ОБЪЕАИНЕННЫЙ ИНСТИТУТ
 คАЕРНЫХ
 ИССАЕАОВАНИЙ

AYБHA
$F-33$
$2001 \int_{\text {V.K.Fedyanin, V.G.Makhankov }}^{2} 2-7 y$

$$
\begin{gathered}
30 / .77 \\
\mathrm{E} 17 \cdot 10507
\end{gathered}
$$

SOLITON-LIKE SOLUTIONS OF EQUATIONS DESCRIBING EXCITONS IN ONE-DIMENSIONAL MOLECULAR CRYSTALS

E17•10507

V.K.Fedyanin, V.G.Makhankov

SOLITON-LIKE SOLUTIONS OF EQUATIONS DESCRIBING EXCITONS IN ONE-DIMENSIONAL MOLECULAR CRYSTALS

Submitted to " AAH CCCP "

Маханьков В.Г., Федянин В.К.
E17-10507
Солитоноподобные решения уравнений, описываюших возбуждення в одномерных молекулярных кристаллах
Найдены частные решения солитоноподобного гипа аля уравнений, описывающих экситон-фононные вэаимодействия.

Работа выполнена в Лаборатории теоретической фиэики и
в Лаборатории вычисли уельной техники и автоматизации ОИЯи.

Препрнит Объедниенного пвститута пдеринх псследованй . Дубпа 1977

$$
\begin{aligned}
& \text { Fedyanin V.K., Makhankov V.G. El7. } \mathbf{1 0 5 0 7} \\
& \text { Soliton-Like Solutions of Equations } \\
& \text { Describing Excitons in One-Dimensional Molecular } \\
& \text { Crystals } \\
& \text { The family of soliton-like solutions to equations } \\
& \text { describing excitons in one-dimensional molecular crystals } \\
& \text { are obtained and discussed. It is shown that terms due } \\
& \text { to resonance interaction between excitons and molecules } \\
& \text { give rise to a change root and branch of a solution } \\
& \text { spectrum of the Schrodinger equation with cubic nonline- } \\
& \text { arity even if such an interaction is small. } \\
& \text { The investigation has been performed at the } \\
& \text { Laboratory of Theoretical Physics and Laboratory of } \\
& \text { Computing Techniques and Automation, JINR. }
\end{aligned}
$$

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

The set of equations describing excitong in one-dimengional molecular cryatals has been obtained in the preceding papers of thi series $/ 1,2 /$ with the help of the tranaforation suggeated in/3/. The effects of the resonance interaction betweon excitons and molecules as well as the interaction of excitons and phonong have been taken into account. The exciton spectrun of this aystem has been derived and examinod.

In dimensionless variablea and long-mave liait (see/2/) such gystom aspumes the form

$$
\begin{align*}
& F(\varphi, \alpha) \equiv i \varphi_{t}-\varphi+\alpha \varphi_{x}^{*}+\varphi_{x x}+|\varphi|^{2} \varphi=0 \\
& F^{*}(\varphi, \alpha) \equiv-i \varphi_{t}^{*}-\varphi^{*}+\alpha \varphi_{x}+\varphi_{x x}^{*}+|\varphi|^{2} \varphi^{*}=0 \tag{1}
\end{align*}
$$

whore φ is the Schrödinger amplitude and dimensionleae parareter α is mali ($\alpha \ll 1$) . The myaten (1) is non-Iagrengian one and possesses the whole series of partioular properties which we intend to discues here. In the following part of this work the reanlts of ammerical investigatien of the dynarica of soliton type solutions of syntem (1) including the formation, the interaction and the etability of eolitons are supposed to be published. The physical sense of the model, notations and validity limite of myten (1) has been discusaed earlier so we zefear reader to the oited papers/1,2/ and/4/ as mell.

The firgt integral of (1)can be obtained with convencio. nal method, upon multiplying $F(\varphi, \alpha)$ by φ^{*} and aubtracting iro it $F^{*}(\varphi, \alpha)$ times φ. As a rosult we arrive at the lam of the quantus number conservation in a divergent form.

$$
\begin{equation*}
\frac{\partial}{\partial t}|\varphi|^{2}=i \frac{\partial}{\partial x}\left\{\frac{\alpha}{2}\left(\varphi^{* 2}-\varphi^{2}\right)+\left(\varphi^{*} \varphi_{x}-\varphi \varphi_{x}^{*}\right)\right\} . \tag{2}
\end{equation*}
$$

This relation may be thought of as a "change" conservation law in nonrelativistic limit with

$$
\begin{gather*}
\rho=\mid \varphi /^{2} \tag{3a}\\
j=2\left\{\frac{\alpha}{2}\left(\varphi^{2}-\varphi^{* 2}\right)+\left(\varphi_{x}^{*} \varphi-\varphi^{*} \varphi_{x}\right)\right\} \tag{3b}
\end{gather*}
$$

being respectively the "charge" (or probability) and "current" densities. One can see from the latter relation that, in our case unlike the well-known one of Lagrangian aystems, "current" denaity consiats of two parts

$$
\begin{equation*}
\dot{d}=j^{(a)}+j^{(2)}, \tag{4a}
\end{equation*}
$$

where

$$
\begin{equation*}
j^{(a)}=i \frac{\alpha}{2}\left(\varphi^{2}-\varphi^{* 2}\right) \tag{4b}
\end{equation*}
$$

and

$$
\begin{equation*}
d^{j(z)}=i\left(\varphi \varphi_{x}^{*}-\varphi^{*} \varphi_{x}\right) \tag{4c}
\end{equation*}
$$

coincides with conventional Lagrangian "current" denaity. As we shall see $f^{(a)}$ may be thought of as a "dissipativen part of the overall current.

Upon integrating (2) over x we get the constant of motion for soliton type solutions (i.e., solutions with $\varphi(+\infty)$ $=0 \quad$)

$$
\begin{equation*}
\frac{d}{d t} Q=0, \quad Q=\int_{\mathcal{\rho}}(x) d x \tag{5}
\end{equation*}
$$

that is usually interpreted as a lam of the quantum number conservation.

Making likewise one can obtain

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\left.1 \varphi_{x}\right|^{2}-\frac{1}{2}|\varphi|^{4}\right)=i \frac{\partial}{\partial x}\left\{\frac{\alpha}{2}\left(\varphi_{x}^{* 2}-\varphi_{x}^{2}\right)+i\left(\varphi_{x}^{*} \varphi_{x x}-\varphi_{x} \varphi_{x x}^{*}\right)+(6 \mathrm{a})\right. \\
&\left.+\rho_{\alpha}^{(\varepsilon)}\right\}+\rho \frac{\partial}{\partial x} d^{(a)} \\
& 4
\end{aligned}
$$

that makes a functional

$$
H^{(0)}=\int\left(1 \varphi_{x} /^{2}-\frac{1}{2} / \varphi l^{4}\right) d x
$$

the energy integral in $\quad \alpha>0$ liact, to alter with time. Thus, $H^{(0)}$ essocisted with oniy the exciton energy may no longer be thought of as total energy of the syatem. Recall that $\alpha \varphi_{x}^{*}$ and $\alpha \varphi_{x}$ teras describe the reversible resomance interaction between exeitona and molecules which can lead to broadening of the spectrum line.

> Procesding in the same fashion wo have

$$
\begin{align*}
& i \frac{\partial}{\partial t}\left(\varphi^{*} \varphi_{x}-\varphi_{x}^{*} \varphi\right)=2 \alpha\left(\varphi_{x}^{2}+\varphi_{x}^{* 2}\right)+\frac{\partial}{\partial x}\left\{-\alpha\left(\varphi^{*} \varphi_{x}^{*}+\varphi \varphi_{x}\right)+\right. \tag{6b}\\
& \left.\quad+2\left(\left.1 \varphi_{x}\right|^{2}-\frac{1}{2} /\left.\varphi\right|^{Y}\right)-\left(\varphi^{*} \varphi_{x x}+\varphi_{x x}^{*} \varphi\right)\right\}
\end{align*}
$$

Pinally, integrating (6) over x yields

$$
\begin{aligned}
& \frac{d H^{(0)}}{d t}=\int 1 \varphi 1^{2} \frac{\partial}{\partial x} j^{(0)} d x \quad, \frac{d \rho}{d t}=2 \alpha \int\left(\varphi_{x}^{* 2}+\varphi_{x}^{2}\right) d x \\
& \text { where } \quad \rho(0)=-i \int\left(\varphi^{*} \varphi_{x}-\varphi_{x}^{*} \varphi\right)
\end{aligned}
$$

is the momentur of a packet in $\alpha \rightarrow 0$ limit. That is why Te aupply values H and P with (ρ) superacript.

After transition to the conventional "polar" representation of complex function

$$
\varphi=\psi \operatorname{expi} \theta
$$

-e have

$$
\begin{aligned}
& \frac{d H^{(o)}}{d t}=-\frac{\alpha}{2} \int \theta_{x} \psi^{4} \cos 2 \theta d x \\
& \frac{d P(0)}{d t}=4 \alpha \int\left\{\left(\psi_{x}^{2}-\psi^{2} \theta_{x}^{2}\right) \cos 2 \theta-2 \psi \psi_{x} \theta_{x} \sin 2 \theta\right\} d x
\end{aligned}
$$

Let us conaider qualitatively poseible soliton solution
of the sjstem (1). In $x \ll 1$ limit one can derive a series in a small paraseter startins from a well-known soliton solution for the Schrödinger equation with the cubic nonlinearity (s 3). However, in this way one nay hardly obtain a qualitatively new result.

Coneider first the stability of some solutions to eq. (1).
In the larise anplitude region $\left(|\varphi|^{2} \simeq 1\right)$ the solution

$$
\begin{equation*}
\varphi(x, t)=A \exp \left\{-i\left(\omega_{c} t-\theta_{0}\right)\right\} \tag{9}
\end{equation*}
$$

(with $A=1-\omega_{c}$ arbitrary ϑ_{c} and $\omega_{c} \ll 1$) turns out to be unstable witn respect to small perturbations which frequency $\Omega>\omega_{c}$ and wave number x are related by the dispersion equation*)

$$
s 2= \pm \sqrt{\frac{a}{2}}\left\{\sqrt{1+\sqrt{1+b^{2} / a^{2}}}-i \sqrt{\sqrt{1+b^{2} / a^{2}}}-1\right\},(10)
$$

where

$$
a=x^{2}\left(x^{2}+\alpha^{2}-2 A^{2}\right), \quad b=2 \alpha A^{2} x \cos \theta_{c} \cdot \text { (11) }
$$

'rnic insiability is analogous to that or a nonochromatic plane wave in the rramework of $S 3$ equation, except the asymptotic behaviour of the erowth rate: (10) yields $\operatorname{Im} S 2 \propto 1 / x$ when $x \rightarrow \infty$.

In the amall amplitude domain $\left(A \ll 1, \omega_{c}=1\right)$ the instability of the wave

$$
\begin{aligned}
& \varphi= A\left\{\left(1-i \frac{\alpha k}{\omega_{0}}\right) \cos \left(k x-\omega_{c} t\right)+i \frac{1+k_{0}^{2}}{\omega_{c}} \sin \left(k x-\omega_{\mathrm{c}} t\right)\right\}(12) \\
& \omega_{i}^{2}=\left(1+k^{2}\right)^{2}+\alpha^{2} k^{2}-2 A^{2} .
\end{aligned}
$$

*) Hq. (10) may be easily obtained via standard technique.
(or of the wave packet) is also describec by formula (10), where now

$$
\begin{equation*}
a=x^{2}\left(x^{2}+\frac{1}{2} x^{2} x^{2}-2 A^{2}\right), \quad B=x^{3} A^{4} / 4 \tag{13}
\end{equation*}
$$

But in this case to get (10) we have to employ quite a general and successive Bogolubov method, known in the theory of norlinear equations /5/, that enables one, in principle, to calculate terma of hicher order in $A^{2}\left(\propto A^{6}\right.$ and so on, though the calculations become more complicated and dull). A more visual and "straight" formalism of averaging over fast time ($\tau \simeq \frac{1}{\omega_{e}}<\frac{1}{\Omega}$) is not able to give ciissipative terms $\sim O\left(A^{4}\right)$ so we have $B=0$.

The growth rate of the instability of plane wavea with various amplitudes may be seen from (10) to have a peak near $x_{c}=A$ like in the case of $S 3$ equation. But the spectrum due to (10) is enriched with short-wave harmonics.

The fact that the character of the instability of solutions to (1) both for large and amell amplitudes is qualitatively identical seems to be noteworthy to us. The instability (10) results in the formation of self゙-localized wave packets of a soliton type. Such solutions may be examined in more detail in a particular case when the group, i.e., soliton velocity, is equivalent to the phase velocity of constituent wavea, $V_{g r}=\omega / k$ Having used the polar form for φ and introducing $\xi=x-v t$ $\eta=k x-\omega t$ one comes to

$$
\begin{align*}
& -v \psi_{\xi}-\alpha \psi_{y} \sin 2 \theta-\alpha \theta_{\eta} \psi \cos 2 \theta+2 \psi_{\xi} \theta_{\eta}+\psi \theta_{17}=0 \tag{14}\\
& v \theta_{y} \psi+\psi_{73}-\psi+\psi^{3}-\theta_{\eta}^{2} \psi+\alpha \psi_{\xi} \cos 2 \theta-\alpha \theta_{\eta} \psi \sin 29=0
\end{align*}
$$

Letting $\eta=k \xi$ we can integrate once the first equation of (14)

$$
\begin{equation*}
\psi^{2}\left(\theta_{\xi}-\frac{1}{2}(v+\alpha \sin 29)\right)=\text { const } \tag{15}
\end{equation*}
$$

Soliton solutions imply $\psi(\pm \infty) \rightarrow 0$ therefore const $=0$ and (15) may be further integrated to give

$$
\xi+C= \begin{cases}2\left(v^{2}-\alpha^{2}\right)^{1 / 2} \operatorname{arctg} \frac{v \operatorname{tg} g+\alpha}{\sqrt{v^{2}-\alpha^{2}},}, & v^{2}>\alpha^{2} \\ -\frac{1}{v} \operatorname{tg}\left(g-\frac{\pi}{4}\right) & v^{2}=\alpha^{2(16)} \\ \left(\alpha^{2}-v^{2}\right)^{-1 / 2} \ln \frac{v \operatorname{tg} g+\alpha-\sqrt{\alpha^{2}-v^{2}}}{v \operatorname{tg} \theta+\alpha+\sqrt{\alpha^{2}-v^{2}}}, & v^{2}<\alpha^{2}\end{cases}
$$

Taking in (16) v / α or α / v as a sinall parameter some approximate solutions $\psi_{\mathcal{r}}(\xi)$ of the second eqution of (14) might be obtained. Here as an example we describe the most curious situation arisen at $v=0$, when the phase

$$
\theta=\operatorname{arctg}\left\{\exp \alpha\left(x-x_{0}\right)\right\}+\theta_{0}, \quad \theta_{0}= \pm \frac{\pi}{2} \pm \pi n
$$

is subject to aine-Gordon equation ${ }^{*}$) $\theta_{x x}=\left(\alpha^{2} / 4\right) \sin 49$. It is a kink-soliton describing the rotation of the phase by the angle $\pi / 2$ when x varies from $x=-\infty$
to
$x=+\infty$. Note that the phage rotation occurs in the region of order $1 / \alpha$.

The second equation of (14) then assumes the form

$$
\begin{equation*}
\psi_{x x}-\psi+\psi^{3}-\frac{3}{4} \alpha^{2} \psi \sin 29+\alpha \psi_{x} \cos 2 g=0 \tag{18}
\end{equation*}
$$

Its asymptotic behaviour at $|x| \gg 1 / \alpha$ depends essentially on the "initial" phase 9_{0} at $x \rightarrow-\infty$. In the case $\theta_{0} \geqslant 0 \quad\left(\theta_{0}=\pi\left(n+\frac{1}{2}\right), n=0,1,2, \ldots\right)$ we have equation

$$
\begin{equation*}
\psi_{x x}-\psi+\psi^{3}-\operatorname{sgn}(x) \alpha \psi_{x}=0 \quad|x| \gg 1 / \alpha \tag{19}
\end{equation*}
$$

possessing soliton-like solutions if $\alpha=\sqrt{2}$. The "initial" priase $\gamma_{0}=-\pi\left(n+\frac{1}{2}\right), n=0,1, \ldots$ leads to the equation

$$
\begin{equation*}
\psi_{x x}-\psi+\psi^{3}+\operatorname{sgn}(x) \alpha \psi_{x}=0 \tag{20}
\end{equation*}
$$

that has as a solution either a narrow solito of is equetion or a set of solitons with nodes of the riela function $\psi(x)^{/ 6 /}$ (at any rate for the solutions of the $x \rightarrow-x$ symuetry).

That the higher conservation laws are absent for system (1) at $\alpha \neq 0{ }^{* *}$) and that it has a rich spectruan or soliton-like solutions will naturaily rise to a qualitatively new dynarics of initial packete. The fomation as well as the inelastic interaction of solitons may be expected in the frumeworn of system (1).

We are grateful to N.N.Rogolubov and D.V.Shirkov for useful discussions.

References

1. V.K.Fedyanin, L.V.Yakushevich, Preprint JIINR P17-962!, Dubna (1976) (in Russian).
2. V.K.Fedyanin, L.V.Yekushevich. Preprint JItr P17-9628, Dubra (1976), Theor. and Matherl. riz., 30, 33, 1977 (1n Russian). V.K.Fedyanin, V.G.Hakhanкov, L.V.Yakushevich, Preprint JINR P17-10481, Dubna (1976); Phys.Lett. (to be published)
3. D.Chesrut, A.Suna. J.Chem. Phys., 39, 146 (1963).

[^0]4.A.S.Davydov. ij.kislukha. Phys. Stat. solid (b),59, 465
(1973). A.S.Davydov. Preprint ITP-76-12E, Kiev 1976.
5. N.N. Bocolubov, Y Mitropolsrii.Asymptotic methods in nonlinear oscillatio. theory. M. 1963.
6. V.b.Glasto. Ph.Leruste, Ya. P.ferletsky, S.Ph.Shushuzin. ZWPF, 35, 452 (1958); E.P.Zhydkov, V.P.Shirikov. Zh. Vhych. Math. Fiz. 4, 804 (1964);Z.Nehari Proc. Royal Irish Acad., A62, 113 (1963); R.Friedberg. T.D.Lee, A.Sirlin. Phys. Hev., D13, 2739 (1976).
7. V.E.Zakharov, A.B.Shabat. ZETF, 61, 118 (1971); Kh.Abdulloev, I. Bogoluboky, V.Makhankov. Nuclear Fusion, 15, 21 (1975).

Received by Publishing Department on March 17, 1977.

[^0]: **) Unlike the complete integrable 53 equation not peraitting inelestic interaction of solitons / ///.

