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KorepeHTHoe necTHHYHOe NpUG/IHXEeHUEe QR HeyNOpAAOHeHHOH
moaenu Xab6Gapaa

O6cyxaaloTca auHAMHYeCKHEe 3PDPeKTb INeKTPOH=3/1eKTPOHHOrO B3aHMO—
aeAcTeua B OCHHAPHBLIX Cr/laBaX C HeOHAT'OHAllbHhIM GeCNOPAAKOM Ha OCHOBE
CAMOCOrIaCOBAHHON TeOopuH, MONy4YeHHOH 06o6WeHHEeM MOKANbHOrO NeCTHHY~
HOro npubiuxeHns Ans HeynopsaodeHHol moaenn XaB6apaa u moaudukaunuedn
MeTONa KOrepeHTHOro noreHuuana, Ha ocHoBe yHC NeHHBIX pacY8TOB NONyYHe~
Hbl pe3ynbTaThl ANS YACTHYHO YC pPeAHEHHOW MIOTHOCTH COCTOSHHA, MACCOBO~
ro onepatopa, yJosleTBOps:owero reopeme JlaTTHHxepa, # 3ddexTUBHOrO
npquacruqnoroFg;aumoneﬂcraun. Ha6nwonaerca ysemueHHe NAOTHOCTH CO=
CTORHMA B BHAE CH/ILHO AeMNHPOBAHHLIX KOPPENRUHOHHLIX BCI/IECKOB Ha
XBOCTAX MOMHOCTLIO YyCpPeAHeHHOR NIOTHOCTH COCTOSHHN.
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IMpenparT O6ReNNRERNOro ENCTETYTA lnepn;lx nccnenosanndt . Ny6ua 1977

Kolley E., Kolley W. E17 - 10403

Coherent Ladder Approximation for the Random
Hubbard Model

Dynamical effects of the electron-electron inter-
action in binary alloys with off-diagonal disorder are
described in a self-~consistent theory obtained by uni-
fying a local ladder approximation for the random Hubbard
model and a modified CPA. Numerical results are presented
for partially averaged densities of states, self-energies
which fulfil the Luttinger theorem, and effective two-
particle vertices. The :totally ,averaged density of states
exhibits tails with strongly damped correlation humps.

The investigation has been performed at the
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l. Introduction

Self-consistent calculations for the
electronic structure of substitutionally
disordered narrow-band systems become more
realistic by taking into account dynamical
correlation effects and random hopping in-
tegrals. To describe the electron-electron
and impurity scattering simultaneously a
useful method should be the combination of
dynamical solutions for the random Hubbard
model with an extended version of the cohe-
rent potential approximation (CPA) aimed at
finite-ranged disorder. Differences between
decoupling and diagrammatic techniques for
solving Hubbard's correlation problem arise
especially from the extent to which the
approximations include the dynamical cha-
racter of the interaction.

Decoupling procedures mostly performed
on the basis of Hubbard III/!/ (for other
decouplings see’? ) provide a static so-
lution-type within the alloy analogy approxi-
mation/3-5/ (i.e., Hubbard III with only
scattering corrections) and a dynamical one
by adding resonance-broadening terms/6/. In
Tsukada's scheme /6/ complete Hubbard-III-
type solutions including resonance-broaden-
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ing corrections are subjected to an extended
CPA to treat off-diagonal randomness of the
Shiba type

The perturbatlve approach was chosen by
Drchal and Vellcky /8/ in solving the random
alloy problem for a pair of interacting
electrons. At low carrier concentration,the
local version of the ladder approximation
proposed by Babanov, Naish, Sokolov, Finash-
kin (BNSF)/%!%for the pure Hubbard model/11/
can beextended to alloys, too. Work along
this line was done in the case of purely
diagonal randomness/12/ and for off-diagonal
randomness/13/. The latter consists of two
separated (but not independent) self-consis-
tent chains describing correlation and ran-
domness problems, respectively.

In this paper we unify the BNSF scheme/%/
adapted to the random Hubbard model and the
off-diagonal CPA/14 for the additive 1li-
mit into a completely self-consistent theory
(Section 2). This approach fulfils the
Luttinger theorem/15/ contrary to Hubbard's
decoupling procedures. Numerical results
for partial (or component) and total (alloy)
averages of densities of states, self-ener-
gies, and effective vertices are presented
in Section 3.

2. Self-Consistent Coherent Ladder
Approximation

Consider the electron-electron interac-
tion in substitutionally disordered narrow-
band systems of the binary alloy-type A, B
The Hubbard model Hamiltonian /!l 1/ dependlng
on the configurationlvl is

HY =1 Bl vy (1)
where

vl s s Vp +

HA =la€ +lat‘ io ]U N (2)

(1;41)

S | v

HU='2_i0Uinwni—a (3)
Here c;,(c;,) is the creation (annihila-

tion) operator for an electron of spin o

in the Wannier state at lattice site i, and
nl-—cwclg . The atomic energy e? » the
hopping integrals €¢ as well as the intra-
atomic Coulomb repu131on U: are random
variables which take the values eV, t"H

and U”,respectively; the superscript vi(p)
refers to the atomic species ( v ,p = A,B)
located at site i{(j). Only nearest-neighbour
(n.n.) hopping integrals are included. Spe-

clalize the off-diagonal randomness by

assuming the additive condition /14/
AP Mt BP . (%)
B . . .
Hp is the one—~electron Hamiltonian (2)

for a perfect B-crystal. .

The basic problem of treating electron-
electron correlations and randomness simul-
taneously can be formul?ﬁed as follows. The
electron self-energy Y? defined by the
Dyson equation



vaiz Gix] . G{Z}Z{;}G fuv (5)

can be determined in principle by diagram
analysis in a self-consistent approximation
chain of the type

} f1d tvl

s oMy (6)

P g(l‘h/t,(}’yl). (7)

vy
Here (ﬂxi is the Green function for Foninter-
acting electrons related to }lk}, G v is
t ? full one-particle Green function, and
g denotes the effective vertex within
vl.  The randomness problem is expressed in
terms of the total scattering operator T
introduced via

v

"oy grg, o (8)

where the totally averaged Green function

G is given by

f1d

. -1 ~1
g::(G

>=«GX) -3) . ' (9)

<..> implies the configurational averaging,
Gg is the Green function related to HR.
The coherent potential ¥ can be found from
the CPA self-consistency condition

<oz Mg ey MestlosnTsoo (1)

-

By means of additional assumptions the
equations (5) to (7) ang (10) can be made
more practicable. Obviously, the compleY?
inforT%tion about {vl incorporated in GY%
and XY, for instance, is not necessary to
calculate § gang 3 finally; accordingly,
we have to modify the cPA problem (10),too.
Both the correlation and randomness must be
treated within a unified approximation.

There are arguments for restricting the
consideratﬁfns to ﬁqe single-site approxi-
mation. VQ{' ang Hy” are additive random
operators; moreover, a local bare interaction
term is taken into account. This allows one
to decompose \d(, 2?; and X into sums

b Lo

vl
2y =2y,

v
VA =3V, 2=%3;. (11)

1
1

Note that VX; and X; are finite-ranged
quantities in the Wannier space due to the
off-diagonal randomness, whereas 2% is
assumed to be local corresponding to a local
effective vertex for the electron-electron
interaction.

Let us introduce the partially averaged
Green functionfG? as

G?=§+9<v,;+Eﬁi—2i>cf=9+gfr‘:s, (12)

which is associated with the perturbation
(Vzr+25i—2i) at some sitei embedded in an
otherwise effective medium given by (Hg+2).
The single-site scattering operator Tﬁ
taking finite range in the Wannier space is



-1
TY = (Vy +35, -2 1-8vp+ 2 -5, 07 . (13)

Recalling (6), (7), (9) and (10) on the
basis of (11) to (13), the completely self-
consistent formulation of the random Hubbard
problem in single-site approximation can be
given by

—~
v v v
Zpiga =1 Tyq +Gyg Vs (1k)
v v v
Fi‘dz g(rild ’Gi|d ), (=A,B) (15)
<T:> =0, ’ (16)

wherelphe'CPA %ondition (16) corresponds now
to <G;>=§. I}H denotes the local effective
vertex; the subscript ”|d”” means including
only diagonal elements of EEh Gz, I'; in
Wannier representation at site i .

To describe the electron-electron inter-
action we use the loecal version of the hori-
zontal ladder approximation developed by
Babanov et al./%19/ for pure metallic sys-
tems. This approximation results from a
zero-temperature diagram analysis at low
density of electrons. Adapting the BNSF self-
consistency scheme /9 to the random Hubbard
model, the relations (14) and (15) expressed
in terms of causal functions take the form
(see Fig. 1)

(chv “dE’ (el (c)v
il ® = /577 Cilg-o ®Iyy E+E),  (17)
(chv 1 CdE’ (v (cW !
Fi‘d (E)=(67+ f -271—(; ildo (E )G]]d_o(E—E )) ’ (V=A,B)
i -—00

(18)

T =k

ir(E)

E€,-6

Fig. 1. Local ladder approximation for ran-
dom self-energy and vertex parts. The arrowed
lines denote partially averaged one-particle
Green functions.



Here the total Green function Gg?: , which

must be determined from (12), represents the
link between the correlation and CPA prob-
lems.

Adopting the extended CPA/]M, we go over
to the momentum representation. The trans-
lationally invariant Green function (9)
written as resolvent takes the E—transform

¢, @=tz-" -t"sk)-3_k, 207, (19)

ko
—~
where the nearest-neighbour structure factor
- i;(ﬁj—ﬁi)
s(k) = Xe 20
i#ED (20)

is associated with the lattice type. The
coherent potential

X kz) = oy (2)+ 20, (2)s(k) + 0, (2)8 2 (K) (21)

is expressed in terms of «5,, o0,,, 0,5, which
satisfy the CPA conditions <r%a:>=O(F=OJ2)
arising from (16) with the T operator (13)
in the k ~transformed version

S owos, o SRR, s sy s s
<k|T., |k ’>=-N—e oio* 710 (8(KY+ s(k Dy, s(K)s(k ).
(22)

The explicit expressions for rg, (7 =01,2
are given below.

, Combining (19) to (22) with (12) in the
k -representation, one can exactly derive
the site-diagonal element of G within the
modified CPA as
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v 2 v k v 2 v
Gijgo =Foo *FooT0ic * 2FosFio T1i0 + FioTti0 - (23)
where
1 ot
F 2==-28.@[sk] , (£ =012. (2k)
fo N “ko :

In the case of only diagonal randomness the
usual CPA expression for (23) is recovered
immediately (cf./16/ ).

Let us summarize the basic equations
introduced above in a more convenient and
explicit form for practical calculations.
Accordingly, the system of equations is
classified into three parts.

a) With respect to the correlation prob-
lem, the relations (17) and (18) are rewritten
by replacing the causal by retarded functions
on the basis of spectral theorems. After
separating real and imaginary parts one gets
(compare 7%/ )

v 1 H . v v .
ReZ (E)==— dE‘fmG_,(E")Rel’ (E+E") - (25)
L 2#f_EdE ‘ReG” (E)ImI" (E+E”),
—o0 -
h v P mE v N
‘ 1sz0<1~:>=7‘{ dE’ImG __ (E)Inl" (E+E"), (26)
¥ v v
* Rel"” (E) = 1/U +ReD (E) , (27)

11/0" + ReDYEN ? +[ImD” (E)°



1%
Il Y(E) = - ImD_(E) , (28)

(170" + Red”®)] %+ [ImD” (E)]>

with the ébbreviations

v S S v ,
ReD (E)=-5— f dE"(ImG, (EReC_,(E-E") +

.

+ ImG oE )ReG (E~E”) +

] B#
+ 5 [ B (ReGy (AN (E-E") +

+ReG” _E MG ,E-ED, (29)

v 1 E-p v v
ImD" (E)= — [ dE’ImG,(E)ImG_,(E-E"), (v=A,B).
# (30)

Here ESG(E) s GI;(E) s I'Y(E) and D'(E) are now
retarded functions; for simplicity, the
subscripts “ild”” indicating the localization
are dropped. DY represents the renormaliza-
tion contribution to the bare vertex UY.
The chemical potential p 1s determined by
the total electron number per site (see c)).
a ) The CPA problem is expressed by three
(complex) self-consistency  conditions/13.14/
a;(m

<TZ (z2)> = < — >=0, (£=01,2), (31)

1~ d {z) v

where

2 .
a(;/g = (35 + 2[11/0'_000' )+(81V“Zla) ‘F20+(3(1)/+2lllja“bo)‘720F-2a ’
(32)
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ala’ _(5 _gla_) (81 0’10) FIU (80 +2U 000)020F10(33)

a;0=—020 +(8 g ) F00+(8 +2UU UOU)UZGFOU’(?’LI')

v v v . v
da =(80 +2U0_000)‘F00 +2(51 “Olg )F 107920 F25 —
' (35)

v 2 -2
‘[(8 1 _010,) +(8 +ZU0'-000')02(7 ][Fla_Fosza], (V=A,B).

14 14 '
The parameters [5,,5,] describing diagornal -
and off-diagonal randomness are equal to

[eA - ¢B , —;—(tAA—tBB)]

whether an A or B atom occupies the i -th
site, respectively. Note that the arbitrary
index i was omitted. The scattering—matrix
parts ré depend on z via 2 s 0y, » and Fp .
Hereafter, we are working w1th only retarded
functions provided that EUa from a) is a
retarded one.

c) The partially averaged Green function
connecting a) and b) is (with dropping “ild”
in (23)) '

or [00] according to

G (2)=Fy_ (2)+F,. @7y, (z)+2FOU(z)FIU(z)rIU(z)+(3

+.F10(z)720(z), (v =AB).

By inserting (19) and (21) into (2k4)  one
immediately gets the coherent Green func-
tions

.
{s(k)] .
z—eBo % (2)- BB %léz))s(_l;)—ozg (2)s 2 (K)

€ =012. (37)
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The chemical potential g obeys the relation

. 1 K
n=3n =-?g4pmmgﬂm, (38)

ag .

where n is the average number of electrons
per site. So far we have pointed out in a),
b), and c) the closed set of completely
self-cofsistent equations which must be
solved numerically.

To complete the formalism one can intro-
duce the coherent density of states (per site)
of electrons with spino as

N
o B == ~InF g (), (39)

and, analogously, the component densities
cf states associated with A and B atoms through

v 1 v
oE)==—ImG _(E), (v=A,B). (ko)

Accordingly, the average electron number with
spin o at A and Bsites is

” .
-J dEp)(E), (v =A,B). (41)

By averaging (36) and combining with (39)
to (k1) we have

,=<G >—cG +(1—c)G , (L2)

Py E) =<p (B>, n_=<n’>, (43)
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where n, is the average number of electrons
with spin o per site defined in (38).

3. Numerical Analysis. Results

and Discussion

To facilitate the calculations we choose
a simplified input function associated with
the band structure. The unperturbed density
of states (per site per spin) of the pure

B band (related to Hp) is assumed to have
the semi-elliptic form
%
La-H", K <1
1 BB
pp(E)=g 36 (E~c" ~t s(k)) = (4})
k 0, (E] > 1.

Here the half-band width is set equal to unity
(i.e., t"P -1/6 for the s.c. lattice) and
the origin of the energy is chosen as ¢’=0.
Using (44) and performing the k-summations
in (37) by the residue method, one directly
obté}n; thelrbas algebraic functions of
%o

The present approach 1nvolves six actual

parameters ¢, AO , A] , UA . lﬂ’, n ; here

Ag=dl-cA_eP A =125 A-6?h BB (4s)

describe the diagonal and off-diagonal
randomness, espectively, resulting from the
potential Vk in (1). In the numerical ana-
lysis we will consider only the nonmagnetic
case defined by the solution-type
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Fig. 2. (a) Electron densities of states p¥

and p , (b) real and imaginary parts of the ' /ﬁ' \\\ _
self-energies Xy and o5 on v-sites. (v=A,B) * 0/ f \ : X
and for the alloy, resp., with ( ¢, Ay, A3 02 / \g
B = ; . s
UA, UB, n) = (o0.25, 1.2, 0; 1.6, 0.8,0.5). 0 b ;& 1 > cJf e

Split-off band case for the coherent PA
without electron-electron interaction.

v

zl'; EJzUU_—'z;_U , (v =AB). | (46)

Accordingly, one redefines G:, ogy > Fog,

ra s Py s p: by neglecting the spin indices
in the following. Further we have n/2 =n, =n_,
n¥/2=n%=n% , andn=<n’>.For comparison the

limit of zero Coulomb energy (UA=UB-0)

is pointed out, too (cf.also /17/).

The numerical procedure can be outlined
as follows. To get initial values we start
with virtual-crystal results for op at zero
Coulomb energy; calculate successively Fp
from (37 ), u through (38), G¥via (36), nV
from (40) and (k41), andvdegfrgine Hartree-
Fock self-energies by 2y=U"n /2. With this
initial self-energies op , 20 we solve the
self-consistency problem (25) to (38) as a
whole (unlike the two separated self-con-
sistent chains in /13/) . by an iteration
method. In particular, we calculate via GY,
@ ,DV, I‘V, new EE values according to
(25) and (26 ), respectively; and derive
from the CPA conditions (31) new o values
by 'using a modified iterative scheme /14/,
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The whole procedure in repeated, and one
gets, with alternate sub-iterations within
the correlation and CPA sub-cycles, a good
total convergence.

In Fig. 2 partial and total averages of
one-particle densities of states and self-
energies are plotted in the split PA —band
case without randomness in hopping integrals.
At zero Coulomb energy, features of the
coherent p, were discussed/lwlin the more
general“case of two impurity-scattering
mechanisms associated with Ao and A;.The
gap in ppA(Fig. 2a) arising from strong
diagonal disorder (Ag>1 disappears by
electron-electron correlations. The one-
particle region defined by PAEI£A0 is aug-
mented by a correlation region of p con-
sisting of large tails and a small hump
which can be ascribed to electron pair states

on A sites as reflected by p A Such a type
'f partially averaged densities of states

p” was also given in/1?. 7The continuous

p(E) igectrum (cf.'also/”/, for pure sys-
tems /197 ) Gifrfers strongly from the split-
off picture obtained by using Hubbard's
decoupling procedures /45 (compare the
splitting of arbitrarily filled bands in
the crystals case AB/}); even by including
resonance broa.»dening/6 there are only weakly-
damped correlation maxima with small tailing.
Fig. 2b shows that the two-particle hump in
pA () is accompanied by precipitous
changes of EG (64), especially there is
& strong damping of one-particle states
reflected by a peak oflmzﬁ (Imo, ). The
correlation peak in o, due to I8 is dimi-
nished by the interplay of correlations and
disoyder.

18

Characteristic results for one-particle
and two-particle quantities are presented in
Fig. 3 1in the case of purely off-diagonal
impurity scattering (Aj=0) and random inter-
action strengths UY.The self-consistent
sub-cycle for G”, 2§ ,and I'"provides damped
two-particle humps in the component pVY
(Fig. 3a) caused, as discussed above, by
peaks in the imaginary parts of the self-
energies X% (Fig. 3b). Moreover, the
effective two-particle vertices (or scatter-
ing amplitudes) I'"(E) (Fig. 3c) depending
on the sum of energies of the interacting
electrons sharply change in the correspond-
ing correlation regions. On the other hand,
electron pairs whose energies lie in the
main band are weakly scattered. The change
of the sign of the retarded functions Iml'“(E)
near E=2y refers to an instability connect-
ed with an attractive effective interaction.
The alloy averages p and o9 (contributing with
U] 5 092 to the coherent self-energy 3,
cf./”;) in Fig. 3a can be explained as a
weighted superposition of their partially
averaged components. In the correlation region
the results of the present method differ
considerably from those of the incompletely
self-consistent version/!3 as is shown by
% in Fig. 3a. Note that the comparison
wvas performed by using n” values of this
calculation.

For the partially averaged quantities the
quasi-particle conditions (for pure systems
cr. /10 ) mZy (W =0, , ImE'{](E)«(E—-p)2 near
E=p (local version of the Luttinger theo-
rem/15/ ), aReZI{J(E)/aE[;ﬁ 0, and Iml’Y(2u) =0
can be confirmed in Fig. 2 and Fig. 3. Ob-
viously, additional impurity scattering
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-
Fig. 3. (a) Component and alloy densities of
states p¥ and p, resp., real (——) and
imaginary (---)parts of the coherent self-
energy op in comparison with Reoy (----)
and Imogg (... -) obtained on the basis
of'”3/; real and imaginary parts of the (v)

self-energies 20U and (c) effective vertices
' at Z—si%es (v = A,B) for the set ( c, Ag,
Ays U%, U7, n) = (0.5, 0, -0.6; 2, 4, 0.3).

associated with random atomic levels leads
to a finite lifetime of quasi-particles at
the Fermi energy as reflected by Imog(w<0
in Fig. 2b, whereas random hopping integrals
do not influence the local o5 in such a way
(Fig. 3a). Asymptotic requirements as
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v v v v
ReXy (+ ) =U /2, Rel' (+ ») = U |
ImE(t w) =0, etc., are also fulfilled.

The one-particle and correlation regions
of the densities of states p?, p in Fig.h
are sensitively affected by varying the off-
diagonal randonmess parameter Alparticularly
(here Ag=0as in Fig. 3). A typical nume-
rical example for the gapless densities of
states pV, p in a completely random Hubbard
alloy is presented in Fig. 5. As is demon-~
strated. by the total average p , dynamical
correlations, i.e., all repeated binary
interactions described by I', work against
the band splitting (deepening). Two small
humps survive in the correlation region
of p,.

4. Conclusion

The horizontal ladder approximationﬂv
and the extended CPA/l”/are unified into a
completely self-consistent single-site
theory for the random Hubbard model describ-
ing electronic properties of narrow-band
alloys with diagonal and off-diagonal dis-
order. This dynamical theory avoids shortcomings
of decoupling schemes as,e.g.,the violation
of the Luttinger theorem.

By assuming an analytic form for the
unperturbed density of states the numerical
procedure is practicable even (unlike'”o/)
in the dilute carrier-concentration limit,
€.g., for nA-0.02 in Fig. 5. Although. the
ladder approximation is more trustworthy at
small n(n < V3) we have also given nume-.
rical examples beyond this value (Fig. 2);
note that in the alloy case a criterion of
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Fig. L. Component and alloy densities of

states p"(v =A,B) and p, resp., for ( c,
/\0 ] "\l; UA, U”a n ) = (0025’ 0, -0.5;5 3,
0.5, 0.4) and (0.3, 0, 0.5; 3.5, 0.5, 0.5)
corresponding to the parameter sets (1) and
(2), resp..

validity must be associated with the partial
occupation numbers n¥. In the present paper
we have restricted numerically to nonmagne-—
tic solutions by suitable choices of the
parameters, especially UY and n.

Band gaps caused by strong impurity
scattering in the one-particle region dis-
appear by the (ulomb repulsion. Dynamical
correlations described in terms of effective
two-particle vertices provide continuous
densities of one-particle states with large
tails and small humps.
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Fig. 5. Component and alloy densities of sta-

tes pY(v =A,B) and p (p without
electron-electron interaction), resp., 1in
the case (¢, Ag, Ay ; UA, UB, 1) = (0.3,
0.9, -0.6; 1.5, 3.5, 0.25).
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