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Kpoccosep-aKcnoaeaTbi aaaaorponHhiX KBaApaTH'IHhiX B03M)'Illeasa 

PaCCW8TPBB89TCSI BJIBSIHBe B03Myl!lei!HA, KB8llP8TH'IHbiX OTHOCI!TeJibHO 

D -KOMnOHeHTHOr'O napaMeTpa nOplUlK8 0 H8 CHCTeMy, HCnhiTblB8101llYIO 4Ja308hlA 

nepeXOll BTOpOrO p0Jl8, 0K83biB8eTCSI, 'ITO TOJibKO JIHllll> llJISI COOTBeTCTBYIOIIlHM 

o6pa30M nO.Il06p8HHbiX B03Wyl!leHHA noselleHHe MOlKeT 6b!Tb OnHC8HO ellHHCTBeH

HOA KpOCCOBep-9JtCnOHeHTOA cp i • 3TH 9KCnOHeHTbl UOJiy'leHbl nyTeM p8C'I~T8 

CKeneTHblX JlH8r'p8MM B HH31IleW noplUlKe llJISI llBYX MO.IleneA p83MepHOC fb!O 

d = 4 -·l: llJISI MOll9JIH C Ky6H'IeCKOA 8HH30TponHOCTbiO H MOlleJIH CO cna6b!M 

AHnOnS!PHhiM B38HMOlleAcTBHeM. KpaTKO o6cy)!(.ll8eTCSI CBSI3b 9THX aKcnoueaT 

C 9KCnepHMeHT811bHO H86JIIOjl8eMblMH BeJIH'IIIH8MHo 

Pa6oTa Bhmonaeaa s fla6opaTopHH TeopeTH'IecKoll ¢H3HKH Ol-15111. 

Coo6meHHe 06be~HHeHHoro HHCTHTyTa HAepHNX Hcc~eAOBaHH~ 
,ll,y6Ha 1976 

Nattermann T. El7 • 10316 
Cross-Over Exponents for Anisotropic Quadratic 

Perturbations 
The influence of anisotropic. perturbations quadratic 

in the n-component order parameter in a system undergoing 
a second order phase transition is considered. It turns out 
that only for appropriate chosen perturbations the behavi
our can be described by a unique cross-over exponent ¢;· 
These exponents are calculated by a lowest order skeleton
graph approach for two d=4-•-dimensionai models: a model 
with cubic anisotropy and a model with weak dipolar inter
action. The relation of the exponents cp. to experimental 
observable quantities is briefly discus;ed. 
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1. In connection with the discussion of critical properti
es of a system undergoing a second order phase tran
sition the question arises whether an external perturbation 
described by a Hamoltonian gll a leads to a new type 
of critical behaviour. In the scaling theory of critical pheno
mena one assumes that the singular part of the free 
energy F<T,g) can be written as 

?_a -<A 
F<T,g) = \t\ ~ f<g\t\ · J, (1) 

where t=(T-Tc)ITc, Tc~T,.(g=cO} and f(x) has a fi
nite limit for x-- 0 Ill . However, for positive values of 
the cross-over exponent ¢ , g It j-<P increases if 
t ... 0 and a new type of critical behaviour is expected. 

Recently, it has been suggested I 2- 41 that the 
cross-over exponents ¢ i for anisotropic quadratic 
perturbations 

I 1 j d 
g)l <A,.)= -g.~ A (3fd x¢ (x)<l>f:)(x) 
Ja "'t.J 2Ia{1a a> 

(2) 

in a system described by an n -component order parameter 
<I> a (x) (a = 1 , ... , n ) . should be observable directly in 
experiment. Here A~ has to be chosen in an appro
priate way as will be discussed below (see Eqs. (6)-(9)). 
Indeed, a perturbation of the form (2) is obtained for 
example from a Hamiltonian H<Q i , <I> a) if one integrates 
the field Q. (x) out of the partition function. Here it is 

I 
assumed that H is only quadratic in the non-critical 
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variable Q i(x) and the coupling Hamiltonian of both the 
fields reads 

1 i d 
H. (Q. , <ll ) = - ~ ,\ {3fd xQ. (x) <ll (x)IIJ .ix). 

mt 1 a 2 a, {3 a 1 a fS 
(3) 

The g i denotes the thermodynamical conjugate variable 
to the field Qi (x). Examples for g i are uniaxial pressure 
in ferron,agnets and systems undergoing structural tran
sitions 21, the square of a homogeneous magnetic 
field in uniaxial antiferromagnets 131, and the electric 
field in improper ferroelectrics lsi. We remind of three 
possibilities to determine the cross-over exponents ¢ i 

corresponding to perturbations (2): 
(i) The ~base boundary T (g . ) varies as T < g . ) 

1 ,/.. C I C I 
- T c (0) "' g . '~' i . . 

(ii) Th~ static non-ordering susceptibility x g.= a 2F lclg 2i 
diverges as lt!-ai for gi=O, t-.0 where a:=2¢i-vd. 

(iii) The imaginary part m0 (k, D) of the se~f-
energy of the field Q. behaves as lim r 0<k<.;'- 1,nHtl-p 1 

1 n-.o 
where pi = 2¢ i + v (z- d/ 

41 
z is the dynamical cri

tical exponent 161 and .; "'It! -v denotes the correla
tion length. In deriving this result it has been assumed 
that the leading contributions to I' (k, U·) arise due to 
order parameter fluctuations (but n&t due to energy fluc
tuations) and that the order parameter obeys the dynamical 
scaling I 4• 61. 

Finally we want to stress that the coupling to a non
critical variable can lead to a first order transition in 
some cases. However, if this transition is close to a 
second order, one expects to observe the above-mention
ed power laws in a broad region around the transition 
point 17 I. 

So far, the cross-over exponents for anisotropic quad
ratic perturbations have been calculated using renorma
lization group techniques close to 4 dimensions (d= 4-t ) 
for an isotropic II,BI and cubic 14 •9 1 models with 
short range interaction and an isotropic model with 

strong.· dipolar interaction IWI. These models ·are limit
ing cases of more general (and realistic) ones which will 
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be considered in this paper, namely, (i) a model with cubic 
anisotropy both in the dispersion relation and in the inter
action part I I I, 121 and (ii) a model with weak dipolar 
interaction I 131. Both models exhibit interesting effects as 
has been discussed in previous papers 111- 131. For 
brevity, we will use the results of these paper without 
a new derivation throughout this work. For the calculation 
we use the skeleton-graph approach I 14/ in the main 
logarithmic accuracy for a d ~ 4 -t -dimensional system, 
where ( is assumed to be small. Due to the complicated 
form of the propagators for the models considered here, 
higher order calculations become much harder than for 
the models considered in I 4, 8 -1 ol. Finally we note that 
the exponents we derive are effective ones, i.e., they 
change into those obtained earlier if one approaches 
sufficiently close to the critical point. However, as has 
been discussed in detail in I J I - 131 ~ this asymptotical 
critical region may be inaccesible to experiment. 

2. We start with the general Ginzburg-Landau-Wilson 

functional II = fd "x <.J. r0 ¢
2 

+ ~ u /J "'<1J IIJ.m ¢"' + gradient 
4 Jc; "' a >yu a j-J~ y 0 a, >,y,u 

terms), where we have only one quadratic invariant in H 
since all components should become critical simultanou
sly (r 

0 
= r ~ <T- T cO)). The form of the gradient terms will 

be specified later. It is convenient to calculate the cross
over exponents ¢ i from the relation (see Eq. (1)) 
over exponents ¢ i from the relation (see Eq. (1)) 

1 y- ¢. 
ax- lag.! "'it! 1

, (4) 
I g . ~ 0 

whuere x adk> =
1

=<<1>~¢!~> denotes the susceptibility and 
<lJ k is the Fourier transform of <I! a (x) . First of 
all we consider the response o~ x- 1 to an artJitrary 
quadratic perturbation g.H (A 1 J: af3 

1 a af:$ 

-1 - - i 
ax f3<k>!ag. 1 _ = A <k> 

a I g.= 0 a{3 
I 

= - ~ X -l(k) X -l(k) < ¢ v ¢ ll H (A i )> 
v11 av {3p. k -k a y8 c' gi = 0 
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- i 
A af3(k) obeys a Ward-identity 

- i - i d dp - i 
A af3£k> =A af3- I, J :-:::-:-;r r {.). 

8 
<k,k,p,p)x <p>x8 (p)A , 

y, o,v,p. (21T) at-'y yv /1 vp. 

where r af3yo (k, p) denotes the renormalized four-point 
interation with different external momenta k, p. However, 
it is easier to calculate r af3yo if all external momen
ta are of the same order of magnitude 

-1 (d-1) cV2 d 
Kd =A " 1(2), 

r af3yo (k) = 
-I f -ZIJ 

U2K d) k y af3y~k/ A_), 

r af3yo (A) = u a{Jyo 

A denotes the cut-off momentum, 1-, af:3yo exhibits scal
ing behaviour if there is a stable solution (fixed point) 
of the equation 

dy af3y(J (k/A)/dlnk = 0, (5) 

where the stability is concluded from a linearization of 
(5) around the solutions y af3yo. Then, in the fr~rpework 
of the skeleton graph approach we can express A :

13 
by 

a matrix y af3yo<kl A) and A ~/3 , arising from perturba

tions g.H <A" i J : 
J a ap 

- i I - i 
dA {.). dlnk= l a .. y {.).,~ (k/A)A ~(k), 

at-' . 0 IJ at-' yu yo 
J,y, 

(6) 

Yaf3yo is given by a series of diagrams (see e.g. 1141. 
To the lowest order (main logarithmic accuracy) we 
find 

y f3· ~ (k/A) = l y ~fJ. (k/A)p ~ , 
a yo p., v VofJ/11' p.ryo (7) 

6 

where 
d 

(- 27] -1 d p 
p 

0 
~c (E- 277 )k K d J -- X (p + k) X w (p). 

p.ry (211) d /lY 

First, let us consider the case, where a ij "'.o ij 
Denoting the corresponding solutions by A~k) 
in the asymptotical region k/ A .... 0 

i i (1) i 
A af3 (k) = A a/3 <k/ A) 

in (6). 
we find' 

(8) 

w. and A i {.). are the eigenvalues and eigenvectors of the 
1 at-' 

matrix Y'ci(?yo = Yaf3yo ~Y*af:3yo ) .. In general, there are 
several eigenvectors X af:3, 1 (I = 1, ... , f i) to a eigenvalue 

0 0 , 

I I 

wi , which we choose tobeorthogonala,~Aaf:VAaf),J'd>ii' oil,. 
i 

We emphasize, that only the. perturbat~~n~ gi H a (A af-3) lead 
to a single power law behaviour o! ax /iJg i near to the 
critical point. For an arbitrary A af:3 we obtain 

,\ f:J = l ai/\if:3 ' 
a J • I I a ,I 

I, 

a\= l 
a,f:3 

Ai ~ 
af3, I a{3 ' 

(9) 

Taking into account that for k .... 0 k changes into ~-I"' I t I v 

in all expressions, we find from (4) and (8) ~w i = y - ¢·· 
Physically, the quantities A ~B (k) correspond to the re

1

-

normalized coupling constatits in the interaction Ha
miltonian (3) if the three external momenta are of the 
same order of magnitude. Since we consider a vector 
model where all n components become critical simulta
neously, the trace condition l y- *{.). = y-* o fJ. must be 

/1 at-'/L/1 at-' 

fulfilled /Is/. Then V ~ o a/3 =A 41 is an eigenvector of 

Y~f3yo and u) 0 = y* is the corresponding eigenvalue. If 
weput g

0
oo:t weobtain y-l=vy* andhence ¢i=l+v<t:V0 -w.) 

with v = y /(2- 77) :rhe exponent n can be obtained separately 
and vanishes to order (I 1 2

• 
1 4

/. 
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3. Let us now consider two examples. For this aim 
we restrict ourselves to the cases where the Hamiltonian 
includes only two fourth order invariants, i.e., 

1 
uuf3y8 = u 1 3(oa/3 o yo + 2 perm.) + u 2g afiyo , 

where g a{:3w = 1 if a~41=y=o and 0 otherwise. This corres
ponds to the case of cubic anisotropy and is the most 
general one for n ::.; :3 /15/ . However, we note that for 
n > 3 the fixed point Hamiltonian exhibits this symmetry 
in many cases even if there are more bare fourth order 
couplings /1 6/. (We will denote the fixed point values 
of the corresponding coupling constants by yj and y*

2 
, 

respectively). Under this condition we find there, in 
general, different eigenval~es w 

0
, w 

1
, w

2
• The corres-

ponding perturbations are 1> 2 ' 1> a 1> /3 and 1> a -· ¢~ ' 

(a f. {3). These perturbations are still not orthogonal. 
However, this can be achieved easily in the usual way. 
For n=3 we find, e.g., 

8 

,\o = _
1_o ·,\ 1 

=--
1-(o o +O 0 ), 

a/3 v'3 a/3 ' a/3,1 /2 al /32 a2 f3I 

,\1 
a{3,2 

,\1 

af3, 3 

1 
--- (8 0 + 0 0 ) 
v'2 a2 {33 a3 f:JI ' 

1 
"'- -(8 3 +o 

v'2 a3 /31 al 
0 )~ 

{33 

2 1 
,\ = - (8 0 - 3 0 ) 

af3, I v'2- al {31 a2 {32 ' 

2 1 
,\ af3, 2 = v' 6 (20 a3 ° {13 - 0 al 0 {31 - 0 a2 ° {32 ) • 

, 
'\ 

t 

. , 

(i) First we consider a model with cubic anisotropy 
in the dispersion relation. The quadratic part H(2) of the 
Hamiltonian reads /II/; 

d 
(2) d k 1 2 2 a a 

H = I f -- - <r + k - fk ) <t' k ¢ -k 
a (2rr) d 2 ° a 

Which leads tO r; _,p so =c 0 0 f~S:O (} + £.(o f.Tl))(]-f)-Y.! Where 
r· vt-JYU ay t->u 4 at-> • 

s= s(f) is a measure of the cubic anisotropy in the disper
sion relation ( s (0) = 0, s (1) = 4, see Eq. (A.4) of /ll I ). 
We find for the three eigenvalues: 

_ n + 2 * * _ 2 * (1 s ) _ 2 * * wo- ---yl +y2 'w~---y1 -- ,cv?- -yl +y"' 
3 3 4 - 3 ~ 

(10) 

y 'i <n, f) , y*2 (n, f) are calculated in /II/ Eq. (A. 7) and/ 121 
Eq. (3.1la) (note, however, that in these papers slightly 
different definitions have been used for the quantities 
denoted by the symbols yj ). For f =, 0 then we get if 
n <;.. 4 (Heisenberg fixed point stable) 

-I Y =1-n+2t: 
11+8 2-' 

f 
¢ = ¢ = y(1 - --8 ) 

I 2 n + 
(lla) 

if n > 4 (cubic fixed point stable) 

-I n - 1 f f II - 2 E 
y = 1 - -- - ' ¢ = y(l - --)' cp = (1 :-.-- -) • 

3n 2 3n 3n 2 

(llb) 
The < -expanded values of (lla,b) agree to order { with 
those derived earlier /4, 8, 9 I. For f ;f 0 the expressions 
become more complicated but can easily be derived from 
(10). At f = f c (n) the transition changes from the second 
to the first order /II/. For f= fc(n) can be excluded 
from the final expressions for y , cp i : 

-1 1 ((n-1)-% 
1
)£ 

y = - -3- + 8' 
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2-n ).!-), 
8 -<1-<1+ ~ 

¢ 1 - 2(3(n - 1)) 
(12) 

cp =<1- (1- 1 )!--). 
2 (3 (n - 1)) lh 8 

For large values of f there is still a region where the sys
tem exhibits an approximate scaling behaviour and critical 
exponents can be estimated as discussed in/11,12/.Using 
the appropriate values of y i , y 2 (see the remark after 
Eq. (10)), one can show for all f that ¢ 1 < ¢ 2 for n < 4 
and ¢

1 
> ¢

2 
for n > 4 . The numerical values for y, ¢ 1 

and ¢ 2 for three different values of £ =1 are displayed 
in the table. 

Table 

n = 2 II=;~ 

f= 0 fd =0.74 f~- 0.95 
(' 

f=O f=f = 0.42 
t: 

f~ 0.95 

---------------------------------------------------
y 1.25 
¢1 1.~3 
¢'}. 1.13 

1.24 
1.09 
1.17 

1.26 
1.14 . 
1.26 

1.30 
1.18 
1.18 

1.29 
1.16 
1.20 

1.33 
1.24 
1.29 

---------------------------------------------------
As usual, one expects shifts to larger values from the 
second order calculation (which is much harder than the 
first order one for f 1= o ), but the general picture should 
be the same. Using 1'=0.95 as a typical value for SrTi03 
we find for the exponents pi and a i , describing the 
sound attenuation and propagation in this material, res
pectively, Po= 1.33 , p 1 = 1.82, p 2= 1.91 and a 0 "" 0 , a 1 = 0.48, 
a 2 =0.58. Here z= 2 has been assumed. We note, that the 
influence of f has the opposite tendency as conjectured 
by Murata /4/. A possible explanation for the deviations 
of the experimental values, which exhibit an extremely 
wide spread from p= 1.1 to p = 3.95 117

/, from those 
found here is the existence of systematic residuals 
strains /2/, which reduce the number of strongly fluc
tuating components. 
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(ii) As a second example we consider an isotro-
pic systemji.e., y*2 = 0 ) with pweak dipolar interaction 
g 0 «A2 113 • Then 

n<d d k k 
( 2) _ - d k 1 2 ~ a · f3 

H - I I --d- <ro + k + go ) ¢ k ¢ - k • 
a,f3=1 (2rr) 2 k 2 

Since the system is isotropic we have w
1 

=cd
2
, cb 

1 
~c ¢ 2 =rh . 

It is covenient to introduce the ratio A ~ g 0 /r = g/ I t I Y , 
where r is the renormalized inverse susceptibility. 
The limits A .... 0 and .\ .... oo correspond to the cases of 
isotropic short range (see Eq. (lla)) and dominating dipo-
lar interaction, respectively. Performing the same calcu
lations as in the previous case we find for A .... oo (1 < n::: d) 

-1 
y = 1-

(n+ 2)
2 

( n 2-2 
-,¢=yO- d. 
2 (n 2 + lOn + 12) (n 2.t 10n+ 12)(n- 1) 

(13) 

Their £ -expanded values agree with those found in 11o/ . 
However, restricting for simplicity to the case n = d, it is 
possible to calculate the effective critical exponents y(.\) 
and cp (.\) for all .\ . Indeed, if A ... oo we find for p af3yo 

n(n + 2)p af3yo = (n 2- 4)o ay o f3o + (1+ a(A)) S af3yo + 

+ 2((n+2)aaif3o-s af3yo )b(.\), 

s af3yo = (o ai {38+ 2 perm.), a(.\)=<1+.\)-E/2 
' 

k/2 
b(.\) =«1+.\) -1)/(1 -E/2)).. 

and hence 

N
1 
(..\) N 

2
(>..) 

y -1 (.\) = 1 - -- (, cp (A) = r{.\) (1 - -- d 
IX.\) D(.\) ' 
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D (A) = c + c a (A) + c b (A) , N (A) = c + c a(,\ ) , 
l 2 3 l 4 5 

N 
2 

(A) = c + c a (A) + c b (A) , 
6 7 8 

c = 2:n- l)(n 2+ IOn+ 12), c = 2:n 2 
+ 6n + 20>, 

l . 2 
(14) 

2 2 c = 16(n- 1), c = (n- J)(n + 2) , c = (n + 2) , 
3 4 5 

c = 2(n 2- 2) c = 4 c = 4n 
6 ' 7 ' 8 • 

tl ---- '<p 
1J't 'l.lG 

1.$1. i..U 

·UO 1.2.1 

111[ ~~' 
J i.2D 

I I I 

It $ 2. i. 0 -i - ~t/~flt 

The effective critical exponents y(A) and ¢(A) versus 
_l...lgA=lg(tjgl/y ). 

y 

12 

t 

t 

I .... 

i ... 

y (A) and ¢(A) are depicted in the figure. Both y (A) and 
¢(A) exhibit a pronounced minimum ~or A"" 2.2. The result 
for y has been found already in 131 using a slightly 
different way. As discussed there, the position of the 
minimum is in good agreement with the experimental 
result for EuO . The prediction for ¢ could be tested from 
the anomaly in the sound propagation of shear waves I 181 , 
although the corresponding magnetostrictive coupling 
constant is small I 1 91 in this substance. We remark 
finally, that the method presented in this paper can be used 
for the calculation of cross-over exponents both in a higher 
order of accuracy and for more complicated models. 

I want to thank Dr. H.Braeter for the computation of 
the curves depicted in the figure. 
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