~~(O,v 

O
) 

from which it follows: 
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➔ tna2 w(a)L
8 

. ➔ 
x(t,v

0
) =e x(O,v 

O 
)-

2 
2 I t na w(a)L (t-r) I ➔ 

-w(a)(na )- f e 8 Q (r)dr L- x(O,v ) 
O O S 0 

and therefore the correction to a fast 
decaying term will be 

➔ 2 -2 -I -I ➔ xc (t,v
0
)=(mr) L

8 
Qo<t)L

8 
x (O,v

0
) 

(4.116) 

x ( t ,\ ) = x c ( t, \ ) , when t » t 
O 

• 

Now (4.111) yields: 

l kmax -(w. (k)+wJk))t 
X (t,v ),., - f k2dk }: e I x 

C O (211)3n O (1~~5) 
(4.117) 

➔ (L) ➔ ➔ d➔ (R) ➔ ➔ 
xfde'I' j (e,v0 )J v~<l>0(v~)'Pj (e, v ~)x(O,v~). 

.. 
Here, due to (4.67') the asymptotic values 
of the integrals k 

2 
· 

kmax 2 max (D D ) Je -(v+DJk 1k2dk, f e - T+ O ~ 1k2dk 
0 0 

for large t»t 0 , are given, respectively, 
by: 

V" 
4[(v+D

0
)t] 312 ' 

Furthermore, note 

..;-:;-
4 [(D +D )t] 312 

T 0 
that (4.109) gives: 

➔ (L) ➔ ➔ (R) ➔ ➔ ➔ (L) ➔ ➔ (R) ➔ ➔ 
fde'P4 (e,v

0
)'1' 

4 
(e,v0) = fde'P

5 
(e,v

0
)'1'

5 
(e,v0) 
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Hence, the time factors combine: 
-(wik)+wJk)h -(ws-<k)+w

0
(k))t 

e +e : 

-<trs+Do)k2t -ickt ickt 
= e ~ +~ ) 

and lead us to the integral: 
kjaxe - <frs +D0)!.2 t e icktk2dk 

-kmax 

whose asymptotic value for large t will be 
.r::- ift 

_v_ u_ e - 4f" 
2(ft)3/2 

where 
1 f = -r +D . 
2 S o 

Since this integral is exponentially 
decaying, we see that the sound modes do 
not contribute to the considered "hydrody
namical tail" and thus must be droped out 
from (4.117). That leaves us with two 
viscosity modes and one heat mode. 

By noticing that 

I ➔ 4rr 
ej,a e j,(3 de = 3 oa,f3' j =1;2; a,(3 =x,y,z 

➔ 

we easily perform the integration over e 
and get: 

( ➔) ( to 3/21 1 1·3/2 m2 ( ➔. ➔,) ( ➔,) ( ')·d ➔, X t,v = -) 
12

-1 .rr(v+D
0
)t

0 
-- f v. v x O,v <ll v v + 

_c t n Me o 

(4.118) 

+ _!__~I 77 (D + D )t i3/2 mv2 -30 I mv ,2_30 x(O,v ') <ll (v, )dv 'l; 
80 C T O O 2 0 20 o p 

t»t
0

• 
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This asymptotic formula can be used to 
obtain the slow decaying part of the equi
librium time correlation functions. 

Put, for example: 

x(O,;)=v 
X 

Then (4.118) yields: 

<v (t)v (0)> = f v X (t, ;)<ll (v)dv = 
X X eq X C 0 

t 3/2 m2 -3/2 ➔ 2 =(...!!.) --lrr(v+D )t l (f;<ll
0

(v)dv) = 
t 12nM0 0 0 X 

(4 .119) 

t0 3/2 m -3/2 2 =(-) --- lrr(v+D )t I <v > 
t 12nM- 0 0 x eq 

Consider the situation when S is a tagged 
particle of I and the hydrodynamic part 
of Uk(t; 1) is calculated by making use of 
the Enskog equation for moderately dense 
hard sphere gas. 

Then in (4 .119) v is to be replaced by 
vE • Since D0• itself is the Enskog diffu
sion coefficient we here obtain the formu
la found in the paper 1131 by J. R. Dorfman and 
E.G.D.Cohen. 

On the other hand, if we replace D0 by 
the "total" diffusion coefficient, ( 4 .119) 
yields the well-known result of the mode-
mode coupling theory. . 

Let us now make some comments concerning 
equation (4.54) for eto where the expression 
(4.110) had been inserted. 

By applying_ the Laplace transformation 
method, we can write it in the form: 
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2 ~ ➔ ,➔➔- ➔ 
(z-na w(a)Ls)Xe (z,v0 )=-tf' v

0
xe<z,v

0
)+ 

2 ~ ~ ➔ ➔ 
+ w (a) Qf' (z)x e<z, v

0
)+ Xe (0,v

0
) ·, 

(4.120) 

where 

- ➔ 00 
-zt ➔ 

X e< z ' VO) = / C X f ( t ' VO ) dt 

Q~ ( ) ( ➔ ) na4 -, . e z g vo = --- J dk x 
(211)3 lkl<kmax (4.121) 

l (L) 
X I ---:-__::;__~- L 'I' ➔ ➔ d➔, (R)➔ ➔ 
0$iS5)c..,,(k)+c:,.'o(k+f)+z s i (c,voYf vo<l>o(vri)'Pj (e,v~)Lsg(vJ. 

In order to examine the diffusion pro
cess, we shall consider the case when 

x (0, v ) .. p (0) 
f O f 

is constant with respect to v 
0

• 
Put 

x/z, ;o>= r/z) + c/> e<z,v~ ), 

where 

r/z)"" J<I> o<z) x~ (z, v
0

) dv0 

J<I> (v 'st> .(z,v )dv ,.,o. 
0 (Y L O 0 

Then (4.120) yields: 

Zp e<z> .;,_ i f J ;o <l>o (v o)cf> (z, ~) dvo +pf (0) 
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(4.122) 

(4.123) 

(4.124) 

(4 .125) 

and 

(z-na 2w(a) L )</> (z,v )=-it v 'jj (z) + 
s e o o e 

+ w
2

(a)Q e<z)¢/z,v J-if (v
0

¢ e<z,v
0
)- J v

0
¢/z,v

0
).P

0 
(v

0
)dv J· 

Since f is supposed to be sufficiently small: 

e« f'o 
➔ 

we can leave in cf>e(z,v0 ) orily the terms 
proportional to f'. So we shall write 

2 . ➔ ➔ . 
(z-na w(a) L )¢ 

0
(z,v ),.-if v p (z) + 

S L O O f 
2 ~ 

+w (a)Q/z)cf>e(z,vo ). 

Furthermore, neglecting the correction 
t 7rm ~ith Qf we obtain in the first appro
ximation: 

➔ • ( 2 -I ➔➔ ¢ (z,v )=-1 z-nirw(a)L } fv p (z) e o s o e 
The insertion of this formula into the 
correction tprm leads us to the following 
expression: , 

➔ • 2 -I ➔➔ 
¢/z,v O )=-t(z-na w(a)Ls) f v

0 
+ 

2 2 -1~ 2 -1 
+ w (a)(z-na w{a) Ls) Q /-z)(z-na w(a)L:s) (-i 1~~)pe (z). 

Let us now point out that Ls, when 
acting on functions· g(v'0 ) orthogonal to 
unity, has only a negative spectrum, and 
that for the study of longtime behaviour, 
we are interested only in z « t~1 • So, z 
can be neglected in the term (z-na2w(a)Ls )-1 

and our approximation becomes: 
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➔ 2 -1 -1 ... ➔ 
rpf(z,v

0
)=-i(na w(a)) L

8 
ev

0
pe(z)-

. -i(na2f 2 
C~

1 
QrCz)L~

1
lvOpf(z). 

Then (4.125) yields: 

zpf (z)=-f2D U,z)jf(z) +p/0), (4 .126) 

where 

D(f,z)=D+~D(e,z), 1 (4 .127) 

D is the "renormalized" diffusion coef
ficient: 

D=D0 +01 

2 -I . · . -l ➔ 
D0 = -(na w(a)) f <I> (v) v Ls v dv 

0 X X 

(4.128) 

(LJ➔· (R) 
011""_._:J._:_ Jdk I f<l>o(v)vxlJl•i (e,~dvf<I>o(v)IJl/;,v}vxdv 

. 3 
(211) n k<k (Is_;~s) w (k )'+ w (k) 

max j . . O 

and 
➔ ➔ ➔ 

1 · ➔ z+w0 (k+ f}-woCk) 
~ D(e ,z) = - f dk I ➔ . X 

· (2rr)
3
n k<kmax (z+w/k)+wo<k+f))(wlk)+ <.i.u(k)) 

,., ➔ (L) -+ ➔ ➔ · . . (R) ➔ ... "'➔ ➔ 
x f cI>0 (v)(f,v) IJ1 j (e, v) dv f<I>

0
(y)'!'j .(e, v)( f,v)dv, 

(4.129) 
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i.l;e is the unit vector. The computa
tion of the extra term D1 due to the inter
action with hydrodynamic modes shows that 
it is a small quantity of the second order 
in density. 

Nevertheless, from the formal point 
of view, we must emphasize that D1 contains 
the integral 

J k2 dk .. kmax 
k<km

8
Jv+ D0)k 2 v+D0 

which is · ·proportional to kmax. Since kmax 
is determined only up to a numerical factor 
"of the order of l" we see that the real 
value of _0 1 must also depend upon nonhyd
rodynamical part of our operators. 

Due to (4.109) we have from (4.129) 

f 
,., (L) ➔ ➔ ➔ ,_ ::\ (R) ➔ ,_ ➔ 2 

<1>
0 

(v)( f v) IJ1 (e, v) dv f <I> (v) (f,v, IJ1 (e,Y),dv= ...!!! (f e ) 
i o j M ' i 

j=l,2 (4.~30) 

I m( )lll(L)· ... ➔ c•,_ ➔ )•d~ ( ~ ... (R) ...... ➔ 1 "' ➔ 2 
-v0 v T<!>(~,v) f,v vf<l>0 v)(r,v)~t/e,v)dv= 7 ~(f,e). 

Since 2 -
<u =<u =Vk• 

I 2 

two terms (4.130) combine g1v1ng 
m " ... 2 " ... 2. m -- ➔ 2 
-MI (f, el) .+(e ,e2) ' I= -11- (e ,e) I. 

. .M 
Because of the symmetry of this expression 
with. respect to the .reflection; ➔-;, we 
may write the terms in ~D-( e ,z) corresponding 
to viscosity modes in the form: 

.. 
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: kmax Z + 
. : (,v+D)-lf(l-(e~)2){6 dk z+vk2+D(k2+£\2ke(£~) 

➔ A 1 1 ➔ 
+ ke(e£)[ 2 A - 2 _. ·A-llde = 

z+ (v+D)k +2D k£(e£) z +(v+D)k -2Dkf(ef.) ' 

kmax z 
=E!.(v+D)-\de (1- (£e )2) ! dk{ z+-v~k2::--+D-(k"2+-£"\=2J<ll:-:. ~fe)~)M 

\. 

2..2 A 2 1 
-4Dk & ~;) . I 

2 2 .... ~ 2 2 ..... ' I z+v+D(k +f +2kf(fe,) Hz+v +D(lc +f. -2kf(fe))I 

By using the variables 

k = q·C 
z 

( = Df.2 

then for finite ( we see that the limit 
of the integration over q will .be kma:/f ➔ 00 

when f ➔ o, but as it is easy to see this 
integral will be convergent. 

The same procedure can be performed 
for the sound.modes but there the corres
ponding contribution on factor f is smaller 
and, hence, is neglected in the adopted 
approximation. , 

Evidently the contribution 6f the heat 
mode will be zero. Note th~t equation 
( 4 . 12 6) with ( 4 . 12 7 ) , ( 4 .11 2 9) , ( 4 • 13 0) . 

belongs to the type of ~quations considered 
in the mon6graphy /14/ by L de Scheppe_r, 
and henc~ may be treated by the proceduie 
elaborated in this monography. 

~2.6 .. ; 

1 
i 

., 

i 

I 

l 
l 
I 

I ,, 
j ,, 
J! 
J 
i, 
l 

i 
;J 
l 
I 

i 
:] 

l 
I 

We now wish to point out that all 
equations obtained in §4 by starting from 
the initial condition:. 

g)o (S, I)= ·vx (S)g) (S, I) 
0 eq 

could also be found from the equations 
established in §2 on the basis of the ini
tial condition Ill 

5)
0 

(S, I)"' f (S) 5) (I) 
0 eq (1. 2) 

f (S)=x
0

(S)4> (v ) . 
0 · 0 0 

The difference between these two approaches 
could be described as follows: 

First, (4.48) if derived starting from 
c1~2) would contain fk instead of Tk on 
the right in the expression (4.48).But this 
difference disappears at the stage when 
we replace T k, 1\ by T 0 ,,.,f0 . 

Second, the only remaining difference 
is that in case (1.2), we should replace· 
w(a) by its low density limit, i.e., by 1. 

So all the results discussed in §4 could 
have been obtained starting from our old 
scheme developed in the paper /l/. The main 
new element in the technique of applica
tion of this method, which enabled us to 
include the new developments, was the 
introduction141 of the collision operator. 

It is also to be emphasized that the 
procedure, elaborated in this paper needs 
essential imprqvement .' · 

In.fact while the op'erator U(t;l) 
referring to the system I could have been 
evaluated by usin~ any sophisticat~d kinetic 
equation, the inter~c tion term JI int' is 
h~re treated "iri a rjther rough ~ay. In 
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fact we have supposed that it is small 
and only the terms formally belonging to 
"the second order of smallness 11 have been 
correctly included. 

Suppose we consider the situation when: 
JI = JI (<I>) 

int int 

with <I>~) corresponding to short range 
strong repulsive forces. 

It is clear that such an interaction 
must lead to a kind of the collision opera
tor but formally our scheme can work in 
this situation only if we replace JI~! 
by an ad hoc introduced collision inter
action. 

So we see that our scheme needs certain 
refinement. Such a refinement could have 
been achieved, for example, if instead of 
the considered zeroth approximation 

~ (S,I)=='Vx (S)~ (S,I) 
l t eq 

we had used zeroth approximation in the 
form: 

~ (S, I) = VI x (S) + I TJ (S, j) l~ (S, I), ( 4 • 1 31 ) 
_ t t (I~ i~N) t eq 

where TJ 1 (S,j) depends upon phases of S 
and of j- th_ particle from I. 
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