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MeXaneKTpOHHEIe KOPpelAUMr B “ClydaiiHblX HeanaroHANbHbX”
cninaBax

Nusamuueckas npupoga xa66apaosckoro 3NeKTPOH-2/1eKTPOHHOr O B3aWMO—
NedCTBHS B HEYNOPSAAOYEHHbIX CH/laBax BhipaXeHa Ha g3biKe ClyqaHHOro 3Hep-
CeTdqecKoro nois, Jlokanbhbie COGCTBEHHO-3HEPTETHYECKHE HACTH Al SIeKT—
POHOB HYHCTHIX KOMIIOHEHT BBIYHCJIEHBI B paAMKaX CAMOCOIIACOBAHHOI'O JIECTHH Y=
HOrO NpHB/IHXKEHHA H y4TeHbH B O6OBIEHHOM HelHaroHalbLHOM npubanXKeHdn
KOCepeHTHOro noTeduxala, B ornuyue or Apyrux npubnuxeHnmit, YyucmeHHbie
pPacuéTel B paMkax Hawero noaxona NPUBOAAT K 6Gecllelepoll MIOTHOCTH COCTOg~
Huli C XBOCTaMU M K CH/IbHO 3aTyXawlleMy ABYXYaCTHYHOMY BCHIeCKY.

Pa6ora suinonuera B JlaGopaTopnu TeopeTuueckoi duauxun OWHAH.

Coobmenne O6BeAUHEHHOT O HHCTHTYTA AAEPHEX HCCIeAOBAHHH. Hdy6ua 1976

Kolley E., Kolley W., Eifrig Th. E17 - 10341

Electron Correlations in Random Off-Diagonal
Alloys

The dynamic nature of Hubbard's electron-electron
interaction in disordered alloys is expressed by an energy-
dependent random field. Local electronic self-energies for
the pure components calculated within a self-consistent
ladder approximation are included into a generalized off-
diagonal CPA. Numerical results exhibit in contrast to
other approximations a gapless and tailed density of
states with strongly damped two-particle humps.
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1. INTRODUCTIOR

The dynamical agpect of the electron-electron interaction in
disordered narrow-band systems is of a special interest for the
combined study of correlation and randomness effects. In parti-
cular, the problem consists in taking into account dynamic solu-
tione for the random Hubbard model which must be subjected to any
version of the coherent potential approximation (CPA). The de-
coupling procedure adopted by Tsukada 1 leads to complete
Hubbard-III-type solutions /2/ including resonance broadening
corrections; moreover, off-diagonal randommness of the Shiba type
/3/ 1g treated within an extemded cPA /V/,

In this paper we choose a diagrammatic approach which ie based
on the ladder approximation suggested by Babanov et al. /4,5/ for
the pure Hubbard model e In a self-conasistent manner one can
calculate the damping of electron states due to dynamical corre-
lations, and some shortcomings of Hubbard's decoupling schemes as
the violation of the Luttinger theorem are avoided. An effec-
tive energy-dependent Hamiltoniean is used as the starting point
for applying the modified CPA /8/ developed for the additive type
of off-diagonal randomness.

2. LADDER APPROXIMATION AKND CPA

The CPA treatment of the electronic behaviour of substitutio-
nally random systems, such as alloys of the type AcB1-c’ is aug-



mented by including electron correlation effects. Starting from
the Hubbard model
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for some configuration {v}, we can approximately describe the one-

particle properties by the effective energy-dependent Hamiltonian

Hv[f]: tor electrons with spin o as
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where C-ﬂ,(cﬂ,) creates (destroys) :Wannier electron with spin
~ at lattice site 1, and o ~chec.y 3 note that HL‘FU(z)—H:f’;’d 2
The random parametersc’ , £, U:’ take the values £¥, t** , y¥
(2, ~=A,B ),resp., according to whether an A or B atom occupies
the site i (j). The off-diagonal randomness is restricted to the
additive limit /849
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where only nearest-neighbour hopping integrals are taken into
account. The gself-energy Zulzd(i) cauged by the intra-atomic Coulomb
repulsion U7 ( » = A®) plays the role of a local and energy-
dependent stochastic potential within the CPA scheme.

To calculate }:u + We apply the horizontal ladder approximation
proposed by Babanov et al. for studying electron-electron
correlations in pure metallic systems at low density of electrons.
Por the pure Hubbard Hamiltonian H”= H”(e” +”” U¥) , the self-
consistency equations resulting from a zero-temperature diagram
analysis can be expressed in terms of retarded functions as
(ct. /4y 2t
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This completely local approximation means thatZUd,G’; ,F" ,D*

are the diagonal elemenjys (at site i, indices i are omitted) of
the self-energy, one-particle Green function, effective vertex,
renormalization contribution to the bare vertex LI” ,respectively.
The chemical potential {u‘;i)_s determined by the relation

W= Inl=- 22 [de ImGI(E) | (»=A,B),  (10)
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where v 1is the total electron number per site of the pure » -
gystem. The Green fumction G; is found from the Dyson equation
as
G:(2)=G:(2—ZEG(1)) , (11)

where G’ denotes the Green function for noninteracting elec-
trone ( U”= 0 ). By assuming for simplicity a semielliptical
1> =band given by the unpserturbed density of states (per site
per spin)
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one gets
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Where w” is the half-band width; obviously, this means putting
2 _

w”= 6t”" for a s.c. lattice. Then we have with (11) and (13)
an analytic expression for (G (» =AB ) which enters into the
self-consistent correlation problem (4) to (10). Por comparison
the corresponding Green function in /5 was calculated numerically
without assuming the model form (12).

Having determined J [ we adopt the modified cPa 8/ o the
effective Hamiltonian (2). The averaged Green function we are
looking for can be defined as resolvent

- -1
ﬁ“(2)= <(z - Hef;-tr(z))- > = [ (G:(z)) " 26(27] , (14)

and, more explicitly, in the Bloch representation one gets
-1
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where the nearest-neighbour structure factor e(k) is given by
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Expanding the coherent potential as

L k) =0, (2420, (2)s(K) + o, (2)s*() (17

means precisely computing the contributions Tos d T s CYZG, from
CPA conditions of the type (cf. /8,9/ )

(e L@ S8 et 3 b0k 62,2000 0, (18)
(1=01,2).

Essentially, the scattering-matrix parta 'cl‘; become algebraic
functions of o, Oyt Fog via the coherent Green functions
(appearing in (18))

(1=0,1,2), (19)

1
-1 >
F(2)= 1 %‘gcd(z)[s(k)] ,
which can be calculated analytically with (12) /9/.

Given the self-consistency cycles (4) to (11) (closed set) and
(18), (19) (associated with the output 3 ,” of the former set)
for the correlation and CPA problems, respectively, the coherent
dengity of states Pd (per site) for electrons with spin o is
obtained as

Po(E) =~ = Tm F,,(E). (203

For comparison the state density associated with the pure » -
systenm reades

(v=AB). (21)
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The chemical potential (u. of the coherent system can be determined
by

/(L
n=Sn,= X [dEp,lE),  m=(n?, (22)
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where the average electron number n per site comes from the
particle-number conservation.

3. NUMERICAL RESULTS AND DISCUSSION

Before going over to numerical calculations, it should be no-
A B

tedthatc.A,.A1,UA.UB.n y T are the input
paraneters needed, where

A o=eh-eb A,,=6(£AA-tEB)
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are associated with the diagonal and off-diagonal randomness,

respectively. Now we define the energy origin e®=0 and express 2
the energy in units of the half-width of the unperturbed B-band i
( 6t>™= -1 , except one example designated). The nonmagnetic so=- G ges; T ~
lution=-type obtained for suitable choices of the parameters can - P S | -
be characterized by < ‘

Yoy Yo » = (24) i Inzy T .
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Since in the following we shall be concerned only with the non- J S s N, JJ EREr .

magnetic cage let us omit the spin indices of Gz » ‘ga N Zq ’

o ,’tl";,Fla,P:,ande. J “
The numerical procedure begins with solving the self-consistent

chain (4) to (11) by the iteration method. Starting with the

Hartree-Fock result Z::UV-E: ( » =A,B ) corresponding to the

asymptotic solution we calculate in sequence G~ via (11) and (13),

& trom (10),D” from (8) and (3), ¥ via (6) and (7), and

again Z; based on (4) and (5), etc.,by repeating this cycle.

After incorporating the convergent ZJ values into the CPA equa~- — ~

tions (18), the coherent potential terms o, , O, , g, are com- 12 /A

puted by uping a modified iteration scheme beginning from [

the virtual-crystal limit, ! BN
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- S l Pig. 1. (a) Electron densities of states Pv and p ( py without
electron-electron interaction), real and imaginary parts of the
self-energies (b) Z: and (¢) o, for pure p -components and
the alloy, resp., With c=0.25, A, =0.4, A, =-0.4, UA =3, (B =4,
m* =0.25, m® =0.2.




In Fig. 1 the electron densities of states and self-energies
of dipordered and pure esystems are compared in the unsplit Pa =
band case. At zero Coulomb ener7y the coherent density of states
pA was discussed in deta.il on the basis of two impurity-
scattering mechanisms associated with Ao and A1 « In addition
to the one-particle region defined by PA(EH’O » the coherent p
in Fig. 1a displays a two-particle region with two humps ascribed
to electron pair states in the alloy, In contrast to Hubbard-like
treatments of alloys, no gaps arise from dynamic correlations,
Roughly apeaking, the shape of P can be explained as the super-
position of p ( »=A,B ) for pure v -systems. Such a type
of continuous P spectrum with a small correlation maximum and
large tails as shown in Pig. 1a (compare also / ) differs
strongly from results obtained by using Hubbard®s decoupling
scheme 10/. The smallness of the two-particle humps in Pv is
caused by a strong damping, i.e. the imaginary parts of ZL’,’ have
peaks in the corresponding energy regions in Fig. 1b; an analogous
behaviour was found for [~ (see also )e Within the pure com-
ponents, the quasi-particle conditions 5 Trm Zu ([i”)‘ ’
LmZ (E) o< (E - M)* pear E = 11” (local version of the
Luttinger theorem 11/ ), and (3Re ;] (Eya[-:) <0 can be confirmed
numerically. The asymptotic limit is givonyby’ReZ”(‘oc) rn/z,
RelP(te0) = U¥ |, ReG” and the imaginary parts of all
functions tend to gero asymptotically. Resulting from the interplay
of correlations and disorder, the correlation peaks of Z‘:’
entering into the coherent O, 1in Fig. 1c are diminished by the
randomness. As is expected, the impurity-scattering associated
with Ao especially leads to a damping of electron states at the
Fermi energy, i.e.,to a finite value of [m o, ({u) .

Fig. 2 chows the dependence of the state densities p and p
on carrier concentration in the split PA =band cue. With decrea-~
sing 7 ( U™ fixed) the two-particle humps in P (v=4B )
become sharper and are shifted to higher energies. These hunps
are smeared out in the coherent density of states « The gap
in p, arieing from strong diagonal disorder (A,>1 ) is closed
due to electron-electron correlations (compare alloys with elec-
tron-phonon interaction ). The band deepening between njority
and ninorlty parts of P depends sensitively on the set n* .
Maxima of 'o and F within the one-particle region are shifted
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Fig. 2. Pure 2> ~component and alloy densities of states o and
» Tesp., for the sets ca0.4, A =1.1, A, =-0.4, " =1.5,
UP =3.5 with (1) 7 20,2, 7B =0.2 and (2) mA =0.5, n° =0, 1,

Split band for the coherent FA without electron-electron inter-
action,

]
>

— ~ allay analogy

—— Tsvkada

Fig. 3. Doengity of atates P ( PA without electron-electron
interaction) for an alloy with c=0,5, A, =0, A, ==0,32 (6t°% 0.5),

uA -0/5} U® =1.5, n* = 1® =1 compared with results of
Tsukada (note the other tyre of parameters in /1/).

1



by correlations into the energy interval between ¢ and£Z:*% U—:L‘v
(maxima of the Hartree-Fock approximation). i “
In Pig. 3 the coherent demnsities of states PA and are
exhibited in comparison to results obtained by Tsukada 1 for a
half-filled band in the case of pure off-diagonal randomness.
Note that we can compare only on principle, because the ladder
approximation is more trustworthy at emall n” , and we have
taken into account another type of off-diagonal randomness. As a
regult of our treatment the density of states P takes considerable
taile (without humps) at low and high energies. Furthermore, the
maxima of p(E) arige near the Hartree-Fock poinmts U*/2 in
contrast to Hubbard-like schemes, where maxima occur at €” and
e+ U (= A,B ). Concerning "/ it is pointed out that
the positions of the p maxima persist in going over from the
alloy analogy (Hubbard-III with scattering corrections) to the
dynamic Hubbard-III solution including resonance broadening
corrections.

4. CONCLUSION

Having adopted a local ladder approximation to the electron-
electron interaction in disordered alloys one can treat the ran-
domness in a single-site approximation. In this paper, we have
performed calculations within two different (but not independent)
pelf-consistent chaine describing the correlation and random-
ness problems, respectively. The numerical resulte show that gaps
in the spectrum predicted by other approximations disappear by
taking into account more accurately the dynamic nature of electron-
electron correlations. The self-consistent connection between
the correlation and CPA calculaticn-cycles is proposed in a sub-
sequent paper.

One of the authors (Th.E.) thanke the directorate of the
JINR for hospitalitye.
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