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MeJK3JleKrpoHHbie KOppeiHIUIHI B "cnyqaltHbiX HellHaroHa.ribHbiX" 

cnnasax 

ilHH8MWLJ€CK8SI ITpHpO.!l8 Xa66apllOBCKOf'O 3Jl€KTpOH-3.11eKTp0HHOf'O B38HMO

ll€fiCTBHSI B HeynopSI.!lO'-IeHHbrX cnnasax Bb!pa*eHa Ha SI3biKe cnyqafiHoro 3Hep

reTH1.JeCKoro ITORSI. flOK8J1bHh!€ C06CTB€HH0-3HepreTHlJ€CKH€ 1.J8CTH llJlSI 3J1€KT

p0HOB 1.JHCT-b!X KOMITOH€HT Bhi'-IHCJl€Hhi B paMKBX C8MOCOf'.118COB8HHOf'O J1€CTHH1.J

H0r'O ITpH6JHDK€HIHI li Yt.ITeHhl B 0606IUeHHOM HeUH8r'OH8JlbHOM npHfiJJH.JKeHHH 

KorepeHTHoro noreHuHana. B ornHt.Iue or Jipyrux npu6nu)l(eHuft, qHcneHHb!e 

paCLJ8Tbl B paMKBX Harnero ITO.UXOll8 npUBOllSIT K 6eClUenesoft IIJ10THOCTH C-OCTOSI

HHH C XBOCTBMH H K CHIIbHO 3BTYX8Kllll€My .llBYX1.JBCTH:l.£HOMy BCITJJeCKy. 

Pa6ora BhinOJJHeHa B Jla6oparopuu reoperuqecKoif ¢u3HKH OHRH. 

CoofillleHue OfioeJJ,uueaaoro HHCTHTYTa &.llePHbiX accneJJ,oaaaai. .!J.yfiaa 1976 

Kolley E., Kolley W., Eifrig Th. E17 - 10341 
Electron Correlations in Random Off-Diagonal 

Alloys 

The dynamic nature of Hubbard's electron-electron 
interaction in disordered alloys is expressed by an energy
dependent random field. Local electronic self-energies for 
the pure components calculated within a self-consistent 
ladder approximation are included into a generalized off
diagonal CPA. Numerical results exhibit in contrast to 
other approximations a gapless and tailed density of 
states with strongly damped two-particle humps. 

The investigation has bean performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. IHTRODUCTIOB 

The dynamical aspect of the electron-electron interaction in 
disordered narrow-band systems is of a special interest for the 
combined study of correlation and randomness effects. In parti
cular, the problem consists in taking into account dynamic solu
tions for the random Hubbard model which must be subjected to any 
version of the coherent potential approximation (CPA). The de
coupling procedure adopted by Tsukada /l/ leads to complete 
Hubbard-III-type solutions 121 including resonance broadening 
corrections; moreover, off-diagonal randomness of the Shiba type 
/J/ is treated within an extended CPA 111. 

In this paper we choose a diagrammatic approach which is based 
on the ladder approximation suggested by Babanov et al. /4,5/ for 
the pure Hubbard aodel 161. In a self-consistent manner one can 
calculate the damping of electron states due to dynamical corre
lations, and some shortcomings of Hubbard's decoupling schemes as 
the violation of the Luttinger theorem / 7/ are avoided. An effec
tive energy-dependent Hamiltonian is used as the starting point 
for applying the modified CPA /B/ developed for the additive type 
of off-diagonal randomness. 

2. LADDER APPROXDIATIOH AHD CPA 

The CPA treat-nt of the electronic behaviour of substi tutio
nally random systems, such as alloys of the type AcB1-c• is aug• 

3 



mented by includin' electron correlation effects. Starting from 
the Hubbard model 61 

! 1.->~ ) v - 'JJf'"- i' 1 ~ ); 
H ~ ~ E;. ",.,. • l,_ t •;, c., d c ~«.. 2: L U ' n.. _ n _ _ ( 1 ) 

'Ld ,_},- 4 J ,_d 1.CJ L u 

t ~ •1) 
for some configuration fv}, we can approximately describe the one-
particle properties by the effective energy-dependent Hamiltonian 
Hl~l ror electrons with spin o as 

·~~,.of 

' \»I \ ( ~ i " ) \ '-'/"- + 
H•Hrr(:G) • L <:, + -u,"'Cz) n.{'"' .. L t,·;. c,O'c~'"" , (2) 

1. •a- ' 
(< ~-r> 

where c~., ( c,.,) creates (destroys} a Wannier electron with spin 
. \v!t H{~j * ,.,. at lattice site 1. ' and -rt. =c.+."' c er ; note that 1./ ffo-(:i:) = ff c~ ) 

- v~-Ar'r"f \.. , C e. a' • 

The random parameters£.:, t.;j- , U~ take the values E"', t~r- , U"' 
(P, ~~A,!!> ),reap., according to whether an A orB atom occupies 
the site i (j}. The off-diagonal randomness is restricted to the 
additive limH 18 ,9/ 

tA~=~(tAA._t1'>") (3} 
~ ) 

where only nearest-neighbour hopping integrals are taken into 
account. The self-energy ~u~J%1 caused by the intra-atomic Coulomb 
repulsion U ~ ( v "A, T'>) plays the role of a local and energy
dependent stochastic potential within the CPA scheme. 

To calculate Eu~o- we apply the horizontal ladder approximation 
proposed by Babanov et al. / 4/ for studying electron-electron 
correlations in pure metallic systems at low density of electrons. 
For the pure Hubbard Hamiltonian H"= H"(s.'",t."~U"') , the self-
consistency equations resulting from a zero-temperature diagram 
analysis can be expressed in terms of retarded functions as 
(cf. / 4/ ) I"~ Zt'f-E 

" - 1 fd_,_ G" -'JR. t-"',- ·-·1 1f E-'-n G"!-'!I r"'r- ·-'! < > '!)e[ (~ 1 =-- i~ lm __ lt_ e ,t_•c. -- d 1\€ _E. m t•L 4 
f\. u a 'IT v 'Ti' -v } 

2 ,__v_ E. 

r,,.,~ [u~a( c ~ ~ IdE' Im G_vd( E'l Im r'-'( E .. E') ) 

Rer"'\E)= 

I~ 

p. 

.., ,_, 
u~ +- ReD CE) 

- 1 .., ]. :--], l t;~ .. ·ReD(>::)~+ [ Im.:I:rlE)-

4 

(5) 

(6) 

" 

Im.D,.,(E) 

lm r"r E l = - [ fr, + Rt D.,.,( E)]"+ [ lm]'-'(EJY' 
(7) 

where 

,u-"' E-f" 

Re ]"(E)=-~ Jdt' ImG:(E'JRe G_:')E -E')+ ~ foE''ReG;rE'JimG_:(E -E\ (8) 

-00 

E-f-"" 

ImD"'(El=~fdE'ImG;(E')ImG:"'(E-E')) (v=A,B). (9) 

;.;-"' 

This completely local approximation means thatiu"cr,G';',. , r ,_, , D" 
are the diagonal elemen$s (at site i, indices i are omitted) of 
the self-energy, one-particle Green function, effective vertex, 
renormalization contribution to the bare vertex uv ,respectively. 
The chemical potential uv is determined by the relation 

( _.u."' 

n-' = L n: = - ~ L {d E I m G ~ (E) 
1 

( v =A , B ) ( 10) 
a a ' -oo 

where nv is the total electron number per site of the pure v -
system. The Green function G ~ is found from the Dyson equation 
as 

G:c~)=G:r:a-L:~o-(r:l) 1 
(11) 

where Gl: denotes the Green function for noninterecting elec
trons ( U "= 0 ). By assuming for simplicity a semielliptical 
1? -band giTen by the unperturbed density of states (per site 
per spin) 

p:w- { ~zw" [ 1 - ( ·~;" n±, 
0 

one gets 
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Gv( )= ~-(~ _ ·[i- r ~-'<:C )z]r) 
1!. z w" w» 1. \ wy ; (13) 

where w'"' is the half-band width; obviously, this means putting 
w"' = 6t'-''-' for a s.c. lattice. Then we have with (11) and (13) 

an analytic expression for G; ( v =A,B) which ent:J~rs into the 
self-consistent correlation problem (4) to (10). Por comparison 
the corresponding Green function in /5/ was calculated numerically 
without assuming the model form (12). 

Having determined L_"(;CY we adopt the modified CPA 18/ to the 
effective Hamiltonian (2). The averaged Green function we are 
looking for can be defined as resolvent 

~,(2:l= <cz- H:~~(:clf) = c (G:(;:_)r- Lc/~)r
1

) ( 14) 

and, more explicitly, in the Bloch representation one gets 

-"1 

~i:.;:zl= [z- E t>-C~Ck)- ..[O'(k,:c)] (15) 

where the nearest-neignbour structure factor s(k) is given by 

s(k) = L e i"k (Ri- Ri) 

j-(•i) 

Expanding the coherent potential as 

-) 2 --) 2.-* ~O'(k,-z =~,C::cJ+ cr,,(:z:.)s(k +a
2
Jr.ls (k) 

(16) 

( 17) 

means precisely computing the contributions ~o-, o:;"' , crzo- from 
CPA conditions of the type (cf. 18 ,9/ ) 

<'tt:(zJllvo-(~); S;,(J) =cT~(z.,L0:{:t); £"-e~i(tA-f'"J)+!1-c)r:(z,L0!!r)jD,0)= Q 
1 

( 18) 

(l = 01172.). 
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Essentially, the scattering~trix parts ~t: become algebraic 
functions of uo~• a1 ~, a2~ via the coherent Green functions 
(appearing in (18)) 

1 [ - Jl Fl"'(:z:)= N.?;~i:.,.(~) s(k) 
1<. 

(1=0,1}2..)} ( 19) 

which can be calculated analytically with (12) 191. 
Given the self-consistency cycles (4) to (11) (closed set) and 

(18), (19) (associated with the output i:u\la of the former set) 
for the correlation and CPA problems, respectively, the coherent 
density of states po' (per site) for electrons with spin cf is 
obtained as 

1 
po'IE) = -:w lm F0 0'(EJ. (20~ 

Por comparison the state density associated with the pure v -
systea reads 

p:(E)=-; lmG;iE) 
7 

(v=A 7 B). (21) 

The cheaical potential ~ of the coherent system can be determined 
by 

1'

n=L:nd= LfdEpcr(E), 
0' 0' 

-oo 

n = ( n') 
) 

(22) 

where the average electron number n per site comes from the 
particle-number conservation. 

J. BUKERICAL RESULTS AND DISCUSSION 

Before going over to numerical calculations, 
ted that c ' D.o , /:;1 , UA ' u-& • Tl.A , T1. B 
parameters needed, where 

!::, =I:-A-S "B /), = 6 (t.AA-t '&13) 
0 , 1 
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are associated with the diagonal and off-diagonal randomness, 
respectively. Now we define the energy origin E. -e= 0 and express 
the energy in units of the half-width of the unperturbed B-band 
( 6 t.""= -1 , except one example designated). The nonmagnetic so
lution-type obtained for suitable choices of the parameters can 
be characterized by 

]..> ,., ,.,., 

L.u: Lucre= Lu-cr (v=A,'B), (24) 

Since in the following we shall be concerned only with the non
magnetic case let us omit the spin indices of G ~ , 1t1, , L cr , 

,_, (10' 
crt.,. • -r:t: , Ft"' , Per , and p,. • 

The numerical procedure begins with solving the self-consistent 
chain (4) to (11) by the iteration method. Starting with the 

)..) J) p 

Hartree-Fock resultL:u=U 2" ( v =A,5) corresponding to the 
asymptotic solution we calculate in sequence Gv via (11) and (13), 
I'- v from ( 1 o) , D v from ( 8) and ( 9), r v via ( 6) and ( 7), and 

again L~ based on (4) and (5), etc., by repeating this cycle. 
After incorporating the convergent L:~ values into the CPA equa
tions ( 18), the coherent potential terms 0'

0 
, 0'~ , e1

2 
are com

puted by using a modified iteration scheme 181 beginning from 
the virtual-crystal limit. 
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Fig. 1. (a) Electron densities of states p v and p ( p6 without 
electron-electron interaction), real and imaginary parts of the 
self-energies (b) I_~ and (c) CT

0 
for pure v -components and 

the alloy, reap., with c•0.25, .6.0 .. o.4, ,61 •-0.4, UA •3, uE •4, 
71.. A •0.25, n ?> -o.2. 
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In Pig. 1 the electron densities ot states and self-energies 
of disordered and pure systems are compared in the unspli t p11 -

band case. At zero Coulomb enerr the coherent density of states 
p11 was discussed in detail /9 on the basis of two impurity

scattering mechanisms associated with 1::!.
0 

and Ll 1 • In addition 
to the one-particle region defined by p11 ( £ l# 0 , the coherent p 
in Pig. 1a displays a two-particle region with two huaps ascribed 
to electron pair states in the alloy. In contrast to Hubbard-like 
treatments of alloys, no gaps arise from dynamic correlations. 
Rougbly speaking, the shape of p can be explained as the super
position of p ,_, ( v = A 1 B ) for pure v- systems. Such a type 
of continuous p" spectrum with a small correlation maxiaua and 
large tails as shown in Pig. 1a (compare also /5/ ) differs 
strongly from results obtained by using HubbardSs decoupling 
scheme / 1 O/. The smallness of the two-particle humps in p v is 
caused by a strong damping, i.e. the imaginary parts of 2.~ have 
peaks in the corresponding energy regions in Pig. 1b; an analogous 
behaviour was found for I"" (see also / 5/ ). Within the pure com
ponents, the quasi-particle conditions /5/In-c ~(fv)= 0 , 
Im I~ C E) ex. C E - fi!'rz. near E = flv (local version of the 
Luttinger theorem 17/), and (Cl ReL;cEVJ E \ = -:; 0 can be confi:naed 
numerically. The asymptotic limit is givert'by'ReL.~(t"")= U"n"/2, 
Re r'-'(!oo) = U'"' , ReG,., and the imaginary parts of all 
functions tend to zero asymptotically. Resulting from the interplay 
of correlations and disorder, the correlation pe&lts of 2: ~ 
entering into the coherent C1

0 
in Pig. 1c are diminished by the 

randomness. As is expected, the impurity-scattering associated 
with 6 

0 
especially leads to a damping of electron states at the 

Pe:nai energy, i.e.,to a finite value of Im IT
0

( f) • 
Pig. 2 shows the dependence of the state densities p and p" 

on carrier concentration in the split pll -band case. lfi th decrea
sing n'-' ( U.,., fixed) the two-particle humps in p v ( v = A 

1 
'5 ) 

become sharper and are shifted to higher energies. These humps 
are smeared out in the coherent density of states p • The gap 
in pA arising from strong diagonal disorder ( L\

0
> 1 ) is closed 

due to electron-electron correlations (compare alloye with elec
tron-phonon interaction 191). The band deepening between majority 
and minority parte of p depends sensitively on the set n.v • 
Maxima of p v and f within the one-particle region are shifted 
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~-1 0 ,_ 

,, 
E.- (1) 
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Pig. 2. Pure v -component and alloy densities of states p" and 
p , reap., for the sets c•0.4, .6.

0 
.. 1.1, l:J.

1 
•-0.4, UA =1.5, 

U
8

•Jo5 with (1) n.o\ •0.2, nB •0.2 and (2) --nA •0.5,n_8 •0o1o 
Split band for the coherent p A without electron-electron inter
action. 

~[l 
--•U.,ya~a/09'1 

-~ ..... do:.. 

Pig. J. Density of states p ( p Ll without electron-electron 
interaction) for an alloy with c•0.5, A 0 •0, /!;.-1 .-o.32 (6t6~0.5), 

U A •0o5, U'B •1.5, -nA • na •1 compared With results Of 
faukada / 1/ (note the other type of parameters in 111). 
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u"'., by correlations into the energy interval between E.'"' and f!'; e'"'+ _1} 
• 2. 

(maxima of the Hartree-Fock approximation). 
In Fig. 3 the coherent densities of states p A and f are 

exhibited in comparison to results obtained by Tsukada 11 for a 
hail-filled band in the case of pure off-diagonal randomness. 
Note that we can compare only on principle, because the ladder 
approximation is more trustworthy at small n"' , and we have 
taken into account another type of off-diagonal randomness. As a 
result of our treatment the density of states p takes considerable 
tails (without humps) at low and high energies. Furthermore, the 
maxima of p (E) arise near the Hartree-Fock points Uv-n.v/ 2 in 
contrast to Hubbard-like schemes, where maxima occur at €.,_, and 
~v~ t: ~ + U "' ( v = A 

1 
B ) • Concerning 11 I it is pointed out that 

the posi tiona of the p maxima persist in going over from the 
alloy analogy (Hubbard-III with scattering corrections) to the 
dynamic Hubbard-III solution including resonance broadening 
corrections. 

4. CONCLUSION 

Having adopted a local ladder approximation to the electron
electron interaction in disordered alloys one can treat the ran
domnees in a single-site approximation. In this paper, we have 
performed calculations within two different (but not independent) 
self-consistent chains describing the correlation and random-
ness problems, respectively. The numerical results show that gaps 
in the spectrum predicted by other approximations disappear by 
taking into account more accurately the dynamic nature of electron
electron correlations. The self-consistent connection between 
the correlation and CPA calculation-cycles is proposed in a sub
sequent paper. 

One of the authors (Th.E.) thanks the directorate of the 
JINR for hospitality. 
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