

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

E14-98-392

1998

M.V.Frontasyeva, A.V.Gorbunov*, S.M.Lyapunov*, C.D.Oprea

WORKPLACE MONITORING AND OCCUPATIONAL HEALTH STUDIES AT THE CENTRE FOR PRODUCTION OF PHOSPHORUS MINERAL FERTILIZERS, VOSKRESENSK (MOSCOW REGION, RUSSIA), USING NUCLEAR AND RELATED ANALYTICAL TECHNIQUES. Part I

Submitted to the First Co-ordination Research Meeting on Occupational Health Studies, October 20-24, 1997, Vienna, Austria

*Institute of Geology of RAS, Pyizhevskij per., 7, 109017 Moscow, Russia

1. Introduction

Intensive production of phosphorus fertilizers requires a thorough investigation of the deterioration of the environment, including its pathological impact on occupational staff. Nuclear and related analytical techniques enable relationships to be established between the concentrations of elemental pollutants (Cr, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Pb, (REE), Th, U, and other) in raw material, byproducts, humans and the workplace.

The goal of this study is to determine how man's biosubstrates can be used to follow the rate of pathological changes in the organism as it is exposed to intense technogenic environments.

As a rule, the degree of pollution of the environment is determined by studying the amount of sulfur and nitrogen compounds and fluorine in the air. In the early 1980s, specialists of the Institute of Mineralogy, Geochemistry and Crystallochemistry of RAS used emission spectrography to provisionally study of geochemistry of soils and snow around the "Mineral Fertilizers" plant in Voskresensk (Moscow region) and Apatity (Kola Peninsula). This study revealed another, previously unknown, type of pollution: increased REE, zinc, and strontium [1]. The potential environmental hazard of phosphorus fertilizers and their byproduct is a well established fact now [2-5]. Investigation [1] stimulated further studies [6-8] in 1985-1989 by M.V. Frontasyeva, A.V. Gorbunov and B.A. Revich, the authors of the present IAEA project, using the more precise methods of X-ray fluorescence (XRF) and neutron activation analysis (NAA). At that time the task was to assess the eco-geochemical situation in the northern part of the town of Voskresensk (see Fig. 1).

Fig. 1. The "Mineral Fertilizers" plant in Voskresensk. The dashed area was examined in the previous studies [6-8].

We studied the main anthropogenic streams blown into the air, which then fall back to the earth's surface (soil, snow), as well as their uptake into agricultural plants nearby and into local

2

residents. The impact of technogenic flows on man's organism was examined by comparing the concentrations and associations of various elements in hair from relatively normal and impacted subjects [9].

From 1989 to 1993, the plant was rebuilt to more efficiently utilize phosphogypsum $(CaSO_4 \cdot 2H_2O + 0.6-1.0\% P_2O_5)$. As a result of the oleum sulphate extraction process (the most common one in the production of phosphorus fertilizer), approximately 5 t of phosphogypsum are precipitated per 1 t of final product (ammophos, or ammonium phosphate: 47-60% P_2O_5, 11-13% N, 1-2% Ca). There are several ways of disposing of phosphogypsum: to use it as an agricultural meliorant, as a building material (tile, filling and binding components), etc. Practically all of the methods of phosphogypsum disposal were developed without taking into account the increase in pollution levels caused by element-impurities in the phosphate raw material. For this and other objective reasons, the byproduct goods did not find a market, and the shop for reprocessing the main disposal waste (phosphogypsum) was shut down. The production of complex mineral fertilizers was shut down also, as well as the production of oleum phosphate in one of the shops, specifically, OPS-2. In addition, the technology of oleum sulfate extraction was changed. These activities must have altered the environmental situation in and around the plant, and, in turn, its effects on humans. The present-day products of the "Mineral Fertilizers" plant in Voskresensk are summarized in Table 1.

 Table 1. Present-day production and element associations most typical for the relevant shops of the "Mineral Fertilizers" plant in Voskresensk.

No.	Type of production	Shop	Association of chemical elements
1	Ammonium phosphate fertilizers	AMM-1, AMM-2	Sr, Y, Bi, REE
2	Oleum phosphate extraction	OPS-1, OPS-3, OPS-4	Sr, Y, Mo, Zn, REE
3	Oleum sulphate extraction	OSE-3	Sr

Allocation of the main shops under consideration on the premises of the plant is shown in Fig. 2.

BARCEMETERSUS MUTERS

ENSINOTER

To clarify the present-day situation at the "Mineral Fertilizers" plant it was necessary to:

- determine the content and level of air pollution of the working areas and the drinking water;
- determine the normal and abnormal concentrations of elements in biosubstrates (hair, nails, bone tissue – teeth) of the occupational staff.

Fig. 2. "Mineral Fertilizers" plant premises

2. Methodology

2.1 Sampling

The sampling strategy is based on the assumption that, at the workplace, the main sources of the technogenic impact on the human organism are the air of the workplace and drinking water consumed in the shops.

2.1.1. Environmental samples

Atmospheric aerosols and pollution streams (dust) blown into the air and which then fell back around were collected in the workplace. To collect aerosols on filters (AFA-XA-20, Russia), the aspirator (model 822 and AC-1, Russia) was used continuously during the working time (6-8 hours) [10]. Dust samples were collected directly in the workplace from an area 10 sq. cm by means of a fur brush, taking into consideration the whole area examined and its dustness. Tap water was collected from the drinking fountains at the shops in clean plastic bottles 1.5 liter in volume. As the central water supply system provides the shops with fresh water, water samples were collected in only two shops (OSE-3 and OPE-3) and were conserved as required elsewhere [11].

To estimate the most probable sources of the air pollution in the working area, samples of the main type of industrial raw material (apatite concentrate), the final product (ammophos), and its byproduct (phosphogypsum) were collected.

2.1.2 Human biosubstrates

Diagnostic samples of human biosubstrates were collected in all operating shops. The list of occupations and relevant shops are given in Table 6.

Fig. 3. Collecting hair samples.

- Locate a region on the scalp between the top of the ears and the nape of the neck (see figure A)
- Fasten the hair not to be cut out of the way with plastic clips (see figure B)
- Cut 10-20 strands of hair from 5-10 different sites in the occipital region of the scalp with stainless steel surgical scissors (see figure C). Save only the 5 cm of hair growing next to the scalp (if the hair is longer than 5 cm).

- 1) Collection of hair samples from the occupational staff was carried out in accordance with the scheme shown in Fig. 3 [12] as adopted by the World Health Organization. Not less than 500 mg of hair for each sample was collected.
- 2) Simultaneously with the collection of the hair samples, nail samples were collected from some of the examined employees.
- 3) Samples of bone-tissue (teeth) were obtained from the stomatological medical clinic of the plant. These samples were not differentiated by shop or occupation.

Age, sex, the total length of service in the shop, and at the plant, was fixed in a protocol (see APPENDIX I). To avoid surface contamination prior to analysis of the biosubstrate samples the hair, nails, and teeth were subjected to a special cleaning procedure described elsewhere [13]. All of the collected samples were stored in hermetic zip-lock type plastic bags.

Thus, 23 samples of atmospheric aerosols, 15 samples of dust, 2 samples of drinking water, 3 technological samples, 36 samples of hair, 5 samples of nails and 5 samples of teeth were collected. The total number of samples subjected to analysis during the first year of the project was 89.

2.2 Analysis

1

į.

1.222 (1.222)

The element concentrations of samples collected during the first year of the project were determined by means of NAA, XRF, and AAS.

The XRFA of the aerosol filters, dust, and technological samples for Ti, Mn, Cu, As, Rb, Sr, Y, Zr, Nb, Ba, Pb determination was carried out using a MECA-1044A (XR-500) analyzer (LINC SYSTEMS, Great Britain) with a pulsed X-ray tube and a silver target as a source of excitation. The detection energy resolution at the 5.9 keV K-line of Mn was 160 eV. A double-channel spectrometer XRF-WD (ARF-6, Russia) was also used [6, 14].

Heavy metals in the drinking water were determined by the method of preconcentration sorption filters with grafted chelate groups. The sorption filters were measured then by XRFA [15]. The rare-earth elements in the drinking water were determined in the salt residuals after evaporation by means of neutron activation analysis. Individual elements in the drinking water were determined with the atomic absorption spectrometer FAAS-3 (Germany) [14], the sample being placed directly into the flame (acetylene-air mixture) after preliminary sample preparation.

Neutron activation analysis of the biosubstrates, aerosol filters, dust and technological samples was used to determine Na, Ca, Sc, Cr, Fe, Co, Zn, As, Br, Cd, Sb, Ba, REE, Au, Hg, Th, and U. The analysis was performed at IBR-2 reactor in Dubna and at IRT research reactor at Moscow Technical University (MIPhI) as described in [14]. The integral flux of epithermal neutrons was $10^{16}-10^{17}$ neutron/cm². The temperature of the container with the samples during irradiation did not exceed 70 °C. The induced activity was measured with the using ORTEC γ -spectrometer of energy resolution 1.9 keV at the 1333 keV line of ⁶⁰Co.

3. Results and discussion

The data on the trace element concentrations in the air of the premises of the plant and dust collected in the shops are given in Table 2 and Table 3, respectively.

The analysis showed that the maximum permissible levels for trace elements in the workplaces have never been exceeded. The maximum air pollution with airborne particulate matter as well as the maximum concentrations of Na, Ca, Cr, Fe, As, Sb, Sr, REE, and Th occur at the loading-unloading sites. One should note relatively high, but not exceeding the maximum permissible, levels of As in the air of the Central Laboratory premises.

5

AMETONICEHE

Table 2

TRACE ELEMENTS IN THE AIR OF THE PREMISES OF THE "MINERAL FERTILIZERS" PLANT, NG/M3

	_	_		-	_	_		-	_	_				_						_			_					· · · · ·						
	3			0.8	<u>60.2</u>	-		18	18	55	0.2	0.3		0.7	0.5	18.3		6.4	3.3	3.2		1.7	04	0.8		<0.2	0.4	<0.2		0.6	<0.2	6.2		
	£	ngvu		80	≤0.02	0.03		0.6	<0.2	<0.2	0.05	<0.02		0.02	0.02	0.2		<0.05	<0.05		- 14	0.04	0.03	<0.02		<0.02	<0.02	<0.02		0.15	0 16	1.3		9
	>		×	<15	55	<15		<15	<15	<15.	<15	<15		<15	415	<15		<15	13	<15	-	23	<15	<15		<15	<15	<15		<15	<15	\$15		8800
	f		1	6.9	3.3	15		690	423	870	2.2	1.4		17	6	460		190	130	80	× .	28	1.4	1.6		0.2	<0.1	<0.1		<0.1	<0.1	5 10		7500
	Ê.		•	⊽	⊽	r		₽ [′]	4	4	4	4		÷	¥	₽	82	¥	<1	<1	2	Þ	4	4		5	4	4		۶	₽	₽		1-10
	P	_	J	0.3	0.06	0.08	,	2.1	0.7	1.3	4.0	<0.01	. <u>.</u> .	0.08	0.16	-	·a	0.16	0.1	0.26	4	0.06	0.06	0.13		0.146	0.04	0.08		0.08	0.07	0.07		·
	Щ.		-	14	4	30	2 12	1200	680	1900	4	3	- 24 -	33	15	1000	ľ	8	8	80		12	1	5		0.5	0.7	0.5		-	6.0	-		•
	ŝ			-22	18	140		4600	2600	8000	15	13		120	46	4300		570	140	300	14.2 2	48	- 2	8	2	. 3	3	4	25	11	10	2		•
	ບຶ			1100	370	3600	1	112000	64000	194000	220	250		2500	1200	93000		2100	1300	5000		.570	70	130		46	51	65		240	160	130		- -
	е,			680	210	1800		64000	37000	113000	°∶160	.140		1600	670	53000	į.	1400 -	1000	3400		310	28	54	بن	27	20	23	-	100	70	60	4- 	
	å			1.5	0.8	. 9'0	•	<0.5	<0.5	120	1.2	<0.5		8	8	<0.5		<0.5	<0.5	1000		1.9	<0.5	<0.5	SE)	<0.5	ं 2.0	1.12		- 24	17	18		5-10
1	۰. ۲	, m/6n	÷	0.12	<0.1	0.09	E-3)	12	33	16	<0.1	<0.1	Ŧ	0.09	0.08	19		9.0	0.3		2 ·	0.3	01	0.1	ction (O	0.06	<0.1	<0.1	 1. s	0.4	<0.1	6. 1	4	•
	Š	,m/6n	on (OPE	15 0	1.5	11	ion (OPI	620	150	880	4	-	on (OPE	9.9	=	1100	(AMM-1	4.3	2.3	- 1.	(AMM-2	2.6	0.6	1.1	te extra	0.4	0.3	0.04		1.3	2.5	1.4		
	ä		extracti	40.1	<0.1	<0.1	extract	43	13	20	12	<0.1	extracti	<u>6</u> .1	ŝ	18	sound	ê.	<u>60.1</u>	<0.1	soudou	9	<0.1	<0.1	m sulfa	3.7	14	4.1	atory C	8.1	112	2		•
54	As		sphate	. 15 C	<0.1	10	sphate	23	33	30	<0.1	¥.	sphate	9 9	4.8	8	of amn	12	₽	35 .	of amn	15	12	Ŧ	of oleu	2.2	5.5	36	al Labor	85	53	85		1-104
	ů		ohq m	<0.1	0.4	2.7	yd mi	96	180	140	<0.3	60.1	m pho	2.2	0.7	120	uction	25	7.1	15	uction	2.7	<0.1	<0.1	luction	1.1	<0.1	2.8	Centr	3.7	2.9	<u>6.1</u>		5-105
	Fe	, m/6n	lor oleu	4.7	3.1	9.6	for ole	380	160	430	6.6	0.2	or oleu	14	S 7 S	210	or prod	-62	- 78	100	or prod	37	2 1 >7	5.2	or prod	2.9	4	4.3		66	73	46		4000
	ບັ		Shop	140	570	550	Shop	1500	1500	1200	160	2	Shop	8	<u>6</u>	100	Shop 1	220	48	250	Shop 1	220	40	50	Shop 1	7.4	240	7.2	1	270	240	230		1-106
	Sc			0.3	0.08	0.7	14. 2	23	7.8	8.4	0.6	.0.3		0.2	0.3	4.5	• 12	2.9	2.1	1.9	ų.	0.5	0.08	0.05	, t	0.3	0.7	0.7		2.5	2.2	2.1	4	·
	ő	, w/Gr		100	. 75	260		9600	5900	12000	22	20	ы Х	230	100	8200	et D	190	100	210	18 8 1	52	<10	<10		<10	<10	<10	1	<10	<10	<10 :	1.	7
	eN.	_w/6r/		1	0.5	<0.1		54.9	21-	105	0.3	0.1		1.1-	0.3	32	s:	6.7	5.6	2.1		12	0.1	1.4	1	<0.1	0.7	0.2	2	0.6	1.1	0.5	1	•
	Dust imp.	~m/6m		0.7	0.4	1.1		37	20	11	۰	0.4		-	0.8	65		17	14	7.8		2	0.5	0.8	¢.,	<0.2	0.6	0.6		1.6	0.7	0.7	j.	
	Plant premises	- <u>1</u>		Turn-around tanks	Extractors	Dozers		Operational, unloading	Platform, unloading	Bunker, unloading	Evapourating dept.	Extracting dept.		Transporter loading	Separators	Unloading platform	18	Wet-dust collectors	Crushers	Loading		Fine crusher	Drum-dryer	Coarse crusher		Oleum absorption	Site of oleum mixture	Water vapour purification		Room No. 132 (09.06.97)	Room No.132 (10.06.97)	Room No.128 (10.06.97)		Max. permis. level [16,17]

TRACE ELEMENT CONCENTRATIONS IN DUST COLLECTED IN THE SHOPS OF THE "MINERAL FERTILIZERS" PLANT, UG/G

Table 3

1

ر کرا

Shop	Sampling site	As	8	Э	۴	ر ۲ متر ۲	Sr %	1.45
					t.			
OPE-1	Site of dozators	\$	41	V	21	220	1.6	
- 1 5	Site of extractors	\$3	76	£	13	140	-	_
						•		
ODE 3	Coordinational united ind	- 2 -	3.6	v	27	310	2.2	
210	Operational, unitedung	Ċ,	2	2.9	5.8	7.6	2.3	1
	Extraction department	v ₩	8	۲	14	5 - 170 - ¹	1.2	
1.		,		* 			4	ē,
		ſ	ţ	24	8.5	94	1	
OPEA	Iransporter	? 9	2		4	160	<u>े</u> 13	
	Separators	?	<u>o</u> 1	•	2 8	2		
	Unioading shop	300	3.5	2	ą	310	2.2	4
			بالمراد والمحافظ					
AAAA 4	ItAtot duet collectore	\$3	3.2	1.9	10	66	0.04	
		ç	24	60	12	120	0.6	ù .
1	Site or loading	2		2		120	0.04	٢.
	Crushers	5	6.4	2				÷
		2 N 14 1						Ē
C MAN 2	Daim dater	6.9	110		8.5	89	0.06	15
7-IAIIAIC		v	12	17	13	140	0.06	
	Crishere	<u>ې</u>	6.8	2.1	13	··· 120 ···	0.04	÷
	Ciusiicia							;
								1

7

0.006

4

1

v

92

Site of oleum mixture

OSE-3

6

-	
4	
Ð	
Ö	
B	

ELEMENTAL COMPOSITION OF RAW MATERIAL, FINAL PRODUCT, AND BYPRODUCT, JUG/G

2		50		15		°2										•
ā		•		6		۲		qd			1.2		<u>۲</u>		-	
£		1		<0.1		<0.1		þ			* 9.4	• .	<5	×	10	,
5	-	02		50		<10		Ę			23		12	e.	9	
3	おり	100		50		<20		Au		2	<0.05	- - 	<0.05	1		1
3		1.2		3.5	e	v		шS		Victor	150		20		80	
.».		0.7		0.7	3	<0.01	ľ	PN		n L Ju	550		<50			13 14
UM	24 14	500		650	1	30		ဗီ		,	3000		210	1	1400	
5		\$5		\$	1 2 2 2	28		La			1900		110		1000	
= %	Page 1	0.6	, ,	0.27	a kara sa	<0.2		Ba	8 4 -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	800	181 - 1 - 1	40	а.	550	1
0	1	0.1		0.3		1.3		dS.	4		8.7	N.	r.		V	
% رً		30		1.5	1. S.	19		qN		1	50		35		<20	
°07.		40.7		65	1. 1. 1. 1. 1. A.	1.4	-	Z			650		65		380	2
PN %		0.25		0.15	Terrar 1	0.07		۲			230		180	Verit, 2	190	
- %	1. 1. No. 1. 1.	2.3		\$ \$10 C	1 - AV	0.14		ų S	%	1	2		0.04	-v	1.4	
adti	Raw material	(apatite concentrate)	Final product	(ammophos)	Byproduct	phosphogypsum		Type		Raw material	(apatite concentrate)	Final product	(ammophos)	Byproduct	(unsd/boydsoyd)	

NGN TRACE ELEMENT CONCENTRATIONS IN DRINKING WATER AT THE "MINERAL FERTILIZERS" PLANT,

Table

L																						Ì	
Ž	o SHOP	Na	Ca	ő	σ	e L	ပိ	Zn	As	Se	8	å	-	Ba	e,	S	PN	Ъ	Au	БН	f	⊃	Pp
		Mg/I	Mg/I	1.1		14 - 1		j) L	j.	ta V	а ¹	ĺ.	-				,4						
-	a state of the second sec	94 10 10	ی د ۳۵			3.50	200	1	2				Γ	Γ				1					
-	OPE-3	16.7	50.9	0	1.1	140	0.8	20	<0.1	0.9	\$0.1	<0.06	1.3	330	4.2	1.9	5.9	0.1	0.01	<0.1 0	0.2	ŗ	ŗ
5	OSE-3	16.8	52.8	0	1.8	100	0.7	25	<0.1	0.9	<0.1	<0.06	1.1	310	3.9	7.5	3.4	0.1	0	<0.1	0.2	2	ŗ
			:		۰,	1			i i	-	Ξ,			ļ									
-	Max.PL [16]	200		•	50	300	100	3000	5	10	-	50	F	100	1	1	t.	1		0.5	500	1800	8

Table 4 presents the elemental content of mineral raw material (apatite concentrate), final product (ammophos), and industrial waste byproduct (phosphogypsum). It follows from this data that F, As, Sb, REE, Th, and U are of the highest potential hazard for the given environment.

The data obtained for the drinking water consumed at the plant (Table 5) do not exceed the relevant maximum permissible levels.

The information on occupations and shops of the examined personnel of the plant is given in **Table 6**. To study the environmental impact on the population health such diagnostic biosubstrates as blood, urine, hair and nails are most often used. Human hair are responsible for the release of chemical elements from the organism, the rate of this release through hair varies from $1 \cdot 10^{-3}$ to $1 \cdot 10^{2} \mu g$ per day [9]. Accumulation of trace elements in hair allows one to characterize the sustainable and systematic impact of pollutants, which is of special importance for our study.

Table 6

OCCUPATIONS OF THE EMPLOYEES EXAMINED AT THE "MINERAL FERTILIZERS" PLANT

Shop	Occupation	Shop	Occupation
Shop OPE-1 OPE-3 OPE-4	Occupation Shop chief Chief deputy Foreman Central Control Desk operator Power supply operator Mechanic Electrician Measuring devices mechanic Installation operator Mechanic-repairman Apparatus mechanic Conveyor mechanic Electrical welding mechanic Driver Cleaner	Shop AMM-1 AMM-2 OSE-3 CL	Occupation Chief deputy Foreman Shipment foreman Hopper - operator Installation operator Quality control dept. supervisor Conveyor mechanic Furnace fireman Electrical engineer Mechanic Quality control dept. supervisor Installation operator Mechanic-repairman Electrical engineer Engineer technologist Installation operator Technician
		19 19	Technician Head engineer technologist Quality control technician

The trace element concentrations in the hair of the occupational staff are given in Table 7. Biochemical association of trace elements accumulated in the hair fully correlate with the specific features of the content of atmospheric aerosols. For example, the results obtained allow the shop OPE-3 to be distinguished as a source of increased concentrations of Ca, Cr, Fe, As, REE, Th, and U. However, it is evident that for a reliable statistical analysis with account of shops, occupations, age, length of service, etc. the experimental material under consideration is insufficient.

8

9

(Con't) Table 7

í.

TRACE ELEMENTS IN HAIR OF THE OCCUPATIONAL STAFF FROM THE "MINERAL FERTILIZERS" PLANT, UG/G

No.	Occupation	Na	Ca	Sc	Cr	Fe	Co	Zn	han de st
	Ohan fan al								la de la composición de la composicinde la composición de la composición de la composición de la compo
1	Bosponsible for power supply	eum phos	sphate ext		0.6	.07	03	105	p
	Responsible for power supply	20	1600	0.03	1 1	65	0.3	100	Sec. Sec.
4	Shop chief	20	1000	0.03		00	0.3	220	
3		30	400	0.04	12	30	0.3	160	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
4	Cleaner	30	5200	0.03	1.2	43	0.2	230	etter i la
5	Cleaner Shop for ol		D200	notion (1.5	50	0.5	230	Sec. 14
e	Mashania	40 au	1200	0.02	52	110	03	165	
2	Mechanic	70	1100	0.02	3.4	150	0.0	180	
6	Apportus mechanic	280	11000	0.01	10	180	0.4	175	
°.	Apparatus mechanic	200	2400	0.01	1.5	100	0.2	200	
10	Mechanic	20	460	0.01	1.3	120	0.3	175	
10	Mechanic	30 .	400	0.01		130	0.4	1/3	11 12
	Snop for of	eum pho:	2700	raction (C	07	46	0.2	150	
11	Hopper-operator	20	3700	0.03	1.0	. 02 -	0.2	165	
12	Apparatus mechanic		1200	0.04	1.9	32	0.3	120	and the second
13	Hopper-operator	23	3900	0.02	1.1	60	.0.2	105	
14	Conveyor mechanic	25	4000	0.04		. 60	0.3	195	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45	Shop for p	roductio	n of ammo		nwi-1)	0.00		120	
15	Shipment foreman	20	790	0.03	1.4	93	0.2	120	1.00
16	Hopper - operator	31	2800	0.03	1.5	100	0.2	100	
17	Installation operator	. 35	5100	0.04	2.3	100	0.2	1/0	
ູ18	Quality control technician	39	1400	0.03	1.2	67 ~	· 0.1	140	
19	Conveyor mechanic	41	3400	2 0.03	2.1	110	0.2	160	
	Shop for pro	duction o	of ammoph	ios (AMN	1-2)		1		
20	Conveyor mechanic	18	2600	0.01	2.2	28	0.4	155	
21	Quality control technician	29	680	0.01	1.1	.77	0.4	220	
22	Master	23	780	0.02	2.1	100	0.4	210	
23	Master	23	360	0.02	1.4	55	0.3	180	
24	Installation operator	37	<200	0.05	1.5	52	0.2	185	
25	Head master	25	1300	0.03	1.6	85	0.3	225	
	Shop for	oleum su	ilfate extra	ction (OS	SE-3)		1000	• 19	
26	Installation operator	46	9200	0.03	4.1	160	0.6	480	
27	Mechanic	.142	3800	0.19	3.5	360	0.2	200	
28	Installation operator	31	7900	0.03	1.4	83	0.2	180	
29	Quality control technician	33	6500	0.04	0.9	170	0.3	140	
30	Installation operator	42	1900	0.03	1.3	120	0.1	160	
ŶŶ		Central	Laboratory	CL					
31	Engineer technologist	36	970	0.04	1.5	.84	0.2	140	
32	Technician	36	1100	0.04	1.4	53	0.2	220	
33	Quality control technician	19	4300	0.02	0.7	32	0.3	210	
34	Engineer technologist	47	400	0.01	0.4	30	0 1	50	
25	Head engineer	42	200	0.04	2	40	0.1	100	
_ 3 0	Baskeround comple	45	1500	0.04	15	170	0.3	160	
30	Dackground sample	30	1500	0.04	1.5	110	0.2	100	
	a da ser ser i da s	ee ar is	a jarden	1.10.118	terre de la composition de la	÷.,		e de tra Tra constituir	

		D. As	Se	Br	Ag	C	dIS		a TC	Sm	E.	1	10		
	Ĺ				1.	· -	-		~ ~				H H	g TI	וטו
						_	_								
	4	-0.4			1	Sh	op for	oleur	n phọ	sphate	extra	ction (C	PE-1	1.00	
		<0.1	0.8	2.8	<0.5	5 <0.	5 0.0	5 0.1	5 1.1	0.05	0.0	3 0.00	9 0.	1 <0.	1 03
	2	0.1	<0.5	5 1.1	<0.5	5 <0.	5 0.0	9 0.4	4 1	0.05		0.06	5 0 3	3 <0	1 0.0
	3	0.1	<0.5	5 0.5	<0.5	5 <0.	5 0.0-	4 1.2	2 2.3	0.07	0.0	3 0.00	0 0 2		
	4	<0.1	<0.5	0.7	<0.5	<0	5 0.02	2 0.5	5 0.9	0.05		0.01	5 0.2		
	5	<0.1	<0.5	0.5	0.7	<0.	5 0.02	2 0.7	7 1.5	0.06	0.01	2 0.00		o ,∼0.	1 0.4
					2.1	Sh	op for	oleum	1 phos	snhate	Avtra	tion (O	0 0,1		1 0.4
	6	0.5	1.1	1.7	.0.6	<0.	5 0.05	5 2.2	2 34	0.2	0.14		FE-3)		
	7	0.5	0.8	0.7	0.7	<0.	5 0.05	4.2	2 6.5	0.4	0.14	0.010		0.2	<0.1
	8	0.5	0.9	0.8	<0.5	<0.	5 0.18	4 1	61	0.4	0.17	0.000	0.4	0.3	0.2
	9	0.2	<0.5	1	<0.5	<0.	5 0.04	24	3.6	0.7	0.15	0.015	0.5	0.3	0.8
	10	0.2	1.2	2.6	3.5	.<0.	5 0.09	21	3.8	0.2	0.00	0.014	0.4	0.2	0.4
		4				She	n for d	loum		nhote	0.09	0.024	0.5	0.2	0.5
	11	0.1	0.6	0.4	<0.5	<0.5	5 0 04	0.6	1 2	pinate (extrac		2E-4)		
	12	<0.1	0.6	0.4	0.2	<0.5	11	2 1	20	0.06	0.04	0.069	0.4	<0.1	0.6
	13	<0.1	< 0.5	0.3	6.5	<0.5	0.04	0.4	3.0	0.16	0.08	0.17	0.7	0.1	• 0.4
	14	0.1	<0.5	0.3	<0.5	<0.5	0.04	2.7	0.9	0.06	0.05	0.079	0.2	<0.1	0.7
			8 a 1 1		30.00	Sh	on for	2.4 nrodu	4. I	0.1	0.05	0.048	<0.1	<0.1	0.2
	15	<0.1	<0.5	2.1	<0.5	<0.5	0007	1 2	1 7	oram	mopho	os (AMA	1-1)		
	16	<0.1	<0.5	1	<0.5	<0.5	0.07	0.7	1.7	0.1	0.06	0.006	0.2	0.2	0.3
	17	0.2	<0.5	0.6	<0.5	<0.5	0.03	0.7	1.8	0.05	0.03	0.009	0.1	<0.1	<0.1
	18	<0.1	0.5	14	<0.5	-0.5	0.03	0.7	1.1	0.05	0.06	0.009	0.1	<0.1	<0.1
	19	<0.1	<0.5	0.6	-0.5	-0.0	0.05	0.5	0.7	0.04	0.02	0.008	0.4	<0.1	0.5
1.1			-0.0	0.0	~0.5	×0.5	0.04	0.6	0.9	0.07	0.07	0.032	0.3	<0.1	<0.1
	20	0.4	-0.5			Sh	op for	prod	uction	l of am	moph	os AMN	1-2	22	
	21	0.1	<0.5	0.8	<0.5	<0.5	0.04	0.2	0.7	0.06	0.03	0.007	0.3	0.1	0.4
	20	0.1	<0.5	0.7	<0.5	<0.5	0.06	0.3	0.7	0.05	0.02	0.054	0.1	0.2	07
	22	0.4	0.5	1.1	<0.5	<0.5	0.06	1.2	2.5	0.09	0.02	0.008	0.2	03	0.6
	23	<0,1	<0.5	1.1	<0.5	<0.5	0.02	0.3	0.8	0.04	0.03	0.015	0.7	<0.1	0.6
	24	0.1	1.1	1.3	0.8	<0.5	0.04	0.5	1.1	0.04	0.02	0.014	0.5	<0.1	<0.0
	25	<0,1	<0.5	0.6	<0.5	< 0.5	0.22	0.4	0.7	0.06		0.01	0.5	<0.1	0.1
	•••	27. L		di e te	- ÷	S	hop for	oleu	m sult	fate ext	tractio	n OSE-	3		0.4
	26	<0.1	<0.5	0.6	<0.5	< 0.5	0.03	0.7	1	0.07	0.03	0.37	02	0.1	0.6
	27	<0.1	<0.5	2.7	<0.5	< 0.5	0.22	1.4	2.5	01	0 15	0.063	0.2	-0.1	0.0
	28	<0.1	<0.5	0.6	<0.5	<0.5	0.06	0.4	1.1	0.02	0.05	0.003	0.5	-0.1	<0.1
	29	0.3	<0.5	ି 1 ି	<0.5	<0.5	0.03	2.8	4.6	0.15	0.00	0.040	0.2	<0.1	0.3
	30	<u><</u> 0.1	<0.5	1.4	<0.5	<0.5	< 0.01	0.6	0.9	0.04	0.00	0.049	0.2	<0.1	0.4
		- Ó		$w \in \mathcal{M}_{\mathcal{N}}$	• [••• • •			Cent	ralLa	borato		0.14	0.4	<0.1	<0.1
	31	0.09	<0.5	1.1	<0.5	<0.5	0.05	0.5	1	0.1	0.03	0.02	0.6	0.04	
	32	0.05	<0.5	1.7	<0.5	<0.5	0.02	0.6	1.3	0.05	0.03	0.02	0.0	<0.4	0.6
	33	<0.1	<0.5	0.5	<0.5	<0.5	0.02	1.3	3	0.06	0.05	0.0022	0.0	-0.1	0.3
	34	0.08	<0.5	1.7	0.4	<0.5	0.05	0.8	1	0.05	0.01	0.005	0.3	×0.1	×0.1
	35	<0.1	<0.5	1.9	2.2	<0.5	0.11	0.2	0.5	0.04		0.027	0.1	-0.1	1.1
	36	<0.1	<0.5	0.4	<0.5	<0.5	< 0.01	0.6	1	0.03	0.04	0.027	0.4	10.1	0.2
					1.1.1			0.0		0.05	0.04	0.010	0.2	<0.1	<0.1

×.

11

. . .

10

and the second stand and the second stand stand and the second stand stand stand stand stand stand stand stand

(a) A start of the second start of the seco

95 ⁽)	٤	2	4	-	-	2	-				σ	2			<u> </u>	٦	I				1				
י	-	4	0	¥ F	¥ 9	-	V N				Table				Au			0.52	48.7	0.05	0.7	0.03		•	
	¥	0.0	0.0	0	0.0	0.0	00	ł				-			· • • •			9				-		6	
IN'	Eu	0.16	0.42	0.1	0.12	0.8	0.16	्र 				4		Į.	'n,			0.008	•	•		0.004		0.006	
	В	0.12	0.74	0.06	0.18	0.43	0.12		ί.		2. 9.		d "Sa	2				57		-		۔ 20		82	
ZERS	ဗီ	3.3	14	2.9	10	19	2.6		9		in in	. *.	175		¥.			0.0				0		0	1
	La	3	9	1.2	9	7.3	1.6	La				·*,	ERT.		., 		÷	041	-			012		013	
	Sb	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		n v	÷		а 2-		5		-		0		-		õ	/	ŏ	2 1
VERA	ä	1.8	2.7	0.8	0.9	6	1.8		л. Ц	-	:	9. 1	INFI		Sm	* 201	2	0.052	•	•	•	0.014	а	0.017	1
IW.	As	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	213 	ي: ي:	at: J	i i E		с. Ц	 - -	100	3	1	2.5	-						
HT.	Zn	145	170	170	200	330	110	23 5		7 -2 -			UE T	50 50	ပိ	**	1. N.	0.74			•	0.38	* 1. *	0.39	
AFF OI	S	6.0	0.8	0.8	0.0	3.3	0.4			5 2 2			CTAFE		La			.23	•		-	0.1		0.12	1
LST	Fe	430	360	270	470	3300	160	1					NAL		<u></u>		ł	-		4 ·		-	2	-	ia:
TIONA	ບັ	8.5	13	4.4	5.9	30	6.8	2 22 0		usi Us aga			DATIO		чZ	27	ť	200	1,700	200	57,000	140	:	5 -	24
CUPA	ŝ	0.13	0.14	0.14	0.2	0.7	0.16	5						3			- 14	2		3.2	~		30 30		£
	Ca	3000	3600	5700	5900	6 000	3400	2					THEO		Ŭ			0.4	0.0	0.	1.5	ି 0 .		1	•
OF TI	Na	140	130	130	240	540 1	74		dije Gije	(2		• • •		5	Fe			400	470	510	2,600	500		•	•
N NAILS	Shop	OPE-3	OPE-3	AMM-2	AMM-2	AMM-2		1. 2. 5. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		5 7 (IN TEE		Sc			.08	.14	.08	.67	0.08	1	-	-
ITS I	4 - 4 - 1		- 2 -										NTC			_				2	-	-	-:		~
LEMEN	ation	man	man	anic	chnician	1. 1. N.	ple	40 13 13 13					el em		Ca	(%)		10.7	9.8	11.1	7.3	10	5	•	2 44 4
TRACE	Occup	anic-repair	anic-repair	yor mech	y control te	lan	round san						TPACE		Na	5		4,900	7,600	4,500	8,100	3,400	•		
		Mecha	Mecha	Conve	Qualit	Forem	Backg								-			_				_			
	٩		2	3	4	5	9								No			-	2	3	4	5		9	

sample

- the background

ω

Table 8

- 1 - B

40.0

The employee nails (Table 8) show the same identity with hair in accumulating the trace elements. However, there is always a possibility that nails are not cleaned enough from the surface contamination.

The results of the analysis of the bone tissue (teeth) of the occupational staff are presented in **Table 9**. The difference in the level of element concentrations in individual samples is quite substantial. Perhaps it could be explained by the presence or absence of the artificial dental protheses in the mouth and by the material they are produced from. One should note the differential distribution of REE (Sm/Eu tatio) obtained from the radiochemical analysis.

4. Conclusions

1. The main chemical pollutants at the plant are F, Ca, As, Sb, REE, Th, and U, which is confirmed by the analysis of the atmospheric aerosols and the hair of the occupational staff. The main source of pollution is the raw material (apatite concentrate).

2. The drinking water consumed at the plant could not be considered as a source of the uptake of the above-mentioned elements into a human organism.

3. Due to atmochemical network the workplaces characterized by the increased level of trace element pollution in air are revealed.

4. The trace element content of the hair of the occupational staff reflects the pollution of the workplaces.

5 There is a hope that more thorough study of the trace element content of teeth could help to reveal the interrelation between the concentration of Ca on the one hand, and of F, Sr, and REE, on the other.

6. One should note that the further sampling of dust and nails is not reasonable.

We plan to repeat the workplace monitoring of the fertilizer plant at a large scale and the extending the study to the occupational staff and local residents of the phosphate ore of the phosphate ore open-cast mining enterprise, situated 3-7 km from the main plant.

References

- SOROKINA, E.P., KULACHKOVA, O.G., ONISCHENKO, T.L., A Comparative Analysis of the Influence on the Environment of Industrial Production of Various Types, in Methods of Analysis of Industrial Anomalies, IMGREE, Moscow (1984) 9-20 (in Russian).
- [2] HAMAMO, H., LANDSBERGER, S., HARBOTTLE, G., PANNO, S., Studies of Natural Radioactivity and Heavy Metals in Phosphate Fertilizer. J.Radioanal.Nucl. Chem., Vol. 194, No. 2 (1995) 331-336.
- [3] RUTHERFORD, P.M., DUDAS, M.J., SAMEK, R.A., Environmental Impacts of Phosphogypsum: A Rreview. Sci.Total Environ., Vol.149 (1994) 1-38.
- [4] METZGER, R., MCKLVEEN, J. W., JENKINS, R., MCDOWELL, W.J., Specific Activity of Uranium and Thorium in Marketable Rock Phosphate as a Function of Particle Size, Health Phys., Vol. 39 (1980) 69-75.
- [5] SANTOS, P.L., GOUVERA, R.C., DUTRA, I.R., Human Occupational Radioactive Contamination from the Use of Phosphated Fertilizers, Sci. Total Environ., Vol 162, No.1 (1995) 19-22.

[6] GORBUNOV, A.V., GUNDORINA, S.F., ONISCHENKO, T.L., FRONTASYEVA, M.V., Development of a Combined Method to Carry out a Multielement Analysis for Environment Preservation. J.Radioanal.Nucl.Chem., Vol. 129, No. 2 (1989) 443-451.

[7] VOLOKH, A.A., GORBUNOV, A.V., GUNDORINA, S.F., REVICH, B.A., FRONTASYEVA, M.V., CHEN SEN PALI, Phosphorus Fertilizer Production as a Source of Rare-Earth Elements Pollution of the Environment. The Science of Total Environment, 95 (1990) 141-148.

12

- [8] GORBUNOV, A.V., FRONTASYEVA, M.V., et al., Effect of Agricultural Use of Phosphogypsum on Trace Elements in Soils and Vegetation. The Science of Total Environment, 122 (1992) 337-346.
- [9] REVICH, B.A., SOTSKOV, YU.P., KOLESNIK, V.V. Trace element composition of children's hair as an indicator of air pollution, in Influence of Industrial Production on the Environment, Nauka Publishers, Moscow (1987) 93-101 (in Russian).
- [10] Normative Documents of Russian Federation for Control the Atmospheric Pollution, Gidrometeoizdat, Moscow (1991) 683 pp. (in Russian).
- [11] State Norms GOST 18963-73 (1973), 13 pp. and GOST 24481-80 (1980) 9 pp. (in Russian).
- [12] DIPIETRO, E.S., PHILIPS, D.L, PASCHAL, D.C., NEESE, J.W., Datermination of Trace Elements in Human Hair. Biological Trace Element Research, Vol. 22 (1989) 83-100.
- [13] Screening Methods for Revealing of Groups of Increased Risk Among Workers, Contacting Toxic Chemical Elements, The Methodical Recommendations. Minzdrav USSR, Moscow (1989) 22 pp.
- [14] Children's Health on the Territories, Polluted with Lead. Problems of the Biological Monitoring. Risk Assessment. Preventive Maintenance and Treatment. Centers for Disease Control and Prevention, The Rreports, Moscow (1997) (in Russian).
- [15] VARSHAL, G.M., FORMANOVSKY, A.A., TSYSIN, G.J., SEREGINA I.F., ZOLOTOV, Yu.A., DELTA-Filters for Metal Preconcentration and Multielement Determination in Natural Waters, Int.J.Environ.Anal.Chem., Vol. 57 (1994) 107-124.
- [16] RYBALSKY, N.G., ZHAKETOV, O.L., ULYANOVA, A.E., SHEPELEV, N.P., Ecological Aspects of the Inventions' Expertise, Handbook, Moscow (1989) 447 pp. (in Russian).

the second states to address the second states of the states of the second states of the second states of the

and the state of the second second

[17] Norms of Radiation Safety, NRB-76/87, Moscow (1988) 151 pp. (in Russian).

Мониторинг на рабочих местах

и изучение влияния производства фосфорных минеральных удобрений на здоровье персонала, занятого в этом производстве (завод «Минеральные удобрения», Воскресенск, Московская область, Россия), с использованием ядерно-физических аналитических методов. Часть 1

В работе содержатся данные первого этапа мониторинга на рабочих местах завода «Минеральные удобрения» в Воскресенске (Московская область), одного из крупнейших центров по производству фосфорных минеральных удобрений в России. Определены типичные ассоциации элементов-загрязнителей в цехах завода с использованием ренттено-флюоресцентного анализа (ХРФА), метода атомной абсорбции (АА) и нейтронного активационного анализа (НАА). Максимальное загрязнение частицами пыли и наивысшие концентрации Na, Ca, Sc, Cr, Fe, As, Sb, Sr, P3Э и Th были выявлены в загрузочно-разгрузочных помещениях соответствующих цехов. Уровень концентрации микроэлементов в биосубстратах (волосы, ногти, зубы) отражает длительное и систематическое воздействие загрязнителей воздуха на рабочие места и на персонал, занятый в производстве. Наличие в технологии производства выделения фтора показывает необходимость проведения дополнительного объема работ для оценки его воздействия иа рабочий персонал предприятия.

Работа выполнена в Лаборатории нейтронной физики им. И.М.Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1998

Frontasyeva M.V. et al.

E14-98-392

E14-98-392

Workplace Monitoring and Occupational Health Studies at the Centre for Production of Phosphorus Mineral Fertilizers, Voskresensk (Moscow Region, Russia), Using Nuclear and Related Analytical Techniques. Part I

This paper contains the preliminary data obtained while monitoring the workplaces of the «Mineral Fertilizers» plant in Voskresensk (Moscow Region), one of the largest centres for producting phosphorus mineral fertilizers in Russia. The most typical associations of element-pollutants in the shops of the plant were determined by means of XRF, AAS and NAA. The maximal pollution by dust particulates and the highest concentrations for Na, Ca, Sc, Cr, Fe, As, Sb, Sr, REE, and Th at the loading-unloading sites of the shops were revealed. The level of trace element concentrations in the biosubstrates of the occupational staff (hair, nails, teeth) reflects the sustained and systematic impact of air pollutants in the working area of the plant on its occupational staff. Due to the considerable emissions of fluorine in the technological process, the necessity of assessing the fluorine accumulation in the occupational staff is emphasized.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1998