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1l. Introduction

As has been proved by applying the
coherent potential approximation (CPA) and
its generalizations to Kubo’s current-cur-
rent correlation function formula, the
electrical conductivity of random alloys
depends strongly on the type of disorder.
Numerical CPA results of the conductivity
have been given for diagonal randomness/1-7/
and for off-diagonal randomness provided

that the transfer integrals are multipli-

catively/&qo/ (Shiba’s condition) or ad-

ditively /1 dependent on the configurations
at the sites linked. For diagonal disorder
at finite temperature, the effect of elect-
ron-phonon interaction on the dec conducti-
vity was investigated by Chen et al. Az«see
also/lwﬁ, and the strain effect was includ-
ed in /1

This paper is concerned, on the basis
of the theory developed in/w/, with the cal-
culation of the temperature-dependent dc con-



ductivity of random off-~diagonal alloys in
the additive limit. The theoretical back-
ground/nv can be summarized as follows.
Start with the Kubo-Greenwood formula for
the dc-conductivity tensor
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where
£) =@ + explln— w)/k TH ™ (1.2)

is the Fermi distribution function, V is
the volume of thf system, p is the chemical
potential, and n~- =5 * i0. In the Wannier
space, the Fourier transform G ,,(z0) of the
one-electron Green function obeys the equa-
tion of motion

(z—eP-E G (z:0)- 37 PBihan )G (20) =
n  nm k(;én) n k km

- (1.3)
=5 +6nGnm(z;6)+ p I (6n+ Ok)ka(z;O);
k(#n)

and the a-component of the one-electron
current operator is given by '

j o=@y (1.1)
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where R, denctes the position vector of
site n in the static lattice, and the prime
indicates that only the nearest neighbours
are included in the summation. This des-

cription is based on the general model
Hamiltonian derived in the Appendix. For

the additive type of the off-diagonal dis-
order, the conflguratlon dependent quantl—[3B
ties [E_ ,h ;0,0 ] are equal tole2eB GﬁA ;

A LA .
,071  or [0, 0 0 0 B according to whether

an A or Batom occupies the n-th site, res-
pectively. In generalized alloy analogy,

the electron-phonon interaction is described
by c¢-numbers 0, and 6, which fluctuate
thermally according to certain Gaussian dis-
tributions. The static (adiabatic) approxi-
mation is used in order to perform the pho-
non averaging <> g and the configuration
averaging <, successively (the indices
are dropped 1n the following). After avera-
ging within a modified CPA the correlation
functlon related to 0,4, was found 715/ in

K ~-space as (cf. /16 /in the phononless case)

: <<tr{G(zl)j Gz )j }>> =
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Wwhere

G (2) =<<Gz0>>=(z-¢ ~h"Ps)~Z(k,2) ~Y1.8)

k
2k,2) = o (2) + 2ol(z)s(k)+02(z)s2(k), (1.9)
skk)= X’ ¢ m(Rm-R‘Q (1.10)

m(£n)

These equations are analysed 1in two
steps. Assuming Velicky’s /l/ model for the
unperturbed band we analytically perform
the k -space integrations in (1.7) using
the residue method (Section 2). The self-
energy contributions ¢ 10150 will be de-
termined by solving the CPA 'self-consistency
condition<<Tﬁ»=0/n/Numerical results in
Section 3 show especially the effect of the
vertex corrections included in (1.7).

2. Analytical Evaluation of the
Conductivity
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To carry out the k -summation in (1.7)
we assume a simple cubic lattice. The quan-
tities describing the unperturbed lattice
are approximated by simplified analytic ex-
pressions/l/ . The density of states of the
pure B-band is chosen as

2a-EHV? it |g|<1,
- w -
35(E - (k) = (2.1).
k 0 otherwise,

B 1

and, analogously, the mean-square velocity

over a constant—-energy surface is replaced
by
Brn? B 2(5)2
v (ED" p (B) =
Y P — 2 -EHY? if B < 1,
B-’)
de (k) _ 2 B
[——=—1 86(E -¢ (k)=
ak

~iM

1
N
0  otherwise, (2.2)

> - B . .
where fB&)=hBBs&), and v, 1s the maximum
velocity in the B-band. Obviously, this
means settingh =%—and e =0,

Substituting (1.9) and (2.2) into (1.7)
and returning to the starting point (1.1),
we obtain via o, =0d,5 the scalar conducti-
vity (the notation o=ahm)+j“)] is also
used)

o=3 fd7,<-—gf]—) z[1+z4f§<n*>+144<ol'<n+))2m a7+

+ 144[05(7}+) + 12a;(n+)0 ;(7] )1H 1 pHhng ™) +
+ 436 20t N2H (0T 14407 ) InF(p Y -
- Re 1+ 240, (4") + 14460, ) 7] HoG%n ")+

+ 144[02(n+)+1201(n+)0207+)]H 107+ﬂ7+) + (2.3)
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Here the integrals

+1
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(2.5)

- 2,3/2 (2.6)

+1
F(z) = [ déA - €20
-1

are expressed in terms of the coherent
Green function

G(z;&) = (z—a0 (z)-(1+120 1(z))f - 3602(z)§2)_1.( 2.7)

In getting (2.3) we have used analytic
properties which are satisfied by the self-
energy and the coherent Green function. In-
deed, the structure of the CPA equations/”/
allows one to prove the relations of(z)=0, (z*)
and §*(2) = Gz *); consequently, from, (2.5)

to (2.7) one gets H?zpzz)=HB(ﬂL@)andfﬂzEFuﬂ.

Note that Hg(nﬂnj are real functions.
Next, we can calculate analytically the
functions Hy, and F appearing in (2.3). Per-

forming integration in (2.5) by the residue
method, we obtain

W(z1 )—w(z2) .

H, ;") =A{1-2Im[-
Z) 72y

(2.8)

z w(zl)-z 2w(z )

+ -—
H & )= 2AtRelz, +z ,}-Im[-1 P, 2 11(2.9)
H. (') = 2AtRel22 + 22+ 2 2.+ 2, 2*] +
o\ oM )= Clz) T 2o+ 212,72 2
0 0 (2.10)
ziwlz J=z2wlz,)
oWz,
NE N (PR AP L SO ¥ Al Rl 1,
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1 2
with .
(1-2z2)y/1 - 22
— — w2 : (2.11)
|3602(n+)| (z-2%) (z~ z%)
alz;) - qlz,)
+ o+
H (n ,n )=Bil-[p(z )+ p(z )+ I, (2.12)
0 1 2 2z, -z,
H.o( ) =B )=[z. plz drz.pz.) - (2.13)
11 e ) =Bz, 4z, 1 P2yt z,piz, .
1 1 zl¢zl)— z2qh2)
- Eq(zl)——z—q(z2)+ 7 — 1z ]},
)
+ 2 9 3
H, hfﬁn ) = B{3(z 1 v2y) 4z 2, - 5 -
(2.14)
2 2
—[zlﬁzl%+z2p(z2)—zlqul)—z2q(z2) +
z?q(zl)— zzq(z2)
+ 1,
Z) ~ 2,
with
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2 2 2
(3602(r]+)) (z -z, (z -z,)
(2.15)
where
(1+1201) 1 + 1201 nt- A
2, == +/( )+ . (2.16)
' 120, 72(72 %02

In addition, we have to insert into (2. L6)
the dropped np-arguments by putting o= ogw ) .
Special cases as, e.g.,0,=0 or o?w ) = are
treated separately. The integral (2.6) can
be reduced to

Fipb) - Z1F ") -316-1?2(7,*)], (2.17)

where, for the model (2.1), the quantities
F (z) = N—; g-»(z)[s(k)]

solv1ng the CPA problem’”7ﬂ

In connection with (2.8) to (2.17), the
formula (2.3) represents the analytic re-
sult for the dc conductivity directly ex-
pressed in terms of the self-energy contri-
butions 04:0,, 0, . For comparison, on the ba-
sis of (1.5) and (1.6) we introduce the
conductivity expressions

125 Fan Lty 6t - Reby (0 M1 .(2.18)

are already known from

alj

oli {4 <V 551211+ 6 (b hBB2, [0 (2.19)
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arising from the unperturbed current](m and
the averaged currentJW)+<<ﬁlB> respectively.
In view of (2.3) the quantity oh“»+j(”]—oﬁmn
reflects the effect of the random current

operator on the conduct1v1ty, additionally,
thedifference Gm+(n_gﬂm+«f »] 1s a measure
for the value of the statistical correla-

tions, 1.e. for the vertex corrections.

3. Numerical Results and Discussion

The numerical calculation of the conduc-
tivity is started with solving the CPA self-
consistency conditions, i.e., the set of
coupled integral equations/17/ for gy,0,, o
The input gquantities are the concentration
¢ of A atoms, the diagonal and off-diagonal
randomness parameter

Ag=eh A =6hAA_n BB), ~ (3.1)
respectively, and the thermal fluctuation
parameter aK5V@=ABL The energy 1s scaled
by the half-band width of the pure B-band
defined in (2.1). The mean-square ampli- -
tudes/17/(with y(s)u_yl’(s) y(S)VV:yVV(S),see Appen-
dix) e
fw

Vo <2 )2 coth(— —)>"’ ,
a > |y KT (3.2)
v 1 (shvv | 2 fos lv
6 =<2y | " coth(——)>"", =AB) (3.3)
4 s 2k T

characterize thermal fluctuations of the

quantities 6Y and 6" in (1.3), respectively.
Define

a=a®=-aqB, 5-85A_5B, (3.4)

11



provided that the electron-phonon interac-—
tion is not affected by configurational
disorder.

After having calculated the self~emnergies
o9p(%) , the 7n-integration in (2.3) for T#0
is carried out numerically by a Gauss integ-
ration/¥ | 1In any cases indicated particu-
larly the sharply peaked function L—f%;)

can be approximated by

_g_f_:s(n_#) (¢ : Fermi level ) (3.5)
Ui

according to the form for T =0. This 1s
reasonable for wide regions of the unsplit
band or within the main band in the split-
band case.,

In investigating the conductivity versus
occupied fraction of the band relationship
we introduce the average number of electrons
per site per spin as

400

n = [ f(E)p(E)E, (3.6)

where the CPA density of states is given by
(ef. (2.17))

p(E):—%ImFO(F+iO). (3.7)

To 1llustrate the effect of the off-dia-
gonal randomness on the temperature depen-
dence of the conductivity and the influence
of the statistical correlations (vertex cor-
rections) we have numerically analysed o
for some representative sets of alloy para-
meters. Note that the numerical results of
this paper differ from those of /1-18/  ipn two
points: (i) nonvanishing vertex corrections
resulting from the random current operator
and (ii), unlike /12-1%/  off-diagonal ran-
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domness of the electron-phonon interaction
are taken into account. This practicable
theory seems to be realistic enough to des-
cribe certain trends of experiments/!¥

Sharp maxima of the conductivity at zero
temperature are produced by the off-diagonal
randomness as. shown in Fig. 1. These "reso-
nance" peaks arise with passing the Fermi
energy through the region of maximum over-
lapping of the A and B -component bands.This
situation is qualitatively similar to the
Lifshits instability. The ¢ peaks disappear
with increasing temperatures. Whereas ¢
varies by some order of magnitude, the ef-
fect of the electron-phonon scattering on
the density of states 1s small as illustra-
ted in Fig. 1 (c).

In Fig.(p2a) the conductivity versus
occupied fraction of the band curves inter-
sect at one point (corresponding to u = AO)
for all A} as already has been found
earlier/89,11/ at T=0., This behaviour is
here also obtained for non-zero temperatures.
Analogously to ref./lh/ the maxima of o
appear without divergences near to one of
the band edges. Due to the statistical cor-
relations of the random currents the vertex
corrections reduce o 1in the region of the
conductivity maximum, i.e., o <o[jOi<cj(ss]
in Fig.2(b),(c)Dutside this region o 1is
enhanced by correlations, i.e.,a>a[fm+<q“§ﬂ,
On comparing o with o[j{®) related to the
unperturbed current j® we haveosZ o[j®1 for
A 20, respectively, in analogy to
o[04 <i(D>>12 5 [ (0] according to (2.19).

By passing the Fermi energy (or occupied
fraction of the band) through the conducti-

vity minimum in Fig. 3 - not necessarily cor-
responding to a minimum of p (Fig. 3 (¢))o
13



L ‘ Fig. 1. dc-conductivity peak for various

alloy parameters and temperatures. (a)s vs
Fermi energyu, at T=0K, ¢ =0.125. (b)o vs
occupied fraction of the band n for purely

off-diagonal scatteringAg= 0, Ay = 0.7
i (-~===) and Aj=-0.7 (——), c= 0125, with
10 l (1) a=0,, 6§ =03 (2) 5x10-3, 10-5; (3)
1.9x10-2, 5x10-5; (4) 4.5x10-2, 10-%, (c)

Density of states p(E) andoe vs chemical
potential p at Ay=0.5,A;, =-0.5, ¢ = 0.25,
with (1) a =0, =03 (2) 7.5x10-3, 1.5x10"5;
(3) 4.5x10-2, 9x10~4,

or/? P —

can increase with increasing temperatures
contrary to the situation outside the mini-
mum (compare /1214, 19/ ), Ipn Fig. 3(b)a mini-
mum of the o -versus-concentration curve
appears as observed in transition-metal
alloys’“g/ Here the possibility of anoma-
lous temperature behaviour 1is also found.
Deviations from a linear temperature de-
pendence of o are demonstrated in Fig.3(c)
according to the high-temperature approxi-
* mation (a, & are proportional to T ).
In the split-band case in Fig. k4, olj
is in good agreement with the main-band
conductivity o , but not with ¢ on the
subband. The vertex corrections reflecting
the effective interaction strongly decrease
the minority conductivity, expecially at
non-zero temperatures. An additional struc-

0
(H

ture of ¢ occurs in the subband in the case
h ahA>aB 575 5B (cf. /17/)'
, This subband behaviour is investigated
in detail in Fig. 5 for an alloy with aA=
C =aP, 54-5B, The peaky structure of the

density of states (Fig. 5(a)) is reproduced
for the conductivity only within the appro-
ximation (3.5). By using the exact expres-—

15
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‘Fig. 2. Influence of thermal fluctuations

and vertex corrections on the dec conducti-
vity o at various values of the off-diago-
nal randomness parameter Ay with Ag =0.5, ¢ =
=0.25, (1) a=0,8=0; (2) 7.5x10"3, 1.5x10"2;
(3) 1.9x1072, 3.8x10"°(a)o vs occupied frac-
tion of the bandn. (b),(c) Density of
states p(E) and of ),aﬁm)+«q“)>>](.“.),
a0 (===2) vs chemical potential u accord-
ing to (3.5) for (b)A; =0.3 and (c) A, =-0.6.

sion for @-gi) the subband fluctuations
Ui

are smeared out to a very small conductivity
tail. This localization effect can be expres-
sed by a factor of about 102 concerning the
ratio of®, /o3l at T # 0 (factor of 25 at
T=20 in Fig. 5 (b)). The extreme decrease
of the minority conductivity is caused by

the combined effect of the electron-phonon

scattering and statistical correlations.

Appendix

Electron-Phonon Interaction in Off-Diago-
nal Random Model Systems

The model system considered is composed
of two types of atoms,A and B, which are
randomly placed on N sites of a regular
lattice. A single level according to a
tightly bound electron state 1s associated
with each of the atoms. The one-electron
Hamiltonian in the field of a fixed configu-
ration {v} of 1ons
. L v 3
d,+H, =-—-—2;A? +DEV (r—Rn),(u=A,B) (A.1)

€
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(

Fig. 3. dc conductivityo at various alloy
concentrations and temperatures for A 0=0.5,
Ay =-0.5,(a) o vs occupied fraction of the
bandn and (b) ¢ vs concentration c¢ with (1)
a =0, 6=0; (2) 1.9x10~2, 3,8x10"2; (3)
3.8x1072, 7.5x1075; (L) 5.6x1072, 1.1x10-k,
(c Pen51ty of states p(E) , o ( ) and

m vs chemical potential p,and
o vsnwith (1) a=0,8 =0; (2) 5.6x10"3,
1.1x1072; (3) 9.4x10-3, 1.9x10"5; (L)
1.9x1072, 3.8x10"5; o0 vs temperature T for
n =0.55 (-0020), 0.45 (AA-A),
0.4 (Gexx), and 0,3 (eee) near the
dc conductivity minimum. Here (3.5) and q =
=a,T/Tg witha;=0.02 are used.

Fig. L. dc conductivity 4 for configuration-
dependent fluctuation parameters. o ),

dﬁm +«ﬁn >1 (+eeed) and 0[“m] (- =-) ve

occupied fraction of the band n according to
(3.5) for Ap=0.9, A;1=-0.7, ¢ =0.4 with
(1)at=0,6%0,¢%<0,5%-0; (2) 7.5x10°3,
1.5x1072, 2.2x1072, L5x10~5; (3) 2.2x10-2,
L.5x10-5, 7.5x10~3, 1.5x10-5.

19
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‘Flg . Effect of the vertex corrections on
the temperature dependent d¢ conductivity o
in the split-band case. o ( )y o0(=-=)
according to (3.5), and o[j{®+<«iD >71 (....)
to (3.5) are plotted for ¢=0.125.(a) Densi-
ty of states p(E) and ¢ vs chemical poten-
tial pat Ap=1.5, A1=-0.5, a« =b.5x1072,98 =
= 9x10=5. (b)o vsp atAg=1.3, A ==0.7
with (1) a =0, &=0; (2) 2.2x107°2, L.5x10-5;
(3) b.5x10"2, 9x10-5.

includes the electron lattice interaction

in terms of V (r—ﬁlQ describing the interac-

tion of the electron with a glven v ion at

position R _I{n+ X,. Here X ,is the dis-
pPlacement vector from the equilibrium ion
position I{ at n~-th site. By assuming

first- order displacements we get

VIG-R )=V e-R )-vV G-R ) x_. (a.2)

The harmonic motion of the atoms in the

configuration {v} is described by the Hamil-
tonian
2
pn
_ a 1 w _
Hlat_rlzmv+_2"n§1®nn X X, w,u=A,B), (A.3)
a n aB a

where pn is the a-component of the momentum

1
of the n th atom, M, 1is the mass of the

n-th atom, and ®ff are the harmonic force
ap

constants. The superscripts v,u refer to

the type of atom at lattice sites n and m,

respectively. The total Hamiltonian within

fv1 is then H=H_,+H,,,+ Hlat

21



Introducing phonon creation %:) and

annlhllatlon b_,) operators we can write
(cf./20/
:2\/ [w b +<w )*b I, (A. L)
s Z(L)Mn (1
) ;ﬁws
p, =-iX ————————[W b —(W )*b ] (A.5)
a s 2 a a

where the guantum number § runs over 3N nor-
mal modes %f the vibrational subsystem. Here
o, and “& are the eigenvalues and eigen-
vectors of the random dynamical matrix, res-
pectively; this means setting

z[mﬁanmaaﬁ_m MY 2 g, (A.6)

% aﬁ B

Note that the special case of the ordered
system is also included by replac1ng o, and
(s) 1 qR

n

W, by @3\ and %ﬁ =7=eg) e , respectively.

YN 4

a -> 3 .
Then q 1s the phonon wavevector, A 1s the
vibrational branch index, eiA denotes the

a -—component of the polarization vector.
Within a slightly modified tight-bind-
ing approximation one allows the electrons
to follow adiabatically the vibrating ions.
To define the tight-binding basis we intro-

duce the Wannier function ¢ (f -R R ) (abbre-
viated by |n>) satisfying the Schrodlnger
equation

2 ~ -

5

‘h V. > > ~y > v o 3
[ EA?+V (r-Rn)]¢> (r—Rn)-c (xn)¢> (r-Rn), (A.T7)

22

provided that the tightly bound wave func-
tion follows the displaced » ion without
appreciable deformation. For small displa-.
cements the orthogonality relation of the
Wannier functions remains valid. The guan-
tities in (A.T7) with respect to the egui-
librium lattice are denoted by ¢ and

&Y (- ﬁn) (abbreviated by |n> ).

Expanding the integral

<H|He+HintIn.;> =

(A.8)
- 16" G-k )[—ﬁ—zA LS VYR >]¢*‘<r— e
n 2m ¢} 4

to first order in the ion—dlsplacement coor-
dinates, one gets with (A.2) and (A.7) by
neglecting pure and degenerate three-center
integrals the expression

RN OCR e P
+[h:ﬁ+§:ﬁ: (;n—;m) - (A.9)
e X @ X =5, ),

where

-

i —<n|VV lm> =
nm
(A.10)
vE - - e TR - 5
=f¢ @ -RIVV (r~R )" (r— R )dr,

v_ v v 1 v M *
€ _<n|Vn|n>,hnm—2 [<n|anm>+(<m|Vm{n>) I, (A.11)

23



> vy 0 v n m
€ =t=—h ] _ (). (A.12)

nm ar a

The last relation was obtained on taking the
overlap integral hYE as a function of

IR,- R, | a is the lattice spacing. The
two-center integrals in (A.9) are restrict-
ed to the nearest neighbours (n.n.). Note
that ¢ Y(x,) 1in (A.T) can be expressed in
terms of (A.10) and (A.11) as

;V(; ) =¢e? —dwv-;

n n nn n
Combining (A.3) and (A.9) with (A.L) and
(A.5), the total Hamiltonian for a particu-

lar set {v} reads

H =25:a+a + s h*afa +
n n n nm m
(m#n:nn)
+  «; vis) A s) +
+ E anan%[yn b+ (77 ]+ (A.13)

+ vuls s)y,, + + 1
+ ,En anamES[,vnm 1bS+(}/mn b ]+25ﬁms(bsb S+__),

s f5

(m#n: n.n.)
where
;V(S)z / 'ﬁ__ pidd _’(5) (A lh)
n 2(‘)st nn n '
- 2 (s) ﬁ\SJ
- - n 4 d m
y e -J%-[(—é-a”“—g”“ NN (%d“” P,
w nm nm 1 mno  mn w
s Mn \/Mm

(A.15)

+
Here ap, and apn, are operators creating and
annihilating an electron in the Wannier
state at site n according to the modified

24

tight-binding approximation. Especially,
the contribution with g* in (A.15) re-
flecting phonon-modulated hopping was de-
rived from the Wannier functions centered
at the instantaneous position of the ion.
In this way, the atomic aspect of the
electron is emphasized by (A.13) in order
to describe, e.g., random transition-metal
alloys. The local (or shortly—ranged%)ran—

v v vis vp(s
domness of ¢ ,h ., v, and Yoo

is pointed out by setting v,p=A,B. Moreover,
the electron-phonon coupling elements yZ“)
and y " depend implicitly on the total
configuration {v} via the phonon quantities

.S
o, and W n
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