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Coherent Ladder Approximation for rhe Random 

Hubbard Model 
Dynamical effects of the electron-electron inter­

action in binary alloys with off-diagonal disorder are 
described in a self-consistent theory obtained by uni­
fying a local ladder approximation for the random Hubbard 
model and a modified CPA. Numerical results are presented 
for partially averaged densities of states, self-energies 
which fulfil the Luttinger theorem, and effective two­
particle vertices. The ·totally averaged density of states 
exhibits tails with strongly damped correlation bumps. 
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1. Introduction 

Self-consistent calculations for the 
electronic structure of substitutionally 
disordered narrow-band systems become more 
realistic by taking into account dynamical 
correlation effects and random hopping in­
tegrals. To describe the electron-electron 
and impurity scattering simultaneously a 
useful method should be the combination of 
dynamical solutions for the random Hubbard 
model with an extended version of the cohe-· 
rent potential approximation (CPA) aimed at 
finite-ranged disorder. Differences between 
decoupling and diagrammatic techniques for 
solving Hubbard's correlation problem arise 
especially from the extent to which the 
approximations include the dynamical cha­
racter of the interaction. 

Decoupling procedures mostly performed 
on the basis of Hubbard III I I/ (for other 
decouplings see/~ ) provide a static so­
lution-type within the alloy analogy approxi­
mation/J-S/ (i.e., Hubbard III with only 
scattering corrections) and a dynamical one 
by adding resonance-broadening terms/6/. In 
Tsukada's scheme~/ complete Hubbard-III­
type solutions including resonance-broaden-
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ing corrections are subjected to an extended 
CPA to treat off-diagonal randomness of the 
Shi ba type 171. 

The perturbative approach was chosen by 
Drchal and Velick;//8/ in solving the random 
alloy problem for a pair of interacting 
electrons. At low carrier concentration,the 
local version of the ladder approximation 
proposed by Babanov, Naish, Sokolov, Finash­
kin ( BNSF) 19 •10/for the pure Hubbard model/111 
can be~extended to alloys, too. Work along 
this line was done·in the case of purely 
diagonal randomness/12/ and for off-diagonal 
randomness/131. The latter consists of two 
separated (but not independent) self-consis­
tent chains describing correlation and ran­
domness problems, respectively. 

In this paper we unify the BNSF scheme/9/ 

adapted to the random Hubbard model and the 
off-diagonal CPA/IV · for the additive li­
mit into a completely self-consistent theory 
(Section 2). This approach fulfils the 
Luttinger theorem/1~ contrary to Hubbard's 
decoupling procedures. Numerical results 
for partial (or component) and total (alloy) 
averages of densities of states, self-ener­
gies, and effective vertices are presented 
in Section 3. 

2. Self-Consistent Coherent Ladder 
Approximation 

Consider the electron-electron interac­
tion in substitutionally disordered narrow­
band systems of the binary alloy-type A B1 . 

I c -c 
The Hubbard model Hamiltonian/11 depending 
on the configurationlvl is 

Hlvl _ Hlvl H lvl_ H B ·ylvl H lvl 
- ~ + u- ~+ ~ + u 

where 

lvl v vp. + 
H ~ = I E • n. + I t . . c. c. , 

ia 1 1 a ija IJ 1a 1 a 
(i ~ j) 

v 
lvl _ _!_I U in iani-a H u- 2 ia 

(1) 

( 2 ) 

( 3) 

Here c~a(c ia) is the creation \annihila-
tion) operator for an electron of spin a 

in the Wan n i e r stat e at 1 attic e site i , a n.d 
+ . v 

"ia =cia cia . The atom~c energy E i , the 
hopping integrals ~f as well as the intra-

. . v 
atom~c Coulomb repuls~on Ui are random 
variables which take the values Ev,t~t 
and uv,respectively; the superscript v~) 
refers to the atomic species ( v , p. = A, B ) 
located at site i(j). Only nearest -neighbour 
(n.n.) hopping integrals are included. Spe­
cialize the off-diagonal randomness by 
assuming the additive condition11V 

tAB=}(tAA+tBB ). ( 4 ) 

H~ is the one-electron Hamiltonian (2) 
for a perfect B-crystal. 

The basic problem of treating electron­
electron correlations and randomness simul­
taneously can be formul~~ed as follows. The 
electron self-energy IJ defined by the 
Dyson equation 

5 
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!vi J1'! !vi~ I vi h'l 
G =CA +GA uG ( 5 ) 

can be determined in principle by diagram 
analysis in a self-consistent approximation 
chain of the type 

!1'! f,,l lvl 
~ u ~ f(J ' , G ) 

( 6) 

I , h, l c- g (J' l1'l' G lr/ l ) . 
( 7 ) ~ 

Here Gl\l is the Green function for noninter-
acting electrons related to II~~, G vl is 
t~T full one-particle Green function, and 
I'" denotes the effective vertex within 
!1/l. The randomness problem is expressed in 
terms of the total scattering operator Th'l 
introduced via 

lvl _ (d <:' l1'l(v 
G -;')+,;T ~. ( 8 ) 

where the tQtally averaged Green function 
~ is given by 

, f,,j B -1 -1 
S=<G >=((GA) -~) 

( 9) 

< ..• > implies the configurational averaging, 
is the Green function related to H!. 
coherent potential ~ can be found from 
CPA self- consistency condition 

G~ 
The 
the 

<T
1
"
1
>=<(V l"'+I ~~~~)(1-~(V ~~ +~ ~~~-I))-1 >= 0. ( 10) 

By means of additional assumptions the 
equations (5) to (7) and (10) can be made 
more practicable. Obviously, the compleli 
infor~~tion about fvl incorporated in G" 
and ~u. for instance, is not necessary to 
calculate § and ~ finally; accordingly, 
we have to modify the CPA problem (lO),too. 
Both the correlation and randomness must be 
treated within a unified approximation. 

There are arguments for restricting the 
considerat~fns to l~e single-site approxi­
mation. V [ and H 0 are additive random 
operators; moreover, a local bare interaction 
term is taken into account. This allows one 
to decompose V J\1, I l~l and I into sums 

lvl v 
VA = ~ VAi 

I 

lvl I' 

~If =~~IJi• 
I 

I=II .. 
• I 
I 

( 11 ) 

Note that V .t and Ii are finite-ranged 
quantities in the Wannier space due to the 
off-diagonal randomness, whereas .lui is 
assumed to be local corresponding to a local 
effective vertex for the electron-electron 
interaction. 

Let us introduce the partially averaged 
Green function G': as 

I 

G~ =§+£;(V~+ I~i-Ii)G~=S+ST~S· ( 12) 

which is associated with the perturbation 
<VXi+I~i-Ii) at some site i embedded in an 
otherwise effective medium given by <H~+I). 
The single-site scattering operator T~ 
taking finite range in the Wannier sp~ce is 

7 



II II II II II -1 
T . = (VA . +I u. -I . )( 1-~ ( v A . + I u . - I •. )) . 

1 L\1 1 1 L\1 I 

( 13) 

Recall.ing (6), (7), (9) and (10) on the 
basis of (11) to (13), the completely self­
consistent formulation of the random Hubbard 
problem in single-site approximation can be 
given by 

~ 

II II II 

I Ui\d = nr i 1 d ' G i 1 d > , (14) 

II II II 

r i\d = g<rild 'G i\d ) ' (v = A, B) (15) 

II (16) <T.> =0, 
1 

where the CPA condition (16) corresponds now 
II (i) II • 

to <Gi > =~. rild denotes the local effect1ve 
vertex; the subscript "ld" means including 

. ~~~ Gv I'v. only d1agonal elements of klfi, i , i 1n 
Wannier representation at site i . 

To describe the electron-electron inter­
action we use the local version of the hori­
zontal ladder approximation developed by 
Babanov et al. /9,10/ for pure metallic sys­
tems. This approximation results from a 
zero-temperature diagram analysis at low 
density of electrons. Adapting the BNSF self­
consistency scheme /9/ to the random Hubbard 
model, the relations (14) and (15) expressed 
in terms of causal functions take the form 
(see Fig. 1) 

8 

I. ,. 
,, 

(c)v 
00 dE' (c)v , (c)v , 

IUilda <E> = f -2 -:-Gijd-a (E )r i\d (E+E ), 
-oo 711 

( 17) 

(c)v 1 00 dE' (c)v (c)v -1 
r ild (E)=~~+! 27Ti G ijda (E')Gijd-a<E-E')} '(~~=A,B>. 

I 

( 18) 

E.·tr 

·G·-t~~t +• ~.' 

•§E,-a i 
i = r"(E·£ _ 

i ' 

E•E'-E,-CJ 

E,CJ : E.a f,a 

~ = E)+[E+fuvj]u·j]ui +· .. 
E·f,-.,- E-f;'CJ E.f,-a 

E,a 

B +Fi: )i~(E)I 
E-€,-15' 

Fig. 1. Local ladder approximation for ran­
dom self-energy and vertex parts. The arrowed 
lines denote partially averaged one-particle 
Green functions. 
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(c)v • h Here the total Green function G iJda , whlC 
must be determined from (12), represents the 
link between the correlation and CPA prob­
lems. 

Adopting the extended CPAhV we go over 
to the momentum representation. The trans­
lationally invariant Green function (9) 
written as resolvent takes the k-transform 

B UB ... ... -1 
~L (z)= (z-c -t s(k)-l (k,z)) , 

ka a 
(19) 

~ 

where the nearest-neighbour structure factor 

... ... ... 
-> ik(H·-H·) 

(k) '\' J I s ~ .... e 
i<f i) 

( 20 ) 

is associated with the lattice type. The 
coherent potential 

... ... ... 
L(,(k,z)o~ a

0
a (z)+2a10 (z)s(k)-Hr 20 (z)s 2 (k) ( 21 ) 

is expressed in terms of a00 , a 1a, a 20 which 
satisfy the CPA cond~tions <r~. > =0 <P =0,1,2) 

r 10 
arising ... from (16) with the T~ operator (13) 
in the k -transformed version 

......... 
... II ... 1 -i(k-k')Ri v )1 ...... v ....... 

<kJTia Jk '>=Ne [rOia+rJia (s(k)+s(k'))+r2ias(k)s(k')J. 

( 22) 

The explicit expressions for rf'ia <P =0,1,2) 
are given below. 

... Combining (19) to (22) with (12) in the 
k -representation, one can exactly derive 
the site-diagonal element of G ~ within the 
modified CPA as 

10 

·~ .~~, 

I 
r 

'l 

\ 
( 

r 

v 2v 11 211 ·c .
1 
d = F0 + F0 r 0 . + 2F0 F1 r 1 . + F1 r ... 1 a a a 1a a a 1a a "1a ' ( 2 3) 

where 

1 .... e 
F, (z)=-N ~~ .... (z)[s(k)] 

ta k ka 
(f = 0,1 ,2}. ( 24) 

In the case of only diagonal randomness the 
usual CPA expression for (23) is recovered 
immediately (cf. /16/ ) . 

Let us summarize the basic equations 
introduced above in a more convenient and 
explicit form for practical calculations. 
Accordingly, the system of equations is 
classified into three parts. 

a) With respect to the correlation prob­
lem, the relations (17) and (18) are rewritten 
by replacing the causal by retarded functions 
on the basis of spectral theorems. After 
separatin~ real and imaginary parts one gets 
(compare 9 1) 

II 1 ~ II II 

Relu (E)=-~ f dE'IinG-o<E')Rer (E+E') -
a. TT-oo 

(25) 

1 2~-f. II II 

- 77 f dE 'ReG -o <E ')lmr <E + E '), 
--oo 

II 1 2~-f. II II 

Iml: u <E> = - f dE 'ImG <E 'Hmr <E + E ') , 
a TT ~ -o 

(26 ) 

II II 

1/U +ReD <EJ ( 2'7 ) II 
Rer <E> 

[1/U
11 

+ ReD
11

(E)] 
2 

+UmD
11 

<E>l
2 
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v 
v lmD (E) 

Imr <E> = - -~ , 
v v 2 v 2 

[ 1/U + ReD <E>J + [ImD (E)} 
(28) 

with the abbreviations 

v 1 11 v v 
ReD (E)=-~ f dE'(ImGu<E')Re~(E-E') + 

~ 

-oo 

+ ImG v <E ')ReGv <E-E')) + 
-a a 

1 E -p. v v 
+- f dE '(ReG a <E ~lmG-u<E-E ') + 

277 -oo 

+ReG v <E 'HmG v <E- E ')) , 
-a a 

(29) 

E-p. 
lmDv<E)= ~ f dE'ImG~(E'HmG:<E-E'), (v=A,B>. 

~ (30) 
v v v v 

Here I.ua<E>, G u<E>, I' (E) and D (E) are now 
retarded functions; for simplicity, the 
subscripts "iJd" indicating the localization 
are dropped. Dv represents the renormaliza­
tion contribution to the bare vertex uv. 
The chemical potential p. is determined by 
the total electron number per site (see c)). 

a) The CPA prob~em is expressed by three 
(complex) self- consistency· conditions/13,14/ 

v 
v aea (z) 

<rp_ (z)> = < v > = 0' ( e = 0,1,2)' 
a 1-da{z) 

(31) 

where 

v v ~ v ) ( v )2 ( v ~ v \ . 
aoa = (oo + "-ua-aoa + 01 -ala F2a+ 0 o+"-ua-<uda2dF2a • 

( 32) 

12 

I~'< 

l 

... 

• 

v (v )(v 2 v v 1) 
ala= 0 1-ala- 0 1 -ala) Flu-<0o +I.uu-aou>a2aFla+- 33 

v ( v 2' v v . 
a2a=-a2a + 0 1 -ala) Fou+<8 o+I.ua-aoa)a2afoa•(34) 

v v v ' v 
da =<8o +I.ua-aou>Foa +2(~ -ala )F la-a2aF2a-

(35) 
v 2 v v 2 

-[(o 1-ala) +(oo +I.ua-aoa)a2a ][F\a-FodF2a], (v=A,B>. 

v v 
The parameters [8 0 ,o 1 ] describing' diagonal _ 
and off-diagonal rand¢mness are equal to 

B 1 AA BB • [fA- f , 2 <t -t )] or [0,0] accord~ng to 

whether an A orB atom occupies the i-th 
site, respectively. Note that the arbitrary 
index i was omitted. The scattering-matrix 

v . ~ v parts rea depend on z v~a "'u , aea , and Feu. 
' • p 

Hereafter, we are work~ng w~th only retarded 
functions provided that I.ua from a) is a ' 
retarded one. 

c) The partially averaged Green function 
connecting a ) and b ) i s (with dropping "iJ d" 
in (23)) 

v 2 v v 
Ga(z)=Foa (z)+Foa(z)r0a(z)+2Foa (z)Fla(z)rla(z) + ( 36) 

2 v 
+ F I a (z)r 2a(z), (v = A,B). 

By inserting (19) and (21) into (24) , one 
immediately gets the coherent Green func­
tions 

.... e 
F (z)=.!_I. [s(k)] . 

£'a N .... R RR -+ 2 .... 
k z-f -a

0
a(z)-(t +2a1Jz»s(k)-a2a(z)s (k) 

(f=0,1,2). (37} 
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The chemical potential ~ obeys the relation 

n == I na == - ]_ I f dE lmFoa (E), 
a TT a -oo 

( 38) 

where n is the average number of electrons 
per site. So far we have pointed out in a), 
b), and c).the closed set of completely 
self-co~sistent equations which must be 
solved numerically. 

To complete the formalism one can intro­
duce the coherent density of states (per site) 
of electrons with spin a as 

Pa <E>=- ~lmF 0a(E), (39) 

and, analogously, the component densities 
rf states associated with A and B atoms through 

v 1 v 
p (E)==---ImGa(E), (v == A,B). a TT (40) 

Accordingly, the average electron number with 
spin a at A and B sites is 

~ 

n v = J dEp v <E>, 
a -oo a (v == A,B>. (41) 

By averaging (36) and combining with (39) 
to (41) we have 

v A B 
F Oa = < G a> == cG a + (1 - c )G a ' ( 42) 

p (E) ==<pv(E)>, 
a a 

v 
n = <n >, a a (43) 

14 
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where na is the average number of electrons 
with spin a per site defined in (38). 

3. Numerical Analysis. 
and Discussion 

Results 

To facilitate the calculations we choose 
a simplified input function associated with 
the band structure. The unperturbed density 
of states (per site per spin) of the pure 

B) . B band (related to HA is assumed to have 
the semi-elliptic form 

Y2 
TT -l
_!_<I-E 2

> , lEI <I 
B 1 B BH -+ 

pi:!.<E>==N~o<E-( -t s<k»== (44) 
k 0, IEI>l. 

Here the half-band width is set equal to unity 
(i.e., tll

0 =1/6 for the s.c. lattice) and 
the origin of the energy is chosen as fB= 0. 
Using (44) and performing the k-summations 
in (37) by the residue method, one directly 
obtaj19f the F faas algebraic functions of 
afa • . 

The present approach involves six actual 
parameters c, A0 , t\ 1 , uA , UB, n ; here 

A A A A AA BR. 1:!. 0 =o 0 =c -(, ll 1 =12o 1 =6<t -t -, (45) 

describe the diagonal and off-diagonal 
randomness,, respectively, resulting from the 
potential VX in (1). In the numerical ana­
lysis we will consider only the nonmagnetic 
case defined by the solution-type 

15 
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Fig • 2 . ( a ) El e c t ron den s it i e s o f s tat e s p v 

and p , (b) real and imaginary parts of the 
self-energies ~~ and a 0 o~ v-sites (v=A,B) ~ 
and for the alloy, resp., WJ.. th ( c, !1

0 
, !1 1 ; 

UA, U 8
, n) = ( 0.25, 1.2, 0; 1.6, 0.8,0.5) 

Split-off band case for the coherent Pt1 
without electron-electron interaction. 

v ·v v 
~u =-'~ua=~u-a • (v =A,BL ( 4 6) 

Accordingly, one redefines G~, afn, Ffn , 
r~ , Pa , p; by neglecting the spin indices 
in the following. Further we have n/2 = na =n-a 
nv/2=n~=n~ , andn=<nv>.For comparison the 
limit of zero Coulomb energy (UA;=UB=O> 
is pointed out, too (cf.also/17/). 

The numerical procedure can be outlined 
as follows. To get initial values we start 
with virtual-crystal results for ae at zero 
Coulomb energy; calculate successively Fr 
from (37 ), f-L through (38), Gvvia (36), n v 

from (40) and (41), and determine Hartree-
F k . ~v uv vi . . oc self-energJ..es by ...:..u= n 2. W1.th th1.s 
initial self-energies ae' ~u we solve the 
self- consistency problem (25) to (38) as a 
whole (unlike the two separated self-con-
sistent chains in 1131) . by an iteration 
method. In particular, we calculate via Gv, 
f-L , Dv , f' v , new ~ ~ values according to 
(36), (38), (29) and (30), (27) and (28), 
( 2 5 ) and ( 2 6 ), r e s p e c t i v e 1 y ; and de r i v e 
from the CPA conditions (31) new ae values 
by using a modified iterative schemehV 
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The whole procedure in repeated, and one 
gets, with alternate s~b-iterations within 
the correlation and CPA sub-cycles, a good 
total convergence. 

In Fig. 2 partial and total averages of 
one-particle densities of states and self­
energies are plotted in the split p~ -band 
case without randomness in hopping integrals. 
At zero Coulomb energy, features of the 
coherent pt\ were discussed /17/ in the more 
genera~case of two impurity-scattering 
mechanisms associated with Ao and !\1·The 
gap in P;\(Fig. 2a) arising from strong 
diagonal disorder (!\ 0 >1) disappears by 
electron-electron correlations. The one­
particle region defined by p t\<E>i 0 is aug­
mented by a correlation region of p con­
sisting of large tails and a small hump 
which can be ascribed to electron pair states 

on A sites as reflected by p A. Such a type 
•f partially averaged densities of states 
pv was also given in11V. The continuous 
p(E) s)iectrum (cf. also/13/, for pure sys-
tems O/ ) differs strongly from the split­
off picture obtained by using Hubbard's 
decoupling procedures /4,5/ (compare the 
splitting of arbitrarily filled bands in 
the crystals case /1B I); even by including 
resonance broadening/6 there are only weakly­
damped correlation maxima with small tailing. 
Fig. 2b shows that the two-particle hump in 
pA ~) is accompanied by piecipitous 
changes of I~ (a 0 ), especially there is 
a strong damping of one-particle states 
reflected by a peak of Imi ~ <Ima

0
). The 

correlation peak in a 0 due to It is dimi­
nished by the interplay of correlations and 
disorder. 

18 

Characteristic results for one-particle 
and two-particle quantities are presented in 
Fig. 3 in the case of purely off-diagonal 
impurity scattering (!\0 =0) and random inter­
action strengths Uv.The self-consistent 

Gv ~ v I' v · sub-cycle for · , .:... ll, and provJ.des damped 
two-particle humps in the component pv 
(Fig. 3a) caused, as discussed above, by 
peaks in the imaginary parts of the self­
energies I(1(Fig. 3b). Moreover, the 
effective two-particle vertices (or scatter­
ing amplitudes) I"'<E> (Fig. 3c) depending 
on the sum of energies of the interacting 
electrons sharply change in the correspond­
ing correlation regions. On the other hand, 
electron pairs whose energies lie in the 
main band are weakly scattered. The change 
of the sign of the retarded functions Iml' v(E) 
near E=2p refers to an instability connect-
ed with an attractive effective interaction. 
The alloy averages p and ao (contributing with 
al , aJ to the coherent self-energy I, 
cf./17

) in Fig. 3a can be explained as a 
weighted superposition of their partially 
averaged ~omponents. In the correlation region 
the results of the present method differ 
considerably from :those of the incompletely 
self-consistent version/1 3/ as is shown by 
"o in Fig. 3a. Note that the comparison 
was performed by using nv values of this 
calculation. 

For the partially averaged quantities the 
quasi-,article conditions (for pure systems 
c f. / 10 ) lmi u (p) = 0 , , Imi u<E> "' (E-p )2 near 
E=p (local version of the Luttinger theo­
rem 115 1 ) , aRei~<E>NEip< 0 , and Imrv(2p) =0 
can be confirmed in Fig. 2 and Fig. 3. Ob­
viously, additional impurity scattering 
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Fig. 3. (a) Component and alloy densities of 
states pi/ and p, resp., real (--) and 
imaginary (---)parts of the coherent self-
energy ao in comparison with Rea 0 (----) 

~and Im ao (-··-··-) obtained on the basis 
of /IJ/; real and imaginary parts of the (b) 
self-energies It and (c) effective vertices 
f'l/ at 1/-sites (1/ = A,B) for the set ( c, ~o, 
~~; u\ ufl, n) = (0.5, 0, -0.6; 2, 4, 0.3). 

associated with random atomic levels leads 
to a finite lifetime of quasi-particles at 
the Fermi energy as reflected by lmao (p) < 0 
in Fig. 2b, whereas random hopping integrals 
do not influence the local a 0 in such a way 
(Fig. 3a). Asymptotic requirements as 
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v v v v v 
ReI. u (± oo) = U n I 2 , Re r (± oo) = U 
Im I. u ( ± oo ) = 0 , etc . , a r e a 1 s o f u 1 f i 11 e d . 

The one-particle and correlation regions 
of the densities of states pv, p in Fig.4 
are sensitively affected by varying the off­
diagonal randonmess parameter d 1particularly 
(·here !\ o = 0 as in Fig . 3 ) . A typic a 1 n um e­
ri~al example for the gapless densities of v . 
states p , p 1n a completely random Hubbard 
alloy is presented in Fig. 5. As is demon­
strate<L by the total average p , dynamical 
correlations, i.e., all repeated binary 
interactions described by I'v, work against 
the band splitting (deepening). Two small 
humps survive in the correlation region 
of p. 

4. Conclusion 

The horizontal ladder approximation/9/ 

and the extended CPA /I 4/ are unified into a 
completely self-consistent single-site 
theory for the random Hubbard model describ­
ing electronic prop~rties of narrow-band 
alloys with diagonai and off-diagonal dis­
order. This dynamical theory avoids shortcoming 
of decoupling schemes as,e.g.,the violation 
of the Luttinger theorem. 

By assuming an analytic form for the 
unperturbed density of states the numerical 
procedure is practicable even (unlike /IO/ ) 
in the dilute carrier-concentration limit, 
e.g., for nA,.,Q.02 in Fig. 5-Although. the 
ladder approximation is more trustworthy at 
small n(n < 1/3) we have also given nume­
rical exa~ples beyond this value (Fig. 2)~ 
note that in the alloy case a criterion of 
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Fig. 4. Component and alloy densities of 
states p''( v = A,R) and p, resp., for ( c, 
!\ o , :\ I ; U A, lJ ~~ n ) = ( 0 . 2 5 , 0 , - 0 . 5 ; 3 , 
0.5, 0.4) and (0.3, 0, 0.5; 3.5, 0.5, 0.5) 
corresponding to the parameter sets (1) and 
(2), resp .. 

validity must be associated with the partial 
occupation numbers nv. In the present paper 
we have restricted numerically to nonmagne­
tic solutiqns by suitable choices of the 

v '· par am e t e r s , P. spec i a 11 y L and n . 
Band gaps caused by strong impurity 

scattering in the one-particle region dis­
appear by the Coulomb repulsion. Dynamical 
correlations described in terms of effective 
two-particle vertices provide continuous 
densities of one-particle states with large 
tails and small humps. 
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