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Soliton-Like Solutions of Equations
Describing Excitons in One-Dimensional Molecular
Crystals

The family of soliton-like solutions to equations
describing excitons in one-dimensional molecular crystals
are obtained and discussed. It is shown that terms due
to resonance interaction between excitons and molecules
give rise to a change root and branch of a solution
spectrum of the Schrddinger equation with cubic nonline-
arity even if such an interaction is small.
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A

The set of equations describing excitons in one-dimen~
sional molecular crystals has been obtained in the preceding
papers of this -oriun'z'l with the help of the transformation
suggested in/ 3

between excitons and molecules as well as the interaction of

o The effects of the resonance interaction

excitons and phonons have been taken into account. The exciton
spectrum ¢of this system has been derived and examined.
In dimensionless variables and long-wave limit (no/ 2/ )

such system assumes the form
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where y is the Schrsdingor amplitude and dimensionless
parameter o 1is smali (<7 ) . The system (1) is a non-lag-
rangian one and possesses the whole series of particular proper-
ties which we intend to discuss here., In the following part of
this work the results of a numerical investigatien of the
dynamics of soliton type solutions of system (1) including the
formation, the interaction and the stability of solitons are
supposed to be published. The physical sense of the model, no-
tations and validity limite of system (1) has been discussed
earlier so we refear reader to the cited p.per-"'z/ Bld/4/

as well,

The first integral of (1)can be obtained with convensio-
nal method, upon multiplying F(¥«) by ¥ and sub-
tracting from it [(px) times ¥ . As & result we
arrive at the law of the quantum number eensemtien in a

divergent form,
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This relation may be thought of as a "change" conservation

law in nonrelativistic limit with

e=19/*,

JeilEire) )

being respectively the "charge" (or probability) amd “current"

(3a)

densities. One can see from the latter relation that, in our

case unlike the well-known one of Lagrangian systems, “current”

density consists of two parts

S P (4a)

where

SO i F (v pR) (4b)

c//z) - (‘/’Zt W*Z/) (42)
coincides with conventional Lagrangian "current® denmsity. As
we shall see J'(ﬁ‘) may be thought of as a "dissipative" part
of the overall current.

Upon integrating (2) over X we get the constant of
motion for esoliton type solutions (i.e., solutions with Ytoa)
=0 )

j;GZ:U , QA = fpovolx (5)
that is usually interpreted as a law of the quantum number
conservation.

Making likewise one can obtain
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that makes a functional
H = J1w.7°- F19/7) 4

the energy integral in A »0 limit, to alter with time.
Thus, //’” associsted with only the exciton energy may
no longer be thought of as total energy of the aystem.
Recall that o V; and « %  terms describe the rever-
sible resonance interaction between exeitons and molecules
which can lead to broadening of the spectrum line.

Proceeding in the same fashion we have
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Pinally, integrating (6) over x yields ~
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where A= - 7 [fcvty g ¥P)
ig the momentum of a packet in x>0 limit. That is why
we supply values // and F with ro) superscript.
After transition to the conventienal "polar" represen-
tation of complex function
= % e/xf 76

’

we have
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Let us consider qualitatively possible soliton solution



of the system (1). In o << { limit one can derive a series in
a small parai:eter starting from a well-known soliton solution

for the Schrbdinger equation with the cubic nonlinearity (83).

2
Eowever, in this way one mey hardly obtain a qualitatively new
result. '
Conrider first the stability of some solutionas to eq. (1).

1n the larie anplitude region (l¢t1 ~ 1) the solution

P04 = A exp b= (et -8 ®
(with A = 1~(40¢ arbitrary Sc and @, *“ ) turns out to be
uwistable witn respect o small perturbations which frequency

Q>> (&‘ic
)

and wave nusber x are related by the dispersion

R *
equation
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Tnis instability is analogous to that of a monochromatic

where

plene wave in the rramework ot 33 equation, except the asymp-
totic behaviour of the growth rate: (10) yields Tw Sy \/t
when X —» oo .

In the small amplitude domain ( /\ << i_'cau =4) the
instability of the wave

i : LS
= AL s (w185 e} ao

]

WF = U A+ LA -2 A,

P
) 5q. (10) may be easily obtained via standard technique.

e

(or of the wave packet) is also described by Tormula (10),where

now

a = x*(x*+ e -2AY) b =x Ay L1

But in this case to get (10) we have to employ quite a general

and successive Bogolubov method, known in the theory of nonlinear

/5/

equations » that enables one, in principle, to calculate terms

( ac AS

culations become more complicated and dull). A more visual and

2
of higher order in A and so on, though the cal-

"straight" formalism of averaging over fast time (‘tf:fscgg f%
is not able to give dissipative terms ~ OLA") 80 we have %EO.

The growth rate of the instability of plane wavco with va—
rious amplitudes may be seen from (10) to have a peak near X,z A
like in the case of 83 equation. But the spectrum due to (10) is
enriched with short-wave harmonics. '

The ract that the character of the instability of solutions
to (1) both for large and smell amplitudes is qualitatively
identical seems to be noteworthy to us. The instability (10)
results in the formation of selt-localized wave packets of a
soliton type. Such solutions may be examined in more detail in
a particular case when the group,i.e.,soliton velocity,is
equivalent to the phase velocity of constituent waves, U, = w/k
Having used the polar form for ‘9 and introducing X =x=-vt

one comes to

9 = kx-at
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Letting Q= k3 we can integrate once the first equation of (14)

)
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Soliton solutions imply q)(t oe)a 0 therefore covay =0

and (15) may be further integrated to give
Zﬁvl—d‘)y‘md: g8 + o vt s 2
3 o—=r ,
$40={- 4T (3- T , o vh e atae

wigd o —~JaFovt a

(‘1. "S‘/’.‘ey\. v o< &l
-V v’t39+d+\jo{"-v" 4
Taking in (16) V/ & or oL/V

as a small parameter some
approximate solutions *& (3) of the second eqution of (14) might
be obtained., Here as an example we describe the most curious
situation arisen at V" = () , when the phase

T+
7z - ™

= an&% \ %~ ° ==
9 cﬁ:u\oa( x)}«-%o . 9. s

is subject to sine-Gordon equation*) %_J‘ = (ﬁl/k) s U9,

It is a kink-solitoa describing thg rotation of the phase by the
angle T©/9¢ when x varies from X =- oo to

X = s oo . Note that the phase rotation occurs in the region of
order 1/¢ .

The second equation of (14) then assumes the form
Voo =¥+ 9% - 22 + a¥, 29 =0 as)

Its asymptotic Behaviour at l*\ > (/oL depends essentially on

the "initial" phase 9, 8t % - -oo . In the case

8% >0 (SQ = o (ma 1) W =0,\,7.,---) we have equation

— .
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possessing soliton-like solutions if « «~S? . The "initial® pnase
%u =- T\(“-'q—%_), wn =0,4,... leaas to the equation
Vo= ¥ 2 9% g b 20 @)

that has as a golution either a narrow solitos of 33 equatior or
a get of solitons with nodes of the rield tuvuction *(x)fe/ (at
any rate for the solutions of the ¥ = — X syretry ).

That the higher conservation luws are abgent for sjstem (1)
at oL ¥ O **) and that it has a rich spectrum of soliton-like
solutions will naturally rise to a qualitatively new dyramics of
initial packets. The formation as well as the inelastic interace-
tion of solitons may be expected in the tramewors of system (1).

We are grateful to N.N.Rogolubov and D.V.Shirkov for useful

discussions.
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